Research Article
BibTex RIS Cite
Year 2018, Volume: 7 Issue: 1, 50 - 59, 28.06.2018

Abstract

References

  • [1] Zieleniewska M., Leszczynski M. K., Kuranska M., Prociak A., Szczepkowski L., Krrzyowska M., and Ryszkowska J., (2016). Development and applicational evaluation of the rigid polyurethane foam composites with egg shell waste, Polymer Degradation and Stability, 132, 78-86. [2] Cao Z. J., Dong X., Fu T., Deng S. B., Liao W., and Wang Y. Z., (2017). Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams, Polymer Degradation and Stability, 136, 103-111. [3] Dick C., Dominguez-Rosado E., Eling B., Liggat J. J., Lindsay C. I., Martin S. C., Mohammed M. H., Seeley G., and Snape C. E., (2001). The flammability of urethane-modified polyisocyanurates and its relationship to thermal degradation chemistry, Polymer, 142(3) 913-923. [4] Chattopadhyay D. K, and Webster D. C., (2009). Thermal stability and flame retardancy of polyurethanes, Progress in Polymer Science, 34(10), 1068-1133. [5] Hejna A., Kirpluks M., Kosmela P., Cabulis U., Haponiuk J., and Piszczyk L., (2017). The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams, Industrial Crops and Products, 95, 113-125. [6] Saint-Michel F., Chazeau L., and Cavaille J. Y., (2006). Mechanical properties of high density polyurethane foams: II Effect of the filler size, Composites Science and Technology, 66(15), 2709-2718. [7] Corcione C. E., Maffezzoli A., and Cannoletta D., (2009). Effect of a Nanodispersed Clay Fillers on Glass Transition of Thermosetting Polyurethane, Macromolecular Symposia, 286, 180-186. [8] Yang D. Y., Zhang H. Q., Qiu F. X., and Han L., (2012). Investigation of polyurethane (urea)/modified nano-calcium carbonate hybrid aqueous dispersions and their films, Journal of Applied Polymer Science, 125(4), 2896-2901. [9] Mantilaka M., Karunaratne D., Rajapakse R. M. G., and Pitawala H., (2013). Precipitated calcium carbonate/poly(methyl methacrylate) nanocomposite using dolomite: Synthesis, characterization and properties, Powder Technology, 235, 628-632. [10] Usta, N., (2012). Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter, Journal of Applied Polymer Science, 124(4), 3372-3382. [11] Aydogan, B. and Usta N., (2015). Experimental investigations of thermal conductivity, thermal degradation and fire resistance of rigid polyurethane foams filled with nano calcite and intumescent flame retardant. Isı Bilimi Ve Teknigi Dergisi-Journal of Thermal Science and Technology, 35(2), 63-74. [12] Fan H. Y., Tekeei A, Suppes G. J., and Hsieh F. H., (2012). Properties of Biobased Rigid Polyurethane Foams Reinforced with Fillers: Microspheres and Nanoclay, International Journal of Polymer Science, doi:10.1155/2012/474803, 8. [13] Aydogan B., and Usta N., (2015). Investigation the effects of nanoclay and intumescent flame retardant additions on thermal and fire behaviour of rigid polyurethane foams, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (1), 9-18. [14] Huang N. N., and Wang J. Q., (2009). A TGA-FTIR study on the effect of CaCO3 on the thermal degradation of EBA copolymer, Journal of Analytical and Applied Pyrolysis, 84(2) 124-130. [15] Gao W., Zhou B., Ma X. Y., Liu Y., Wang Z. C., and Zhu Y. C., (2011). Preparation and characterization of BaSO4/poly(ethylene terephthalate) nanocomposites, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 385(1-3), 181-187. [16] Pashaei S., Siddaramaiah, and Syed A. A., (2010). Thermal Degradation Kinetics of Polyurethane/Organically Modified Montmorillonite Clay Nanocomposites by TGA, Journal of Macromolecular Science Part a-Pure and Applied Chemistry, 47(8), 777-783. [17] Czuprynski B., Paciorek-Sadowska J., and Liszkowska J., (2010). Properties of Rigid Polyurethane-Polyisocyanurate Foams Modified with the Selected Fillers, Journal of Applied Polymer Science, 115(4), 2460-2469. [18] Zhuang Z. H., and Yang Z. G., (2009). Preparation and Characterization of Colloidal Carbon Sphere/Rigid Polyurethane Foam Composites, Journal of Applied Polymer Science, 114(6), 3863-3869.

RİJİT POLİÜRETAN KÖPÜK MALZEMELERE BARİT İLAVESİNİN ISI İLETKENLİK VE ISIL BOZUNMA DAVRANIŞINA ETKİLERİNİN İNCELENMESİ

Year 2018, Volume: 7 Issue: 1, 50 - 59, 28.06.2018

Abstract

Isı ve ses yalıtımında yaygın olarak
kullanılan rijit poliüretan köpük malzemelerin özelliklerini iyileştirmek ve
üretim maliyetlerini azaltmak amacıyla farklı inorganik mineraller dolgu
maddeleri olarak ilave edilmektedir. Bu çalışmada, % 98.3 oranında baryum
sülfat içeren ve poliüretan hammaddelerine göre daha ucuz bir inorganik mineral
madde olan barit, kütlesel bazda % 5, 10 ve 15 oranlarında rijit poliüretan
köpük malzemelere dolgu maddesi olarak ilave edilmiştir. Barit ilavesinin,
poliüretan köpük malzemelerin ısı iletim katsayısına ve ısıl bozunma
davranışına etkileri incelenmiştir. Ortalama çapı (d50) 5 µm olan baritin % 15
oranına kadar ilave edilmesi ile rijit poliüretan köpük malzemelerin ısıl
iletim katsayısının ± % 2 oranında değiştiği belirlenmiştir. Termogravimetrik
analizler sonucunda ilave edilen barit miktarına orantılı olarak köpük malzemenin
ısıl bozunma sıcaklıklarının arttığı ve ısıl bozunma hızlarının azaldığı
belirlenmiştir. Sonuç olarak; kütlesel bazda % 15 oranına kadar barit
ilavesinin rijit poliüretan köpük malzemenin ısı yalıtım özelliğinde dikkate
değer bir olumsuzluk oluşturmaması ile birlikte, köpük malzemenin ısıl bozunma
direncini arttırdığı dolayısıyla da ısı iletim katsayısı ve ısıl bozunma
davranışı dikkate alındığında baritin rijit poliüretan köpük malzemelerde dolgu
maddesi olarak kullanılmasının faydalı olacağı değerlendirilmiştir.

References

  • [1] Zieleniewska M., Leszczynski M. K., Kuranska M., Prociak A., Szczepkowski L., Krrzyowska M., and Ryszkowska J., (2016). Development and applicational evaluation of the rigid polyurethane foam composites with egg shell waste, Polymer Degradation and Stability, 132, 78-86. [2] Cao Z. J., Dong X., Fu T., Deng S. B., Liao W., and Wang Y. Z., (2017). Coated vs. naked red phosphorus: A comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams, Polymer Degradation and Stability, 136, 103-111. [3] Dick C., Dominguez-Rosado E., Eling B., Liggat J. J., Lindsay C. I., Martin S. C., Mohammed M. H., Seeley G., and Snape C. E., (2001). The flammability of urethane-modified polyisocyanurates and its relationship to thermal degradation chemistry, Polymer, 142(3) 913-923. [4] Chattopadhyay D. K, and Webster D. C., (2009). Thermal stability and flame retardancy of polyurethanes, Progress in Polymer Science, 34(10), 1068-1133. [5] Hejna A., Kirpluks M., Kosmela P., Cabulis U., Haponiuk J., and Piszczyk L., (2017). The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams, Industrial Crops and Products, 95, 113-125. [6] Saint-Michel F., Chazeau L., and Cavaille J. Y., (2006). Mechanical properties of high density polyurethane foams: II Effect of the filler size, Composites Science and Technology, 66(15), 2709-2718. [7] Corcione C. E., Maffezzoli A., and Cannoletta D., (2009). Effect of a Nanodispersed Clay Fillers on Glass Transition of Thermosetting Polyurethane, Macromolecular Symposia, 286, 180-186. [8] Yang D. Y., Zhang H. Q., Qiu F. X., and Han L., (2012). Investigation of polyurethane (urea)/modified nano-calcium carbonate hybrid aqueous dispersions and their films, Journal of Applied Polymer Science, 125(4), 2896-2901. [9] Mantilaka M., Karunaratne D., Rajapakse R. M. G., and Pitawala H., (2013). Precipitated calcium carbonate/poly(methyl methacrylate) nanocomposite using dolomite: Synthesis, characterization and properties, Powder Technology, 235, 628-632. [10] Usta, N., (2012). Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter, Journal of Applied Polymer Science, 124(4), 3372-3382. [11] Aydogan, B. and Usta N., (2015). Experimental investigations of thermal conductivity, thermal degradation and fire resistance of rigid polyurethane foams filled with nano calcite and intumescent flame retardant. Isı Bilimi Ve Teknigi Dergisi-Journal of Thermal Science and Technology, 35(2), 63-74. [12] Fan H. Y., Tekeei A, Suppes G. J., and Hsieh F. H., (2012). Properties of Biobased Rigid Polyurethane Foams Reinforced with Fillers: Microspheres and Nanoclay, International Journal of Polymer Science, doi:10.1155/2012/474803, 8. [13] Aydogan B., and Usta N., (2015). Investigation the effects of nanoclay and intumescent flame retardant additions on thermal and fire behaviour of rigid polyurethane foams, Journal of the Faculty of Engineering and Architecture of Gazi University, 30 (1), 9-18. [14] Huang N. N., and Wang J. Q., (2009). A TGA-FTIR study on the effect of CaCO3 on the thermal degradation of EBA copolymer, Journal of Analytical and Applied Pyrolysis, 84(2) 124-130. [15] Gao W., Zhou B., Ma X. Y., Liu Y., Wang Z. C., and Zhu Y. C., (2011). Preparation and characterization of BaSO4/poly(ethylene terephthalate) nanocomposites, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 385(1-3), 181-187. [16] Pashaei S., Siddaramaiah, and Syed A. A., (2010). Thermal Degradation Kinetics of Polyurethane/Organically Modified Montmorillonite Clay Nanocomposites by TGA, Journal of Macromolecular Science Part a-Pure and Applied Chemistry, 47(8), 777-783. [17] Czuprynski B., Paciorek-Sadowska J., and Liszkowska J., (2010). Properties of Rigid Polyurethane-Polyisocyanurate Foams Modified with the Selected Fillers, Journal of Applied Polymer Science, 115(4), 2460-2469. [18] Zhuang Z. H., and Yang Z. G., (2009). Preparation and Characterization of Colloidal Carbon Sphere/Rigid Polyurethane Foam Composites, Journal of Applied Polymer Science, 114(6), 3863-3869.
There are 1 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

NAZIM Usta

BİLAL Aydoğan

Publication Date June 28, 2018
Published in Issue Year 2018 Volume: 7 Issue: 1

Cite

APA Usta, N., & Aydoğan, B. (2018). RİJİT POLİÜRETAN KÖPÜK MALZEMELERE BARİT İLAVESİNİN ISI İLETKENLİK VE ISIL BOZUNMA DAVRANIŞINA ETKİLERİNİN İNCELENMESİ. İleri Teknoloji Bilimleri Dergisi, 7(1), 50-59.
AMA Usta N, Aydoğan B. RİJİT POLİÜRETAN KÖPÜK MALZEMELERE BARİT İLAVESİNİN ISI İLETKENLİK VE ISIL BOZUNMA DAVRANIŞINA ETKİLERİNİN İNCELENMESİ. İleri Teknoloji Bilimleri Dergisi. June 2018;7(1):50-59.
Chicago Usta, NAZIM, and BİLAL Aydoğan. “RİJİT POLİÜRETAN KÖPÜK MALZEMELERE BARİT İLAVESİNİN ISI İLETKENLİK VE ISIL BOZUNMA DAVRANIŞINA ETKİLERİNİN İNCELENMESİ”. İleri Teknoloji Bilimleri Dergisi 7, no. 1 (June 2018): 50-59.
EndNote Usta N, Aydoğan B (June 1, 2018) RİJİT POLİÜRETAN KÖPÜK MALZEMELERE BARİT İLAVESİNİN ISI İLETKENLİK VE ISIL BOZUNMA DAVRANIŞINA ETKİLERİNİN İNCELENMESİ. İleri Teknoloji Bilimleri Dergisi 7 1 50–59.
IEEE N. Usta and B. Aydoğan, “RİJİT POLİÜRETAN KÖPÜK MALZEMELERE BARİT İLAVESİNİN ISI İLETKENLİK VE ISIL BOZUNMA DAVRANIŞINA ETKİLERİNİN İNCELENMESİ”, İleri Teknoloji Bilimleri Dergisi, vol. 7, no. 1, pp. 50–59, 2018.
ISNAD Usta, NAZIM - Aydoğan, BİLAL. “RİJİT POLİÜRETAN KÖPÜK MALZEMELERE BARİT İLAVESİNİN ISI İLETKENLİK VE ISIL BOZUNMA DAVRANIŞINA ETKİLERİNİN İNCELENMESİ”. İleri Teknoloji Bilimleri Dergisi 7/1 (June 2018), 50-59.
JAMA Usta N, Aydoğan B. RİJİT POLİÜRETAN KÖPÜK MALZEMELERE BARİT İLAVESİNİN ISI İLETKENLİK VE ISIL BOZUNMA DAVRANIŞINA ETKİLERİNİN İNCELENMESİ. İleri Teknoloji Bilimleri Dergisi. 2018;7:50–59.
MLA Usta, NAZIM and BİLAL Aydoğan. “RİJİT POLİÜRETAN KÖPÜK MALZEMELERE BARİT İLAVESİNİN ISI İLETKENLİK VE ISIL BOZUNMA DAVRANIŞINA ETKİLERİNİN İNCELENMESİ”. İleri Teknoloji Bilimleri Dergisi, vol. 7, no. 1, 2018, pp. 50-59.
Vancouver Usta N, Aydoğan B. RİJİT POLİÜRETAN KÖPÜK MALZEMELERE BARİT İLAVESİNİN ISI İLETKENLİK VE ISIL BOZUNMA DAVRANIŞINA ETKİLERİNİN İNCELENMESİ. İleri Teknoloji Bilimleri Dergisi. 2018;7(1):50-9.