Review
BibTex RIS Cite

FUNDAMENTALS IN ADHESIVE BONDING DESIGN FOR COMPLEX STRUCTURES AND CONDITIONS: AN OVERVIEW

Year 2019, Volume: 8 Issue: 1, 1 - 10, 20.05.2019

Abstract

The importance of assembling technologies are rising up in the manufacturing industry. With the development of new materials and their complex structures, new manufacturing and joining technologies are needed. Adhesively bonding techniques are meeting the industrial and technological needs, these techniques are providing an alternative for joining technology andenabling the use of a wider range of materials in product design; and adhesives allow enhanced aesthetics, lighter weight constructions and improved end performance, and also their usefulness build the utilization of multi-material, hybrid structures and for joining of dissimilar materials. Different materials have different physical and mechanical properties. Therefore, processing and joining procedures can also be challenging due to their properties. Adhesive bonding techniques are giving chance to cope with these difficulties. This paper reviews and summarizes state of the art research in adhesive joints for industrial applications in developing the innovative field. This is due to the expanding desires for more capability of strength and light-weight materials.

References

  • [1] Baldan, A., (2012). Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives, 38, p. 95–116
  • [2] Awaja F, Gilbert M, Kelly G, Fox B, Pigram PJ. (2009). Prog Polym Sci, 34: p. 948–68.
  • [3] Qin R.Y., Schreiber, H.P., (1999). Colloids Surf. 156: p. 85–93.
  • [4] Been, J.L, Bikales, N.M, Bickerman, J.J, Blomquist, R,F, Moks, E., Kovach, G.P., (1971). Adhesion and Bonding. 1st ed. John Wiley and Sons Inc.
  • [5] van Leeden, M.C, Frens, G., (2002). Surface Properties of Plastic Materials in Relation to Their Adhering Performance. Advanced Engineering Materials, 4(5): p. 280–289.
  • [6] Brown, H.R., (2000). Polymer adhesion. Materials Forum, 24: p. 49–58.
  • [7] Wake, W.C., (1982). Adhesion and the Formulation of Adhesives. 2nd ed. Essex: Applied Science Publishers Ltd., New York.
  • [8] Allison, A., Scudamore, R., (2014). Strategic Research Agenda: Joining: Joining Sub-platform. Available from hhttp://www.joining-platform.com/documents/ Joining%20Sub-Platform%20SRA%20-%202014.pdfi [cited 2014 21.12.2014].
  • [9] Barney, J.B., (2011). Gaining and Sustaining Competitive Advantage, Pearson, Boston, MA.
  • [10] Campbell, F.C., (2011). Joining: Understanding the Basics. ASM International.
  • [11] Center for Automotive Research, (2011). Automotive Technology: Greener Products, Changing Skills. Lightweight Materials & Forming Report, 26.
  • [12] Martinsen, K., Hu, S.J., Carlson, B.E., (2015). Joining of dissimilar materials. CIRP Annals - Manufacturing Technology, 64: p. 679–699
  • [13] Amancio-Filho, S.T., dos Santos J.F., (2009). Joining of Polymers and Polymer–Metal Hybrid Structures: Recent Developments and Trends. Polymer Engineering and Science, p.1461-1476
  • [14] Wegman, R.F., (1989). Surface Preparation Techniques for Adhesive Bonding. Noyes Publications, Park Ridge, NJ.
  • [15] Johnson, W.S., (1986). Adhesively Bonded Joints: Testing, Analysis, and Design. American Society for Testing and Materials (ASTM), Baltimore.
  • [16] Reitz, W.E., Oman, R.M., (2000). Advanced Materials Processes. 158 (49).
  • [17] Rotheiser, J., (1999). Joining of Plastics-Handbook for Designers and Engineers, Carl Hanser, Munich.
  • [18] Baldan, A., (2004). Adhesively-bonded joints in metallic alloys, polymers and composite materials: Mechanical and environmental durability performance. Journal of Materials Science, 39 (15): p. 4729–4797.
  • [19] Baldan, A., (2004). Adhesively-bonded joints and repairs in 
metallic alloys, polymers and composite materials: adhesives, adhesion theories and surface pretreatment. Journal of Materials Science, 39(1): 1–49.
  • [20] Davis, M.J., Bond, D. (1999). Principles and practise of adhesive bonded structural joints and repairs. Journal of Adhesion and Adhesives, 19(3): p. 91–105.
  • [21] Kinloch, A. J., (1987). Adhesion and adhesives. Chapman and Hall, London.
  • [22] Molitor, P., Barron, V., Young, T., (2001). Surface treatment of titanium for adhesive bonding to polymer composites: a review. International Journal of Adhesion and Adhesives, 21(2), p. 129–136.
  • [23] Adams, R.D., Wake, W.C., (1984). Structural adhesive joints in engineering. Elsevier, New York, (15).
  • [24] Banea, M.D., da Silva, L.F.M., (2009). Adhesively bonded joints in composite materials: an overview. Journal of Materials Design and Applications, 223(1): p.1-18.
  • [25] Kim, J.-S., Kim C. G., and Hong C. S., (2001). Practical design of tapered composite structures using the manufacturing cost concept. Composite Structures, 51(3): p. 285–299.
  • [26] da Silva, L.F.M., Adams, R.D., (2007). Techniques to reduce the peel stresses in adhesive joints with composites. International Journal of Adhesion and Adhesives, 27(3): p. 227–235.
  • [27] Kaye, R. H., Heller, M., (2002). Through-thickness shape optimisation of bonded repairs and lap-joints. International Journal of Adhesion and Adhesives, 22(1): p. 7–21.
  • [28] Mazumdar, S. K. and Mallick, K., (1998). Static and fatigue behavior of adhesive joints in SMC-SMC composites. Polymer Composites, 19(2): p. 139–146.
  • [29] Lang, T., Mallick, K., (1999). The effect of recessing on the stresses in adhesively bonded single-lap joints. International Journal of Adhesion and Adhesives, 19(4): p. 257–271.
  • [30] Lang, T., Mallick, K., (1998). Effect of spew geometry on stresses in single lap adhesive joints. International Journal of Adhesion and Adhesives, 18(3): p. 167–177.
  • [31] Wang, C.H., Heller, M., Rose, L.R.F., (1998). Substrate stress concentrations in bonded lap joints. Journal of Strain Analysis for Engineering Design, 33(5): p. 331–346.
  • [32] Rispler, A.R., Tong, L., Steven, G.P., Wisnom, M.R., (2000). Shape optimisation of adhesive fillets. International Journal of Adhesion and Adhesives, 20(3): p. 221–231.
  • [33] Belingardi, G., Goglio, L., Tarditi, A., (2002). Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints. International Journal of Adhesion and Adhesives, 22(4): p. 273–282.
  • [34] Srinivas, S., (1975). Analysis of bonded joints. NASATND-7855.
  • [35] Patrick, R. L. (Ed.), (1976). Treatise on adhesion and adhesives - structural adhesives with emphasis on aerospace applications. Marcel Dekker, Inc., New York 4.
  • [36] Fitton, M. D., Broughton, J. G., (2005). Variable modulus adhesives: an approach to optimised joint performance. International Journal of Adhesion and Adhesives, 25(4): p. 329–336.
  • [37] da Silva, L. F. M., Adams, R. D., (2007). Joint strength pre- dictions for adhesive joints to be used over a wide temperature range. International Journal of Adhesion and Adhesives, 27(5): p. 362–379.
  • [38] da Silva, L. F. M., Adams, R. D., (2007). Adhesive joints at high and low temperatures using similar and dissimilar adherends and dual adhesives. International Journal of Adhesion and Adhesives, 27(3): p. 216–226.
  • [39] Rastogi, N., Soni, S. R., Nagar, A., (1998). Thermal stresses in aluminum-to-composite double-lap bonded joints. Advances in Engineering Software, 29(3–6): p. 273–281.
  • [40] Vodicka, R., (1997). Accelerated environmental testing of composite materials. Report DSTO-TR-0657.
  • [41] Ashcroft, I. A., Abdel Wahab, M. M., Crocombe, A. D., Hughes, D. J., Shaw, S. J., (2001). The effect of environment on the fatigue of composite joints: part 1, testing and fractography. Composites. A, 32: p. 45–58.
  • [42] Zukas J.A, Nicholas T, Swift H.F., (1992). Impact Dynamics. Florida: Krieger Pub Co.
  • [43] Yildiz, S., Andreopoulos, Y., Jensen, R. E., Shaffren, D., Jahnke, D., & Delale, F. (2019). Characterization of adhesively bonded aluminum plates subjected to shock-wave loading. International Journal of Impact Engineering, 127, 86–99.
  • [44] Beevers A, Ellis M.D., (1984). Impact behaviour of bonded mild steel lap joints. International Journal of Adhesion and Adhesives, 4: p. 13–16.
  • [45] Harris J.A, Adams R.D., (1985). An assessment of the impact performance of bonded joints for use in high energy absorbing structures. Proceeding of IME CJ Mech. Eng. Sci, 199: p. 121–131.
  • [46] Deb A., Malvade I., Biswas P., Schroeder. J., (2008). An experimental and analytical study of the mechanical behaviour of adhesively bonded joints for variable extension rates and temperatures. International Journal of Adhesion and Adhesives, 28 (1-2): p. 1-15.
  • [47] Challita G, Othman R, Guegan P, Khalil, K., Poitou, A., (2008). New experimental sample for shear testing of adhesively bonded assemblies. International Journal of Modern Physics B, 22: p. 1081–1086.
  • [48] Yildiz, S., Andreopoulos, Y., & Delale, F. (2019). Mode I characterization of toughened epoxy adhesive joints under shock-wave loading. International Journal of Adhesion and Adhesives, 90, 71–87.
  • [49] Yildiz, S., Andreopoulos, Y., & Delale, F. (2018). Adhesive joints under impacting shock wave loading. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Pittsburgh.
  • [50] Ikikardaslar, K. T., Delale, F., Ardebili, M. K., Yildiz, S., & Gollins, K. (2018). Locating and Quantifying Through Circular Damage in CNT/GFRP Composite Panel Using Gaussian Fit. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Pittsburgh: ASME.
  • [51] Gilath I, Englman R, Jaeger Z, Buchman, A., Dodiuk, H., (1995). Impact resistance of adhesive joints using laser-induced shock waves. Journal of Laser Applications, 7: p. 169–176.
  • [52] Yildiz, S., Shaffren, D., Jahnke, D., Delale, F., & Andreopoulos, Y. (2016). Characterization of adhesive joints under shock-wave loading. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE).

KOMPLEKS YAPILAR VE KOŞULLAR İÇİN YAPIŞTIRMA TASARIMININ TEMELLERİ

Year 2019, Volume: 8 Issue: 1, 1 - 10, 20.05.2019

Abstract

İmalat sanayisinde birleştirme teknolojilerinin önemi artarak devam etmektedir. Yeni malzemeler ve kompleks yapıların gelişmesiyle yeni imalat ve birleştirme teknolojilerine ihtiyaç duyulmaktadır. Yapıştırıcılarla birleştirme bu sanayi ve teknolojik ihtiyaçları karşılar, bu yöntemler birleştirme teknolojisine ve ürün tasarımında daha geniş bir yelpazedeki malzemelerin kullanılmasına olanak sağlamak için bir alternatif sunar. Yapıştırıcılar, daha estetik, daha hafif yapılar ve daha iyi performansa olanak tanır, ayrıca bunların kullanışlılığı ve çok malzemeli karma yapılarda kullanıma uygunluğu sebebiyle ile farklı özelliklerdeki malzemelerin birleştirilmesi için elverişlidir. Farklı malzemeler farklı fiziksel ve mekanik özelliklere sahiptir. Farklı özellikleri sebebiyle işleme ve birleştirme süreçlerinde zorluklar olabilir. Yapıştırma teknikleri bu zorluklarla başa çıkma şansı vermektedir. Bu çalışma, daha hafif malzeme ve yüksek mukavemet için artan gereksinimler doğrultusunda; yenilikçi bir alan olarak yapıştırma konusundaki endüstriyel uygulamalar için son araştırma ve gelişmeleri gözden geçirip özetlemektedir. 

References

  • [1] Baldan, A., (2012). Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives, 38, p. 95–116
  • [2] Awaja F, Gilbert M, Kelly G, Fox B, Pigram PJ. (2009). Prog Polym Sci, 34: p. 948–68.
  • [3] Qin R.Y., Schreiber, H.P., (1999). Colloids Surf. 156: p. 85–93.
  • [4] Been, J.L, Bikales, N.M, Bickerman, J.J, Blomquist, R,F, Moks, E., Kovach, G.P., (1971). Adhesion and Bonding. 1st ed. John Wiley and Sons Inc.
  • [5] van Leeden, M.C, Frens, G., (2002). Surface Properties of Plastic Materials in Relation to Their Adhering Performance. Advanced Engineering Materials, 4(5): p. 280–289.
  • [6] Brown, H.R., (2000). Polymer adhesion. Materials Forum, 24: p. 49–58.
  • [7] Wake, W.C., (1982). Adhesion and the Formulation of Adhesives. 2nd ed. Essex: Applied Science Publishers Ltd., New York.
  • [8] Allison, A., Scudamore, R., (2014). Strategic Research Agenda: Joining: Joining Sub-platform. Available from hhttp://www.joining-platform.com/documents/ Joining%20Sub-Platform%20SRA%20-%202014.pdfi [cited 2014 21.12.2014].
  • [9] Barney, J.B., (2011). Gaining and Sustaining Competitive Advantage, Pearson, Boston, MA.
  • [10] Campbell, F.C., (2011). Joining: Understanding the Basics. ASM International.
  • [11] Center for Automotive Research, (2011). Automotive Technology: Greener Products, Changing Skills. Lightweight Materials & Forming Report, 26.
  • [12] Martinsen, K., Hu, S.J., Carlson, B.E., (2015). Joining of dissimilar materials. CIRP Annals - Manufacturing Technology, 64: p. 679–699
  • [13] Amancio-Filho, S.T., dos Santos J.F., (2009). Joining of Polymers and Polymer–Metal Hybrid Structures: Recent Developments and Trends. Polymer Engineering and Science, p.1461-1476
  • [14] Wegman, R.F., (1989). Surface Preparation Techniques for Adhesive Bonding. Noyes Publications, Park Ridge, NJ.
  • [15] Johnson, W.S., (1986). Adhesively Bonded Joints: Testing, Analysis, and Design. American Society for Testing and Materials (ASTM), Baltimore.
  • [16] Reitz, W.E., Oman, R.M., (2000). Advanced Materials Processes. 158 (49).
  • [17] Rotheiser, J., (1999). Joining of Plastics-Handbook for Designers and Engineers, Carl Hanser, Munich.
  • [18] Baldan, A., (2004). Adhesively-bonded joints in metallic alloys, polymers and composite materials: Mechanical and environmental durability performance. Journal of Materials Science, 39 (15): p. 4729–4797.
  • [19] Baldan, A., (2004). Adhesively-bonded joints and repairs in 
metallic alloys, polymers and composite materials: adhesives, adhesion theories and surface pretreatment. Journal of Materials Science, 39(1): 1–49.
  • [20] Davis, M.J., Bond, D. (1999). Principles and practise of adhesive bonded structural joints and repairs. Journal of Adhesion and Adhesives, 19(3): p. 91–105.
  • [21] Kinloch, A. J., (1987). Adhesion and adhesives. Chapman and Hall, London.
  • [22] Molitor, P., Barron, V., Young, T., (2001). Surface treatment of titanium for adhesive bonding to polymer composites: a review. International Journal of Adhesion and Adhesives, 21(2), p. 129–136.
  • [23] Adams, R.D., Wake, W.C., (1984). Structural adhesive joints in engineering. Elsevier, New York, (15).
  • [24] Banea, M.D., da Silva, L.F.M., (2009). Adhesively bonded joints in composite materials: an overview. Journal of Materials Design and Applications, 223(1): p.1-18.
  • [25] Kim, J.-S., Kim C. G., and Hong C. S., (2001). Practical design of tapered composite structures using the manufacturing cost concept. Composite Structures, 51(3): p. 285–299.
  • [26] da Silva, L.F.M., Adams, R.D., (2007). Techniques to reduce the peel stresses in adhesive joints with composites. International Journal of Adhesion and Adhesives, 27(3): p. 227–235.
  • [27] Kaye, R. H., Heller, M., (2002). Through-thickness shape optimisation of bonded repairs and lap-joints. International Journal of Adhesion and Adhesives, 22(1): p. 7–21.
  • [28] Mazumdar, S. K. and Mallick, K., (1998). Static and fatigue behavior of adhesive joints in SMC-SMC composites. Polymer Composites, 19(2): p. 139–146.
  • [29] Lang, T., Mallick, K., (1999). The effect of recessing on the stresses in adhesively bonded single-lap joints. International Journal of Adhesion and Adhesives, 19(4): p. 257–271.
  • [30] Lang, T., Mallick, K., (1998). Effect of spew geometry on stresses in single lap adhesive joints. International Journal of Adhesion and Adhesives, 18(3): p. 167–177.
  • [31] Wang, C.H., Heller, M., Rose, L.R.F., (1998). Substrate stress concentrations in bonded lap joints. Journal of Strain Analysis for Engineering Design, 33(5): p. 331–346.
  • [32] Rispler, A.R., Tong, L., Steven, G.P., Wisnom, M.R., (2000). Shape optimisation of adhesive fillets. International Journal of Adhesion and Adhesives, 20(3): p. 221–231.
  • [33] Belingardi, G., Goglio, L., Tarditi, A., (2002). Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints. International Journal of Adhesion and Adhesives, 22(4): p. 273–282.
  • [34] Srinivas, S., (1975). Analysis of bonded joints. NASATND-7855.
  • [35] Patrick, R. L. (Ed.), (1976). Treatise on adhesion and adhesives - structural adhesives with emphasis on aerospace applications. Marcel Dekker, Inc., New York 4.
  • [36] Fitton, M. D., Broughton, J. G., (2005). Variable modulus adhesives: an approach to optimised joint performance. International Journal of Adhesion and Adhesives, 25(4): p. 329–336.
  • [37] da Silva, L. F. M., Adams, R. D., (2007). Joint strength pre- dictions for adhesive joints to be used over a wide temperature range. International Journal of Adhesion and Adhesives, 27(5): p. 362–379.
  • [38] da Silva, L. F. M., Adams, R. D., (2007). Adhesive joints at high and low temperatures using similar and dissimilar adherends and dual adhesives. International Journal of Adhesion and Adhesives, 27(3): p. 216–226.
  • [39] Rastogi, N., Soni, S. R., Nagar, A., (1998). Thermal stresses in aluminum-to-composite double-lap bonded joints. Advances in Engineering Software, 29(3–6): p. 273–281.
  • [40] Vodicka, R., (1997). Accelerated environmental testing of composite materials. Report DSTO-TR-0657.
  • [41] Ashcroft, I. A., Abdel Wahab, M. M., Crocombe, A. D., Hughes, D. J., Shaw, S. J., (2001). The effect of environment on the fatigue of composite joints: part 1, testing and fractography. Composites. A, 32: p. 45–58.
  • [42] Zukas J.A, Nicholas T, Swift H.F., (1992). Impact Dynamics. Florida: Krieger Pub Co.
  • [43] Yildiz, S., Andreopoulos, Y., Jensen, R. E., Shaffren, D., Jahnke, D., & Delale, F. (2019). Characterization of adhesively bonded aluminum plates subjected to shock-wave loading. International Journal of Impact Engineering, 127, 86–99.
  • [44] Beevers A, Ellis M.D., (1984). Impact behaviour of bonded mild steel lap joints. International Journal of Adhesion and Adhesives, 4: p. 13–16.
  • [45] Harris J.A, Adams R.D., (1985). An assessment of the impact performance of bonded joints for use in high energy absorbing structures. Proceeding of IME CJ Mech. Eng. Sci, 199: p. 121–131.
  • [46] Deb A., Malvade I., Biswas P., Schroeder. J., (2008). An experimental and analytical study of the mechanical behaviour of adhesively bonded joints for variable extension rates and temperatures. International Journal of Adhesion and Adhesives, 28 (1-2): p. 1-15.
  • [47] Challita G, Othman R, Guegan P, Khalil, K., Poitou, A., (2008). New experimental sample for shear testing of adhesively bonded assemblies. International Journal of Modern Physics B, 22: p. 1081–1086.
  • [48] Yildiz, S., Andreopoulos, Y., & Delale, F. (2019). Mode I characterization of toughened epoxy adhesive joints under shock-wave loading. International Journal of Adhesion and Adhesives, 90, 71–87.
  • [49] Yildiz, S., Andreopoulos, Y., & Delale, F. (2018). Adhesive joints under impacting shock wave loading. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Pittsburgh.
  • [50] Ikikardaslar, K. T., Delale, F., Ardebili, M. K., Yildiz, S., & Gollins, K. (2018). Locating and Quantifying Through Circular Damage in CNT/GFRP Composite Panel Using Gaussian Fit. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition. Pittsburgh: ASME.
  • [51] Gilath I, Englman R, Jaeger Z, Buchman, A., Dodiuk, H., (1995). Impact resistance of adhesive joints using laser-induced shock waves. Journal of Laser Applications, 7: p. 169–176.
  • [52] Yildiz, S., Shaffren, D., Jahnke, D., Delale, F., & Andreopoulos, Y. (2016). Characterization of adhesive joints under shock-wave loading. In ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE).
There are 52 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Ali Gürsel 0000-0002-5322-7941

Publication Date May 20, 2019
Published in Issue Year 2019 Volume: 8 Issue: 1

Cite

APA Gürsel, A. (2019). FUNDAMENTALS IN ADHESIVE BONDING DESIGN FOR COMPLEX STRUCTURES AND CONDITIONS: AN OVERVIEW. İleri Teknoloji Bilimleri Dergisi, 8(1), 1-10.
AMA Gürsel A. FUNDAMENTALS IN ADHESIVE BONDING DESIGN FOR COMPLEX STRUCTURES AND CONDITIONS: AN OVERVIEW. İleri Teknoloji Bilimleri Dergisi. May 2019;8(1):1-10.
Chicago Gürsel, Ali. “FUNDAMENTALS IN ADHESIVE BONDING DESIGN FOR COMPLEX STRUCTURES AND CONDITIONS: AN OVERVIEW”. İleri Teknoloji Bilimleri Dergisi 8, no. 1 (May 2019): 1-10.
EndNote Gürsel A (May 1, 2019) FUNDAMENTALS IN ADHESIVE BONDING DESIGN FOR COMPLEX STRUCTURES AND CONDITIONS: AN OVERVIEW. İleri Teknoloji Bilimleri Dergisi 8 1 1–10.
IEEE A. Gürsel, “FUNDAMENTALS IN ADHESIVE BONDING DESIGN FOR COMPLEX STRUCTURES AND CONDITIONS: AN OVERVIEW”, İleri Teknoloji Bilimleri Dergisi, vol. 8, no. 1, pp. 1–10, 2019.
ISNAD Gürsel, Ali. “FUNDAMENTALS IN ADHESIVE BONDING DESIGN FOR COMPLEX STRUCTURES AND CONDITIONS: AN OVERVIEW”. İleri Teknoloji Bilimleri Dergisi 8/1 (May 2019), 1-10.
JAMA Gürsel A. FUNDAMENTALS IN ADHESIVE BONDING DESIGN FOR COMPLEX STRUCTURES AND CONDITIONS: AN OVERVIEW. İleri Teknoloji Bilimleri Dergisi. 2019;8:1–10.
MLA Gürsel, Ali. “FUNDAMENTALS IN ADHESIVE BONDING DESIGN FOR COMPLEX STRUCTURES AND CONDITIONS: AN OVERVIEW”. İleri Teknoloji Bilimleri Dergisi, vol. 8, no. 1, 2019, pp. 1-10.
Vancouver Gürsel A. FUNDAMENTALS IN ADHESIVE BONDING DESIGN FOR COMPLEX STRUCTURES AND CONDITIONS: AN OVERVIEW. İleri Teknoloji Bilimleri Dergisi. 2019;8(1):1-10.