Review
BibTex RIS Cite

Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods

Year 2022, Volume: 49 Issue: 1, 38 - 45, 30.04.2022
https://doi.org/10.52037/eads.2022.0008

Abstract

Dental caries is an important problem for human health which is frequently seen under clinical conditions and also progresses slowly, causes severe pain and even tooth loss, and affects the quality of life. Especially in pediatric patients, with the early detection of caries, treatment procedures can be performed with uncomplicated methods. In today's dentistry; preventive applications and minimally invasive approaches are gaining importance, and early diagnosis of initial caries lesions is very important for minimally invasive dentistry. With the development of technology, many new methods are being introduced to ensure the early diagnosis of dental caries. In this review, conventional, contemporary, and developing approaches used in the detection of dental caries will be presented.

References

  • 1. Gül EB, Sepet E. Okluzal Çürük Lezyonlarının Saptanmasında Lazer Floresans Yöntemi: DIAGNOdent, DIAGNO-PEN. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):45-50.
  • 2. Kalyoncu IÖ, KUŞÇU ÖÖ, Akyüz S. Çürük Tehşisinde Gelişmekte Olan Yöntemler. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):51-8.
  • 3. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bulletin of the World Health Organization. 2005;83:661-9.
  • 4. Bala O, Akgül S. Çürük Teşhis Yöntemleri. Turkiye Klinikleri Restorative Dentistry-Special Topics. 2016;2(1):34-40.
  • 5. Yalçinkaya Şe. Diş Çürüğünde Radyolojik Yorumlama. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):6-13.
  • 6. Selwitz RH, Ismail AI, Pitts NB. Dental caries. The Lancet. 2007;369(9555):51-9.
  • 7. Aren G, Çayirci M. Geleneksel Çürük Teşhis Yöntemleri. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):1-5.
  • 8. Lussi A. Comparison of different methods for the diagnosis of fissure caries without cavitation. Caries research. 1993;27(5):409-16.
  • 9. Özgür B, Ünverdi GE, Çehreli Z. Diş Çürüğünün Tespitinde Geleneksel ve Güncel Yaklaşımlar. Turkiye Klinikleri Journal of Pediatric Dentistry-Special Topics. 2018;4(1):1-9.
  • 10. Nyvad B, Machiulskiene V, Bælum V. Reliability of a new caries diagnostic system differentiating between active and inactive caries lesions. Caries research. 1999;33(4):252-60.
  • 11. Kühnisch J, Goddon I, Berger S, Senkel H, Bücher K, Oehme T, et al. Development, methodology and potential of the new Universal Visual Scoring System (UniViSS) for caries detection and diagnosis. International journal of environmental research and public health. 2009;6(9):2500-9.
  • 12. Ekstrand KR, Martignon S, Ricketts D, Qvist V. Detection and activity assessment of primary coronal caries lesions: a methodologic study. Operative dentistry. 2007;32(3):225-35.
  • 13. Iannucci JM HL. Dental Radiography: Principles and Techniques, 5th ed. St Louis Missouri: Elsevier. 2017:403-11.
  • 14. A H. Ağız, Diş ve Çene Radyolojisi, editör. İstanbul: Nobel Matbaacılık. 2014:299-307.
  • 15. White SC, Pharoah MJ. Oral radiology-E-Book: Principles and interpretation: Elsevier Health Sciences; 2014.
  • 16. Bader JD, Shugars DA, Bonito AJ. A systematic review of the performance of methods for identifying carious lesions. Journal of public health dentistry. 2002;62(4):201-13.
  • 17. Gomez J, Amin AG, Gregg L, Gailloud P. Classification schemes of cranial dural arteriovenous fistulas. Neurosurgery Clinics. 2012;23(1):55-62.
  • 18. Neuhaus KW, Lussi A. Carious Lesion Diagnosis: Methods, Problems, Thresholds. Caries Excavation: Evolution of Treating Cavitated Carious Lesions. 27: Karger Publishers; 2018. p. 24-31.
  • 19. Abdelaziz M, Krejci I, Perneger T, Feilzer A, Vazquez L. Near infrared transillumination compared with radiography to detect and monitor proximal caries: A clinical retrospective study. Journal of dentistry. 2018;70:40-5.
  • 20. Gomez J, editor Detection and diagnosis of the early caries lesion. BMC oral health; 2015: Springer.
  • 21. Berg SC, Stahl JM, Lien W, Slack CM, Vandewalle KS. A clinical study comparing digital radiography and near‐infrared transillumination in caries detection. Journal of Esthetic and Restorative Dentistry. 2018;30(1):39-44.
  • 22. Abogazalah N, Eckert G, Ando M. In vitro visual and visible light transillumination methods for detection of natural non-cavitated approximal caries. Clinical oral investigations. 2019;23(3):1287-94.
  • 23. Eden E. Evidence-based caries prevention: Springer; 2016.
  • 24. Akyildiz BM, Sönmez I. Diş Çürüğünün Erken Teşhisinde Transillüminasyon Yöntemleri. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):14-20.
  • 25. Mialhe FL, Pereira AC, de Castro Meneghim M, Ambrosano GMB, Pardi V. The relative diagnostic yields of clinical, FOTI and radiographic examinations for the detection of approximal caries in youngsters. Indian Journal of Dental Research. 2009;20(2):136.
  • 26. Kirzioğlu Z, Güngör ÖE. Okluzal yüz çürüklerinin tanı yöntemleri. Turkiye Klinikleri Journal of Dental Sciences. 2009;15(1):30-9.
  • 27. Gündüz DK, Çelenk P. Çürük Tanisinda Kullanilan Yeni Yöntemler. Cumhuriyet Dental Journal. 2003;6(1).
  • 28. Richards D. Best clinical practice guidance for management of early caries lesions in children and young adults: an EAPD policy document. Evidence-based dentistry. 2016;17(2):35-7.
  • 29. Chawla N, Messer L, Adams G, Manton D. An in vitro comparison of detection methods for approximal carious lesions in primary molars. Caries research. 2012;46(2):161-9.
  • 30. Garg A, Biswas G, Saha S. Recent Advancements in Diagnosis of Dental Caries: LAP LAMBERT Academic Publishing; 2014.
  • 31. Bin-Shuwaish M, Yaman P, Dennison J, Neiva G. The correlation of DIFOTI to clinical and radiographic images in Class II carious lesions. The Journal of the American Dental Association. 2008;139(10):1374-81.
  • 32. Vaarkamp J, Ten Bosch J, Verdonschot E. Light propagation through teeth containing simulated caries lesions. Physics in medicine & biology. 1995;40(8):1375.
  • 33. Karlsson L. Caries detection methods based on changes in optical properties between healthy and carious tissue. International journal of dentistry. 2010;2010.
  • 34. Friedman J, Marcus MI. Transillumination of the oral cavity with use of fiber optics. The Journal of the American Dental Association. 1970;80(4):801-9.
  • 35. Schneiderman A, Elbaum M, Shultz T, Keem S, Greenebaum M, Driller J. Assessment of dental caries with digital imaging fiber-optic translllumination (DIFOTITM): in vitro Study. Caries Research. 1997;31(2):103-10.
  • 36. Baltacioglu IH, Orhan K. Comparison of diagnostic methods for early interproximal caries detection with near-infrared light transillumination: an in vivo study. BMC oral health. 2017;17(1):130.
  • 37. Ozkan G, Guzel KGU. Clinical evaluation of near-infrared light transillumination in approximal dentin caries detection. Lasers in medical science. 2017;32(6):1417-22.
  • 38. [Available from: (https://www.zeiss.com/meditec/int/product-portfolio/optical-coherence-tomography-devices.html).
  • 39. Alsayed EZ, Hariri I, Sadr A, Nakashima S, Bakhsh TA, Shimada Y, et al. Optical coherence tomography for evaluation of enamel and protective coatings. Dental materials journal. 2015;34(1):98-107.
  • 40. Hsieh Y-S, Ho Y-C, Lee S-Y, Chuang C-C, Tsai J-c, Lin K-F, et al. Dental optical coherence tomography. Sensors. 2013;13(7):8928-49.
  • 41. Kang H, Darling CL, Fried D. Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography. Dental Materials. 2012;28(5):488-94.
  • 42. Lenton P, Rudney J, Chen R, Fok A, Aparicio C, Jones RS. Imaging in vivo secondary caries and ex vivo dental biofilms using cross-polarization optical coherence tomography. Dental materials. 2012;28(7):792-800.
  • 43. Shimada Y, Sadr A, Sumi Y, Tagami J. Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations. Current oral health reports. 2015;2(2):73-80.
  • 44. Yavuz BŞ, KargüL B. Erken Çürük Lezyonlarının Görüntülenmesinde ve Değerlendirilmesinde Optik Koherens Tomografi (OCT)’nin Kullanımı. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):38-44.
  • 45. Nakagawa H, Sadr A, Shimada Y, Tagami J, Sumi Y. Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro. Journal of dentistry. 2013;41(1):80-9.
  • 46. Mumcuoğlu T, Erdurman C, Durukan AH. Principles and novel clinical applications of optical coherence tomography. 2008.
  • 47. Machoy M, Seeliger J, Szyszka-Sommerfeld L, Koprowski R, Gedrange T, Woźniak K. The use of optical coherence tomography in dental diagnostics: a state-of-the-art review. Journal of healthcare engineering. 2017;2017.
  • 48. Pretty IA. Caries detection and diagnosis: novel technologies. Journal of dentistry. 2006;34(10):727-39.
  • 49. Ashley P, Blinkhorn A, Davies R. Occlusal caries diagnosis: an in vitro histological validation of the Electronic Caries Monitor (ECM) and other methods. Journal of dentistry. 1998;26(2):83-8.
  • 50. Tam LE, McComb D. Diagnosis of occlusal caries: Part II. Recent diagnostic technologies. Journal of the Canadian Dental Association. 2001;67(8):459-64.
  • 51. Ersöz E, Oktay N. Alternatif çürük teşhis yöntemleri. Atatürk Üni Diş Hek Fak Derg. 2002;12(2):56-63.
  • 52. Diniz MB, Rodrigues J, Lussi A. Traditional and novel caries detection methods. Contemporary approach to dental caries. 2012:105-28.
  • 53. Ricketts D, Kidd E, Liepins P, Wilson R. Histological validation of electrical resistance measurements in the diagnosis of occlusal caries. Caries research. 1996;30(2):148-55.
  • 54. Amaechi BT, Podoleanu AG, Komarov G, Higham SM, Jackson DA. Quantification of root caries using optical coherence tomography and microradiography: a correlational study. Oral health & preventive dentistry. 2004;2(4).
  • 55. Demirel A, Şenay E, Ökte Z, Sari Ş. Çürük Tespitinde Elektrik Akımı Kullanılan Yöntemler. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):33-7.
  • 56. Cortes D, Ellwood R, Ekstrand K. An in vitro comparison of a combined FOTI/visual examination of occlusal caries with other caries diagnostic methods and the effect of stain on their diagnostic performance. Caries research. 2003;37(1):8-16.
  • 57. Longbottom C, Huysmans M-C. Electrical measurements for use in caries clinical trials. Journal of Dental Research. 2004;83(1_suppl):76-9.
  • 58. Huysmans M-C, Longbottom C, Pitts N, Los P, Bruce P. Impedance spectroscopy of teeth with and without approximal caries lesions-an in vitro study. Journal of dental research. 1996;75(11):1871-8.
  • 59. Tassery H, Levallois B, Terrer E, Manton D, Otsuki M, Koubi S, et al. Use of new minimum intervention dentistry technologies in caries management. Australian dental journal. 2013;58:40-59.
  • 60. Katge F, Wakpanjar M, Rusawat B, Shetty A. Comparison of three diagnostic techniques for detecting occlusal dental caries in primary molars: An in vivo study. Indian Journal of Dental Research. 2016;27(2):174.
  • 61. Ng S, Ferguson M, Payne P, Slater P. Ultrasonic studies of unblemished and artificially demineralized enamel in extracted human teeth: a new method for detecting early caries. Journal of dentistry. 1988;16(5):201-9.
  • 62. Yanıkoğlu FÇ, Öztürk F, Hayran O, Analoui M, Stookey G. Detection of natural white spot caries lesions by an ultrasonic system. Caries Research. 2000;34(3):225-32.
  • 63. Bozkurt F, Tağtekin D, Yanikoğlu F, Fontana M, Gonzalez-Cabezas C, Stookey GK. Capability of an ultrasonic system to detect very early caries lesions on human enamel. Marmara Dental Journal. 2013;1(1):16-9.
  • 64. Matalon S, Feuerstein O, Calderon S, Mittleman A, Kaffe I. Detection of cavitated carious lesions in approximal tooth surfaces by ultrasonic caries detector. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2007;103(1):109-13.
  • 65. Pitts N. Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice? Caries research. 2004;38(3):294-304.
  • 66. Lussi A, Megert B, Longbottom C, Reich E, Francescut P. Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. European journal of oral sciences. 2001;109(1):14-9.
  • 67. Lussi A, Hibst R, Paulus R. DIAGNOdent: an optical method for caries detection. Journal of dental research. 2004;83(1_suppl):80-3.
  • 68. Pretty IA, Maupomé G. A closer look at diagnosis in clinical dental practice: part 5. Emerging technologies for caries detection and diagnosis. Journal-Canadian Dental Association. 2004;70:540-1.
  • 69. Lussi A, Francescut P, Schaffner M. Fissür çürüklerinde yeni ve geleneksel tanı yöntemleri. Quintessence Turk. 2004;4:13-21.
  • 70. Lussi A, Imwinkelried S, Pitts N, Longbottom C, Reich E. Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro. Caries research. 1999;33(4):261-6.
  • 71. Moore D, Wilson N. A review of modern non-invasive systems for caries detection. CPD Dentistry. 2001;2:86-90.
  • 72. Shi X-Q, Welander U, Angmar-Månsson B. Occlusal caries detection with KaVo DIAGNOdent and radiography: an in vitro comparison. Caries research. 2000;34(2):151-8.
  • 73. De Benedetto MS, Morais CC, Novaes TF, de Almeida Rodrigues J, Braga MM, Mendes FM. Comparing the reliability of a new fluorescence camera with conventional laser fluorescence devices in detecting caries lesions in occlusal and smooth surfaces of primary teeth. Lasers in medical science. 2011;26(2):157-62.
  • 74. Kühnisch J, Bücher K, Henschel V, Hickel R. Reproducibility of DIAGNOdent 2095 and DIAGNOdent Pen measurements: results from an in vitro study on occlusal sites. European journal of oral sciences. 2007;115(3):206-11.
  • 75. Chen J, Qin M, Ma W, Ge L. A clinical study of a laser fluorescence device for the detection of approximal caries in primary molars. International journal of paediatric dentistry. 2012;22(2):132-8.
  • 76. Mendes FM, Novaes T, Matos R, Bittar D, Piovesan C, Gimenez T, et al. Radiographic and laser fluorescence methods have no benefits for detecting caries in primary teeth. Caries research. 2012;46(6):536-43.
  • 77. Gimenez T, Braga MM, Raggio DP, Deery C, Ricketts DN, Mendes FM. Fluorescence-based methods for detecting caries lesions: systematic review, meta-analysis and sources of heterogeneity. PloS one. 2013;8(4).
  • 78. Shi X, Tranaeus S, Angmar-Mansson B. Comparison of QLF and DIAGNOdent for quantification of smooth surface caries. Caries Research. 2001;35(1):21.
  • 79. Heinrich-Weltzien R, Kühnisch J, van der Veen M, de Josselin de Jong E, Stöber L. Quantitative light-induced fluorescence (QLF)--A potential method for the dental practitioner. Quintessence international. 2003;34(3).
  • 80. Stookey GK. Quantitative light fluorescence: a technology for early monitoring of the caries process. Dental Clinics. 2005;49(4):753-70.
  • 81. Coulthwaite L, Pretty IA, Smith PW, Higham SM, Verran J. QLF is not readily suitable for in vivo denture plaque assessment. Journal of dentistry. 2009;37(11):898-901.
  • 82. Lennon A, Buchalla W, Brune L, Zimmermann O, Gross U, Attin T. The ability of selected oral microorganisms to emit red fluorescence. Caries research. 2006;40(1):2-5.
  • 83. Korkut B, Tagtekin DA, Yanıkoglu FÇ. Early diagnosis of dental caries and new diagnostic methods: QLF, Diagnodent, Electrical Conductance and Ultrasonic System. EUDFD. 2011;32:55-67.
  • 84. Kim H-E, Kim B-I. Early caries detection methods according to the depth of the lesion: An in vitro comparison. Photodiagnosis and photodynamic therapy. 2018;23:176-80.
  • 85. Gomez J, Zakian C, Salsone S, Pinto S, Taylor A, Pretty I, et al. In vitro performance of different methods in detecting occlusal caries lesions. Journal of dentistry. 2013;41(2):180-6.
  • 86. Hellen A, Mandelis A, Finer Y, Amaechi BT. Quantitative remineralization evolution kinetics of artificially demineralized human enamel using photothermal radiometry and modulated luminescence. Journal of biophotonics. 2011;4(11‐12):788-804.
  • 87. Kamburoğlu K, Yetimoĝlu NÖ, Altan H. Characterization of primary and permanent teeth using terahertz spectroscopy. Dentomaxillofacial Radiology. 2014;43(6):20130404.
  • 88. Karagoz B AH. Deep imaging in tissue and biomedical materials using linear and nonlinear opticalm methods, Pan Stanford Publishing. 2017:377-412.
  • 89. Terrer E, Panayotov I, Slimani A, Tardivo D, Gillet D, Levallois B, et al. Laboratory studies of nonlinear optical signals for caries detection. Journal of dental research. 2016;95(5):574-9.
  • 90. Gallagher R, Demos S, Balooch M, Marshall Jr G, Marshall S. Optical spectroscopy and imaging of the dentin–enamel junction in human third molars. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2003;64(2):372-7.
  • 91. Lin P-Y, Lyu H-C, Hsu C-YS, Chang C-S, Kao F-J. Imaging carious dental tissues with multiphoton fluorescence lifetime imaging microscopy. Biomedical optics express. 2011;2(1):149-58.
  • 92. de Oliveira FF, Ito AS, Bachmann L. Time-resolved fluorescence spectroscopy of white-spot caries in human enamel. Applied optics. 2010;49(12):2244-9.
  • 93. Zezell DM, Ribeiro AC, Bachmann L, Gomes ASL, Rousseau C, Girkin JM. Characterization of natural carious lesions by fluorescence spectroscopy at 405-nm excitation wavelength. Journal of biomedical optics. 2007;12(6):064013.
  • 94. Panayotov I, Terrer E, Salehi H, Tassery H, Yachouh J, Cuisinier FJ, et al. In vitro investigation of fluorescence of carious dentin observed with a Soprolife® camera. Clinical oral investigations. 2013;17(3):757-63.
  • 95. Evans JW, Zawadzki RJ, Liu R, Chan JW, Lane SM, Werner JS. Optical coherence tomography and Raman spectroscopy of the ex‐vivo retina. Journal of biophotonics. 2009;2(6‐7):398-406.
  • 96. Chun-Te Ko A, Hewko MD, Leonardi L, Sowa MG, Dong CC, Williams P, et al. Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. Journal of biomedical optics. 2005;10(3):031118.
  • 97. Hill W, Petrou V. Caries detection by diode laser Raman spectroscopy. Applied spectroscopy. 2000;54(6):795-9.
  • 98. Izawa T, Wakaki M, editors. Application of laser Raman spectroscopy to dental diagnosis. Lasers in Dentistry XI; 2005: International Society for Optics and Photonics.
  • 99. Ko AC-T, Hewko M, Sowa MG, Dong CC, Cleghorn B. Detection of early dental caries using polarized Raman spectroscopy. Optics express. 2006;14(1):203-15.
  • 100. Krafft C, Sergo V. Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. Journal of Spectroscopy. 2006;20(5-6):195-218.
  • 101. Matousek P, Morris M. Emerging Raman applications and techniques in biomedical and pharmaceutical fields: Springer Science & Business Media; 2010.
  • 102. Gumus G, Sarioglu B, Gokdel YD, editors. System integration for real-time laser scanning confocal microscope. 2016 24th Signal Processing and Communication Application Conference (SIU); 2016: IEEE.
  • 103. Wong A, Subar PE, Young DA. Dental caries: an update on dental trends and therapy. Advances in pediatrics. 2017;64(1):307-30.
  • 104. Askar H, Schwendicke F, Lausch J, Meyer-Lückel H, Paris S. Modified resin infiltration of non-, micro-and cavitated proximal caries lesions in vitro. Journal of dentistry. 2018;74:56-60.
Year 2022, Volume: 49 Issue: 1, 38 - 45, 30.04.2022
https://doi.org/10.52037/eads.2022.0008

Abstract

References

  • 1. Gül EB, Sepet E. Okluzal Çürük Lezyonlarının Saptanmasında Lazer Floresans Yöntemi: DIAGNOdent, DIAGNO-PEN. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):45-50.
  • 2. Kalyoncu IÖ, KUŞÇU ÖÖ, Akyüz S. Çürük Tehşisinde Gelişmekte Olan Yöntemler. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):51-8.
  • 3. Petersen PE, Bourgeois D, Ogawa H, Estupinan-Day S, Ndiaye C. The global burden of oral diseases and risks to oral health. Bulletin of the World Health Organization. 2005;83:661-9.
  • 4. Bala O, Akgül S. Çürük Teşhis Yöntemleri. Turkiye Klinikleri Restorative Dentistry-Special Topics. 2016;2(1):34-40.
  • 5. Yalçinkaya Şe. Diş Çürüğünde Radyolojik Yorumlama. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):6-13.
  • 6. Selwitz RH, Ismail AI, Pitts NB. Dental caries. The Lancet. 2007;369(9555):51-9.
  • 7. Aren G, Çayirci M. Geleneksel Çürük Teşhis Yöntemleri. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):1-5.
  • 8. Lussi A. Comparison of different methods for the diagnosis of fissure caries without cavitation. Caries research. 1993;27(5):409-16.
  • 9. Özgür B, Ünverdi GE, Çehreli Z. Diş Çürüğünün Tespitinde Geleneksel ve Güncel Yaklaşımlar. Turkiye Klinikleri Journal of Pediatric Dentistry-Special Topics. 2018;4(1):1-9.
  • 10. Nyvad B, Machiulskiene V, Bælum V. Reliability of a new caries diagnostic system differentiating between active and inactive caries lesions. Caries research. 1999;33(4):252-60.
  • 11. Kühnisch J, Goddon I, Berger S, Senkel H, Bücher K, Oehme T, et al. Development, methodology and potential of the new Universal Visual Scoring System (UniViSS) for caries detection and diagnosis. International journal of environmental research and public health. 2009;6(9):2500-9.
  • 12. Ekstrand KR, Martignon S, Ricketts D, Qvist V. Detection and activity assessment of primary coronal caries lesions: a methodologic study. Operative dentistry. 2007;32(3):225-35.
  • 13. Iannucci JM HL. Dental Radiography: Principles and Techniques, 5th ed. St Louis Missouri: Elsevier. 2017:403-11.
  • 14. A H. Ağız, Diş ve Çene Radyolojisi, editör. İstanbul: Nobel Matbaacılık. 2014:299-307.
  • 15. White SC, Pharoah MJ. Oral radiology-E-Book: Principles and interpretation: Elsevier Health Sciences; 2014.
  • 16. Bader JD, Shugars DA, Bonito AJ. A systematic review of the performance of methods for identifying carious lesions. Journal of public health dentistry. 2002;62(4):201-13.
  • 17. Gomez J, Amin AG, Gregg L, Gailloud P. Classification schemes of cranial dural arteriovenous fistulas. Neurosurgery Clinics. 2012;23(1):55-62.
  • 18. Neuhaus KW, Lussi A. Carious Lesion Diagnosis: Methods, Problems, Thresholds. Caries Excavation: Evolution of Treating Cavitated Carious Lesions. 27: Karger Publishers; 2018. p. 24-31.
  • 19. Abdelaziz M, Krejci I, Perneger T, Feilzer A, Vazquez L. Near infrared transillumination compared with radiography to detect and monitor proximal caries: A clinical retrospective study. Journal of dentistry. 2018;70:40-5.
  • 20. Gomez J, editor Detection and diagnosis of the early caries lesion. BMC oral health; 2015: Springer.
  • 21. Berg SC, Stahl JM, Lien W, Slack CM, Vandewalle KS. A clinical study comparing digital radiography and near‐infrared transillumination in caries detection. Journal of Esthetic and Restorative Dentistry. 2018;30(1):39-44.
  • 22. Abogazalah N, Eckert G, Ando M. In vitro visual and visible light transillumination methods for detection of natural non-cavitated approximal caries. Clinical oral investigations. 2019;23(3):1287-94.
  • 23. Eden E. Evidence-based caries prevention: Springer; 2016.
  • 24. Akyildiz BM, Sönmez I. Diş Çürüğünün Erken Teşhisinde Transillüminasyon Yöntemleri. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):14-20.
  • 25. Mialhe FL, Pereira AC, de Castro Meneghim M, Ambrosano GMB, Pardi V. The relative diagnostic yields of clinical, FOTI and radiographic examinations for the detection of approximal caries in youngsters. Indian Journal of Dental Research. 2009;20(2):136.
  • 26. Kirzioğlu Z, Güngör ÖE. Okluzal yüz çürüklerinin tanı yöntemleri. Turkiye Klinikleri Journal of Dental Sciences. 2009;15(1):30-9.
  • 27. Gündüz DK, Çelenk P. Çürük Tanisinda Kullanilan Yeni Yöntemler. Cumhuriyet Dental Journal. 2003;6(1).
  • 28. Richards D. Best clinical practice guidance for management of early caries lesions in children and young adults: an EAPD policy document. Evidence-based dentistry. 2016;17(2):35-7.
  • 29. Chawla N, Messer L, Adams G, Manton D. An in vitro comparison of detection methods for approximal carious lesions in primary molars. Caries research. 2012;46(2):161-9.
  • 30. Garg A, Biswas G, Saha S. Recent Advancements in Diagnosis of Dental Caries: LAP LAMBERT Academic Publishing; 2014.
  • 31. Bin-Shuwaish M, Yaman P, Dennison J, Neiva G. The correlation of DIFOTI to clinical and radiographic images in Class II carious lesions. The Journal of the American Dental Association. 2008;139(10):1374-81.
  • 32. Vaarkamp J, Ten Bosch J, Verdonschot E. Light propagation through teeth containing simulated caries lesions. Physics in medicine & biology. 1995;40(8):1375.
  • 33. Karlsson L. Caries detection methods based on changes in optical properties between healthy and carious tissue. International journal of dentistry. 2010;2010.
  • 34. Friedman J, Marcus MI. Transillumination of the oral cavity with use of fiber optics. The Journal of the American Dental Association. 1970;80(4):801-9.
  • 35. Schneiderman A, Elbaum M, Shultz T, Keem S, Greenebaum M, Driller J. Assessment of dental caries with digital imaging fiber-optic translllumination (DIFOTITM): in vitro Study. Caries Research. 1997;31(2):103-10.
  • 36. Baltacioglu IH, Orhan K. Comparison of diagnostic methods for early interproximal caries detection with near-infrared light transillumination: an in vivo study. BMC oral health. 2017;17(1):130.
  • 37. Ozkan G, Guzel KGU. Clinical evaluation of near-infrared light transillumination in approximal dentin caries detection. Lasers in medical science. 2017;32(6):1417-22.
  • 38. [Available from: (https://www.zeiss.com/meditec/int/product-portfolio/optical-coherence-tomography-devices.html).
  • 39. Alsayed EZ, Hariri I, Sadr A, Nakashima S, Bakhsh TA, Shimada Y, et al. Optical coherence tomography for evaluation of enamel and protective coatings. Dental materials journal. 2015;34(1):98-107.
  • 40. Hsieh Y-S, Ho Y-C, Lee S-Y, Chuang C-C, Tsai J-c, Lin K-F, et al. Dental optical coherence tomography. Sensors. 2013;13(7):8928-49.
  • 41. Kang H, Darling CL, Fried D. Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography. Dental Materials. 2012;28(5):488-94.
  • 42. Lenton P, Rudney J, Chen R, Fok A, Aparicio C, Jones RS. Imaging in vivo secondary caries and ex vivo dental biofilms using cross-polarization optical coherence tomography. Dental materials. 2012;28(7):792-800.
  • 43. Shimada Y, Sadr A, Sumi Y, Tagami J. Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations. Current oral health reports. 2015;2(2):73-80.
  • 44. Yavuz BŞ, KargüL B. Erken Çürük Lezyonlarının Görüntülenmesinde ve Değerlendirilmesinde Optik Koherens Tomografi (OCT)’nin Kullanımı. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):38-44.
  • 45. Nakagawa H, Sadr A, Shimada Y, Tagami J, Sumi Y. Validation of swept source optical coherence tomography (SS-OCT) for the diagnosis of smooth surface caries in vitro. Journal of dentistry. 2013;41(1):80-9.
  • 46. Mumcuoğlu T, Erdurman C, Durukan AH. Principles and novel clinical applications of optical coherence tomography. 2008.
  • 47. Machoy M, Seeliger J, Szyszka-Sommerfeld L, Koprowski R, Gedrange T, Woźniak K. The use of optical coherence tomography in dental diagnostics: a state-of-the-art review. Journal of healthcare engineering. 2017;2017.
  • 48. Pretty IA. Caries detection and diagnosis: novel technologies. Journal of dentistry. 2006;34(10):727-39.
  • 49. Ashley P, Blinkhorn A, Davies R. Occlusal caries diagnosis: an in vitro histological validation of the Electronic Caries Monitor (ECM) and other methods. Journal of dentistry. 1998;26(2):83-8.
  • 50. Tam LE, McComb D. Diagnosis of occlusal caries: Part II. Recent diagnostic technologies. Journal of the Canadian Dental Association. 2001;67(8):459-64.
  • 51. Ersöz E, Oktay N. Alternatif çürük teşhis yöntemleri. Atatürk Üni Diş Hek Fak Derg. 2002;12(2):56-63.
  • 52. Diniz MB, Rodrigues J, Lussi A. Traditional and novel caries detection methods. Contemporary approach to dental caries. 2012:105-28.
  • 53. Ricketts D, Kidd E, Liepins P, Wilson R. Histological validation of electrical resistance measurements in the diagnosis of occlusal caries. Caries research. 1996;30(2):148-55.
  • 54. Amaechi BT, Podoleanu AG, Komarov G, Higham SM, Jackson DA. Quantification of root caries using optical coherence tomography and microradiography: a correlational study. Oral health & preventive dentistry. 2004;2(4).
  • 55. Demirel A, Şenay E, Ökte Z, Sari Ş. Çürük Tespitinde Elektrik Akımı Kullanılan Yöntemler. Turkiye Klinikleri Pediatric Dentistry-Special Topics. 2019;5(3):33-7.
  • 56. Cortes D, Ellwood R, Ekstrand K. An in vitro comparison of a combined FOTI/visual examination of occlusal caries with other caries diagnostic methods and the effect of stain on their diagnostic performance. Caries research. 2003;37(1):8-16.
  • 57. Longbottom C, Huysmans M-C. Electrical measurements for use in caries clinical trials. Journal of Dental Research. 2004;83(1_suppl):76-9.
  • 58. Huysmans M-C, Longbottom C, Pitts N, Los P, Bruce P. Impedance spectroscopy of teeth with and without approximal caries lesions-an in vitro study. Journal of dental research. 1996;75(11):1871-8.
  • 59. Tassery H, Levallois B, Terrer E, Manton D, Otsuki M, Koubi S, et al. Use of new minimum intervention dentistry technologies in caries management. Australian dental journal. 2013;58:40-59.
  • 60. Katge F, Wakpanjar M, Rusawat B, Shetty A. Comparison of three diagnostic techniques for detecting occlusal dental caries in primary molars: An in vivo study. Indian Journal of Dental Research. 2016;27(2):174.
  • 61. Ng S, Ferguson M, Payne P, Slater P. Ultrasonic studies of unblemished and artificially demineralized enamel in extracted human teeth: a new method for detecting early caries. Journal of dentistry. 1988;16(5):201-9.
  • 62. Yanıkoğlu FÇ, Öztürk F, Hayran O, Analoui M, Stookey G. Detection of natural white spot caries lesions by an ultrasonic system. Caries Research. 2000;34(3):225-32.
  • 63. Bozkurt F, Tağtekin D, Yanikoğlu F, Fontana M, Gonzalez-Cabezas C, Stookey GK. Capability of an ultrasonic system to detect very early caries lesions on human enamel. Marmara Dental Journal. 2013;1(1):16-9.
  • 64. Matalon S, Feuerstein O, Calderon S, Mittleman A, Kaffe I. Detection of cavitated carious lesions in approximal tooth surfaces by ultrasonic caries detector. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2007;103(1):109-13.
  • 65. Pitts N. Are we ready to move from operative to non-operative/preventive treatment of dental caries in clinical practice? Caries research. 2004;38(3):294-304.
  • 66. Lussi A, Megert B, Longbottom C, Reich E, Francescut P. Clinical performance of a laser fluorescence device for detection of occlusal caries lesions. European journal of oral sciences. 2001;109(1):14-9.
  • 67. Lussi A, Hibst R, Paulus R. DIAGNOdent: an optical method for caries detection. Journal of dental research. 2004;83(1_suppl):80-3.
  • 68. Pretty IA, Maupomé G. A closer look at diagnosis in clinical dental practice: part 5. Emerging technologies for caries detection and diagnosis. Journal-Canadian Dental Association. 2004;70:540-1.
  • 69. Lussi A, Francescut P, Schaffner M. Fissür çürüklerinde yeni ve geleneksel tanı yöntemleri. Quintessence Turk. 2004;4:13-21.
  • 70. Lussi A, Imwinkelried S, Pitts N, Longbottom C, Reich E. Performance and reproducibility of a laser fluorescence system for detection of occlusal caries in vitro. Caries research. 1999;33(4):261-6.
  • 71. Moore D, Wilson N. A review of modern non-invasive systems for caries detection. CPD Dentistry. 2001;2:86-90.
  • 72. Shi X-Q, Welander U, Angmar-Månsson B. Occlusal caries detection with KaVo DIAGNOdent and radiography: an in vitro comparison. Caries research. 2000;34(2):151-8.
  • 73. De Benedetto MS, Morais CC, Novaes TF, de Almeida Rodrigues J, Braga MM, Mendes FM. Comparing the reliability of a new fluorescence camera with conventional laser fluorescence devices in detecting caries lesions in occlusal and smooth surfaces of primary teeth. Lasers in medical science. 2011;26(2):157-62.
  • 74. Kühnisch J, Bücher K, Henschel V, Hickel R. Reproducibility of DIAGNOdent 2095 and DIAGNOdent Pen measurements: results from an in vitro study on occlusal sites. European journal of oral sciences. 2007;115(3):206-11.
  • 75. Chen J, Qin M, Ma W, Ge L. A clinical study of a laser fluorescence device for the detection of approximal caries in primary molars. International journal of paediatric dentistry. 2012;22(2):132-8.
  • 76. Mendes FM, Novaes T, Matos R, Bittar D, Piovesan C, Gimenez T, et al. Radiographic and laser fluorescence methods have no benefits for detecting caries in primary teeth. Caries research. 2012;46(6):536-43.
  • 77. Gimenez T, Braga MM, Raggio DP, Deery C, Ricketts DN, Mendes FM. Fluorescence-based methods for detecting caries lesions: systematic review, meta-analysis and sources of heterogeneity. PloS one. 2013;8(4).
  • 78. Shi X, Tranaeus S, Angmar-Mansson B. Comparison of QLF and DIAGNOdent for quantification of smooth surface caries. Caries Research. 2001;35(1):21.
  • 79. Heinrich-Weltzien R, Kühnisch J, van der Veen M, de Josselin de Jong E, Stöber L. Quantitative light-induced fluorescence (QLF)--A potential method for the dental practitioner. Quintessence international. 2003;34(3).
  • 80. Stookey GK. Quantitative light fluorescence: a technology for early monitoring of the caries process. Dental Clinics. 2005;49(4):753-70.
  • 81. Coulthwaite L, Pretty IA, Smith PW, Higham SM, Verran J. QLF is not readily suitable for in vivo denture plaque assessment. Journal of dentistry. 2009;37(11):898-901.
  • 82. Lennon A, Buchalla W, Brune L, Zimmermann O, Gross U, Attin T. The ability of selected oral microorganisms to emit red fluorescence. Caries research. 2006;40(1):2-5.
  • 83. Korkut B, Tagtekin DA, Yanıkoglu FÇ. Early diagnosis of dental caries and new diagnostic methods: QLF, Diagnodent, Electrical Conductance and Ultrasonic System. EUDFD. 2011;32:55-67.
  • 84. Kim H-E, Kim B-I. Early caries detection methods according to the depth of the lesion: An in vitro comparison. Photodiagnosis and photodynamic therapy. 2018;23:176-80.
  • 85. Gomez J, Zakian C, Salsone S, Pinto S, Taylor A, Pretty I, et al. In vitro performance of different methods in detecting occlusal caries lesions. Journal of dentistry. 2013;41(2):180-6.
  • 86. Hellen A, Mandelis A, Finer Y, Amaechi BT. Quantitative remineralization evolution kinetics of artificially demineralized human enamel using photothermal radiometry and modulated luminescence. Journal of biophotonics. 2011;4(11‐12):788-804.
  • 87. Kamburoğlu K, Yetimoĝlu NÖ, Altan H. Characterization of primary and permanent teeth using terahertz spectroscopy. Dentomaxillofacial Radiology. 2014;43(6):20130404.
  • 88. Karagoz B AH. Deep imaging in tissue and biomedical materials using linear and nonlinear opticalm methods, Pan Stanford Publishing. 2017:377-412.
  • 89. Terrer E, Panayotov I, Slimani A, Tardivo D, Gillet D, Levallois B, et al. Laboratory studies of nonlinear optical signals for caries detection. Journal of dental research. 2016;95(5):574-9.
  • 90. Gallagher R, Demos S, Balooch M, Marshall Jr G, Marshall S. Optical spectroscopy and imaging of the dentin–enamel junction in human third molars. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2003;64(2):372-7.
  • 91. Lin P-Y, Lyu H-C, Hsu C-YS, Chang C-S, Kao F-J. Imaging carious dental tissues with multiphoton fluorescence lifetime imaging microscopy. Biomedical optics express. 2011;2(1):149-58.
  • 92. de Oliveira FF, Ito AS, Bachmann L. Time-resolved fluorescence spectroscopy of white-spot caries in human enamel. Applied optics. 2010;49(12):2244-9.
  • 93. Zezell DM, Ribeiro AC, Bachmann L, Gomes ASL, Rousseau C, Girkin JM. Characterization of natural carious lesions by fluorescence spectroscopy at 405-nm excitation wavelength. Journal of biomedical optics. 2007;12(6):064013.
  • 94. Panayotov I, Terrer E, Salehi H, Tassery H, Yachouh J, Cuisinier FJ, et al. In vitro investigation of fluorescence of carious dentin observed with a Soprolife® camera. Clinical oral investigations. 2013;17(3):757-63.
  • 95. Evans JW, Zawadzki RJ, Liu R, Chan JW, Lane SM, Werner JS. Optical coherence tomography and Raman spectroscopy of the ex‐vivo retina. Journal of biophotonics. 2009;2(6‐7):398-406.
  • 96. Chun-Te Ko A, Hewko MD, Leonardi L, Sowa MG, Dong CC, Williams P, et al. Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. Journal of biomedical optics. 2005;10(3):031118.
  • 97. Hill W, Petrou V. Caries detection by diode laser Raman spectroscopy. Applied spectroscopy. 2000;54(6):795-9.
  • 98. Izawa T, Wakaki M, editors. Application of laser Raman spectroscopy to dental diagnosis. Lasers in Dentistry XI; 2005: International Society for Optics and Photonics.
  • 99. Ko AC-T, Hewko M, Sowa MG, Dong CC, Cleghorn B. Detection of early dental caries using polarized Raman spectroscopy. Optics express. 2006;14(1):203-15.
  • 100. Krafft C, Sergo V. Biomedical applications of Raman and infrared spectroscopy to diagnose tissues. Journal of Spectroscopy. 2006;20(5-6):195-218.
  • 101. Matousek P, Morris M. Emerging Raman applications and techniques in biomedical and pharmaceutical fields: Springer Science & Business Media; 2010.
  • 102. Gumus G, Sarioglu B, Gokdel YD, editors. System integration for real-time laser scanning confocal microscope. 2016 24th Signal Processing and Communication Application Conference (SIU); 2016: IEEE.
  • 103. Wong A, Subar PE, Young DA. Dental caries: an update on dental trends and therapy. Advances in pediatrics. 2017;64(1):307-30.
  • 104. Askar H, Schwendicke F, Lausch J, Meyer-Lückel H, Paris S. Modified resin infiltration of non-, micro-and cavitated proximal caries lesions in vitro. Journal of dentistry. 2018;74:56-60.
There are 104 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Review Articles
Authors

Emine Akyıldız 0000-0001-8479-5186

Nurhan Özalp 0000-0003-4192-2960

Publication Date April 30, 2022
Submission Date December 31, 2021
Published in Issue Year 2022 Volume: 49 Issue: 1

Cite

Vancouver Akyıldız E, Özalp N. Diagnosis of Early Dental Caries by Traditional, Contemporary and Developing Imaging Methods. EADS. 2022;49(1):38-45.