Conference Paper
BibTex RIS Cite

New Radiological Approaches in Dental Education

Year 2024, Volume: 51 Issue: Suppl 1 (UDEG 2nd INTERNATIONAL DENTISTRY EDUCATION MEETING), 4 - 6, 31.12.2024
https://doi.org/10.52037/eads.2024.0029

Abstract

Introduction:
Developing new approaches by harnessing technological advancements alongside traditional dental education is crucial. The Department of Oral and Maxillofacial Radiology is particularly receptive to novel approaches and advancements both in education and in current practice. Staying close to new approaches and methods in educational materials and techniques is an inevitable necessity for keeping pace with the times.
Objective and Method: The aim of this review is to discuss current studies regarding how new radiological approaches in dentistry, particularly artificial intelligence and its products, can provide differences and advantages in the field of education. Additionally, it aims to provide insights into future research and developments. It specifically aims to provide a brief summary of recent studies in this area.
Results and Conclusions: In today's technology-driven era, gaining a contemporary perspective on educational materials and methods is highly important. With the changing world, it is necessary and inevitable to be open to new developments in education and to leverage the advancements in technology and software alongside traditional materials in radiology education. In light of the research conducted, there is a need for a greater variety and quantity of studies in the near future to further advance and make progress in this area.

Supporting Institution

Herhangi bir kurum desteklememiştir

References

  • Garrett PH, Faraone KL, Patzelt SB, Keaser ML. Comparison of dental students’ self-directed, faculty, and software-based assessments of dental anatomy wax-ups: a retrospective study. J Dent Educ. 2015;79(12):1437–1444. doi:10.1002/j.00220337.2015.79.12.tb06043.x.
  • Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794. doi:10.4329/wjr.v6.i10.794.
  • Nair M, Nair U, Gröndahl H, Webber R. Accuracy of tuned aperture computed tomography in the diagnosis of radicular fractures in non-restored maxillary anterior teeth–an in vitro study. Dentomaxillofac Radiol. 2002;31(5):299–304. doi:10.1038/sj.dmfr.4600712.
  • Angel JS, Mincer HH, Chaudhry J, Scarbecz M. Cone-beam Computed Tomography for analyzing variations in inferior alveolar canal location in adults in relation to age and sex. J Forensic Sci. 2011;56(1):216–219. doi:10.1111/j.1556-4029.2010.01508.x.
  • Corte-Real A, Pedrosa D, Saraiva J, Caetano C, Vieira DN. Tridimensional pattern analysis of foodstuff bitemarks—a pilot study of tomographic database. Forensic Sci Int. 2018;288:304309. doi:10.1016/j.forsciint.2018.04.022.
  • Figueiredo C, Coelho J, Pedrosa D, Caetano C, Corte-Real F, Vieira DN, et al. Dental evaluation specificity in orofacial damage assessment: A serial case study. J Forensic Leg Med. 2019;68:101861. doi:10.1016/j.jflm.2019.101861.
  • Parashar V, Whaites E, Monsour P, Chaudhry J, Geist JR. Cone beam computed tomography in dental education: a survey of US, UK, and Australian dental schools. J Dent Educ. 2012;76(11):1443–1447. doi:10.1002/j.00220337.2012.76.11.tb05405.x.
  • Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: A scoping review. J Dent. 2019;91:103226. doi:10.1016/j.jdent.2019.103226.
  • Thorat V, Rao P, Joshi N, Talreja P, Shetty AR. Role of Artificial Intelligence (AI) in Patient Education and Communication in Dentistry. Cureus. 2024;16(5). doi:10.7759/cureus.59799.
  • D’haese J, Ackhurst J, Wismeijer D, De Bruyn H, Tahmaseb A. Current state of the art of computer-guided implant surgery. Periodontol 2000. 2017;73(1):121–133. doi:10.1111/prd.12175.
  • Chackartchi T, Romanos GE, Parkanyi L, Schwarz F, Sculean A. Reducing errors in guided implant surgery to optimize treatment outcomes. Periodontol 2000. 2022;88(1):64–72. doi:10.1111/prd.12411.
  • Joda T, Brägger U. Digital vs. conventional implant prosthetic workflows: a cost/time analysis. Clin Oral Implants Res. 2015;26(12):1430–1435. doi:10.1111/clr.12476.
  • LeBlanc VR, Urbankova A, Hadavi F, Lichtenthal RM. A preliminary study in using virtual reality to train dental students. J Dent Educ. 2004;68(3):378–383. doi:10.1002/j.00220337.2004.68.3.tb03754.x.
Year 2024, Volume: 51 Issue: Suppl 1 (UDEG 2nd INTERNATIONAL DENTISTRY EDUCATION MEETING), 4 - 6, 31.12.2024
https://doi.org/10.52037/eads.2024.0029

Abstract

References

  • Garrett PH, Faraone KL, Patzelt SB, Keaser ML. Comparison of dental students’ self-directed, faculty, and software-based assessments of dental anatomy wax-ups: a retrospective study. J Dent Educ. 2015;79(12):1437–1444. doi:10.1002/j.00220337.2015.79.12.tb06043.x.
  • Shah N, Bansal N, Logani A. Recent advances in imaging technologies in dentistry. World J Radiol. 2014;6(10):794. doi:10.4329/wjr.v6.i10.794.
  • Nair M, Nair U, Gröndahl H, Webber R. Accuracy of tuned aperture computed tomography in the diagnosis of radicular fractures in non-restored maxillary anterior teeth–an in vitro study. Dentomaxillofac Radiol. 2002;31(5):299–304. doi:10.1038/sj.dmfr.4600712.
  • Angel JS, Mincer HH, Chaudhry J, Scarbecz M. Cone-beam Computed Tomography for analyzing variations in inferior alveolar canal location in adults in relation to age and sex. J Forensic Sci. 2011;56(1):216–219. doi:10.1111/j.1556-4029.2010.01508.x.
  • Corte-Real A, Pedrosa D, Saraiva J, Caetano C, Vieira DN. Tridimensional pattern analysis of foodstuff bitemarks—a pilot study of tomographic database. Forensic Sci Int. 2018;288:304309. doi:10.1016/j.forsciint.2018.04.022.
  • Figueiredo C, Coelho J, Pedrosa D, Caetano C, Corte-Real F, Vieira DN, et al. Dental evaluation specificity in orofacial damage assessment: A serial case study. J Forensic Leg Med. 2019;68:101861. doi:10.1016/j.jflm.2019.101861.
  • Parashar V, Whaites E, Monsour P, Chaudhry J, Geist JR. Cone beam computed tomography in dental education: a survey of US, UK, and Australian dental schools. J Dent Educ. 2012;76(11):1443–1447. doi:10.1002/j.00220337.2012.76.11.tb05405.x.
  • Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for dental image diagnostics: A scoping review. J Dent. 2019;91:103226. doi:10.1016/j.jdent.2019.103226.
  • Thorat V, Rao P, Joshi N, Talreja P, Shetty AR. Role of Artificial Intelligence (AI) in Patient Education and Communication in Dentistry. Cureus. 2024;16(5). doi:10.7759/cureus.59799.
  • D’haese J, Ackhurst J, Wismeijer D, De Bruyn H, Tahmaseb A. Current state of the art of computer-guided implant surgery. Periodontol 2000. 2017;73(1):121–133. doi:10.1111/prd.12175.
  • Chackartchi T, Romanos GE, Parkanyi L, Schwarz F, Sculean A. Reducing errors in guided implant surgery to optimize treatment outcomes. Periodontol 2000. 2022;88(1):64–72. doi:10.1111/prd.12411.
  • Joda T, Brägger U. Digital vs. conventional implant prosthetic workflows: a cost/time analysis. Clin Oral Implants Res. 2015;26(12):1430–1435. doi:10.1111/clr.12476.
  • LeBlanc VR, Urbankova A, Hadavi F, Lichtenthal RM. A preliminary study in using virtual reality to train dental students. J Dent Educ. 2004;68(3):378–383. doi:10.1002/j.00220337.2004.68.3.tb03754.x.
There are 13 citations in total.

Details

Primary Language English
Subjects Dentistry (Other)
Journal Section Conference Papers
Authors

İrem Öztürk 0000-0002-6496-6977

Kaan Orhan 0000-0001-6768-0176

Early Pub Date December 31, 2024
Publication Date December 31, 2024
Submission Date September 15, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2024 Volume: 51 Issue: Suppl 1 (UDEG 2nd INTERNATIONAL DENTISTRY EDUCATION MEETING)

Cite

Vancouver Öztürk İ, Orhan K. New Radiological Approaches in Dental Education. EADS. 2024;51(Suppl 1 (UDEG 2nd INTERNATIONAL DENTISTRY EDUCATION MEETING):4-6.