Research Article
BibTex RIS Cite

Year 2025, Volume: 52 Issue: 3, 128 - 133
https://doi.org/10.52037/eads.2025.0019

Abstract

References

  • The Academy of Prosthodontics. The Glossary of Prosthodontic Terms: Ninth Edition. J Prosthet Dent. 2017;117(5s):e1–e105. doi:10.1016/j.prosdent.2016.12.001.
  • Karunagaran S, Markose S, Paprocki G, Wicks R. A systematic approach to definitive planning and designing single and multiple unit implant abutments. J Prosthodont. 2014;23(8):639–648. doi:10.1111/jopr.12161.
  • Karunagaran S, Paprocki GJ, Wicks R, Markose S. A review of implant abutments–abutment classification to aid prosthetic selection. J Tenn Dent Assoc. 2013;93(2):18–23; quiz 23.
  • Kotick PG, Blumenkopf B. Abutment selection for implant restorations. Inside Dentistry. 2011;7(7):76–79.
  • Harder S, Quabius ES, Ossenkop L, Kern M. Assessment of lipopolysaccharide microleakage at conical implant-abutment connections. Clin Oral Investig. 2012;16(5):1377–1384. doi:10.1007/s00784-011-0646-4.
  • Sarfaraz H, Paulose A, Shenoy KK, Hussain A. A three-dimensional finite element analysis of a passive and friction fit implant abutment interface and the influence of occlusal table dimension on the stress distribution pattern on the implant and surrounding bone. J Indian Prosthodont Soc. 2015;15(3):229–236. doi:10.4103/0972-4052.161559.
  • Semper W, Heberer S, Mehrhof J, Schink T, Nelson K. Effects of repeated manual disassembly and reassembly on the positional stability of various implant-abutment complexes: an experimental study. Int J Oral Maxillofac Implants. 2010;25(1).
  • Balfour A, O’Brien GR. Comparative study of antirotational single tooth abutments. J Prosthet Dent. 1995;73(1):36–43. doi:10.1016/s0022-3913(05)80270-7.
  • Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Implants Res. 1997;8(4):290–298. doi:10.1034/j.1600-0501.1997.080407.x.
  • Ricciardi Coppedê A, De Mattos MdGC, Rodrigues RCS, Ribeiro RF. Effect of repeated torque/mechanical loading cycles on two different abutment types in implants with internal tapered connections: an in vitro study. Clin Oral Implants Res. 2009;20(6):624–632. doi:10.1111/j.1600-0501.2008.01690.x.
  • Ramalho I, Witek L, Coelho PG, Bergamo E, Pegoraro LF, Bonfante EA. Influence of abutment fabrication method on 3D fit at the implant-abutment connection. Int J Prosthodont. 2020;33(6):641–647. doi:10.11607/ijp.6574.
  • Canpolat C, Özkurt-Kayahan Z, Kazazoğlu E. Management of a fractured implant abutment screw: a clinical report. J Prosthodont. 2014;23(5):402–405. doi:10.1111/jopr.12111.
  • Gupta S, Gupta H, Tandan A. Technical complications of implant—causes and management: a comprehensive review. Natl J Maxillofac Surg. 2015;6(1):3–8. doi:10.4103/0975-5950.168233.
  • International Organization for Standardization. ISO 14801:2007(E). Dentistry—Implants—Dynamic fatigue test for endosseous dental implants [Standard]. Geneva: ISO; 2007. Available from: https://www.iso.org/standard/41034.html .
  • Armentia M, Abasolo M, Coria I, Sainitier N. Effect of the geometry of butt-joint implant-supported restorations on the fatigue life of prosthetic screws. J Prosthet Dent. 2022;127(3):477.e1–477.e9. doi:10.1016/j.prosdent.2021.12.010.
  • Zipprich H, Weigl P, Ratka C, Lange B, Lauer HC. The micromechanical behavior of implant-abutment connections under a dynamic load protocol. Clin Implant Dent Relat Res. 2018;20(5):814–823. doi:10.1111/cid.12651.
  • Lee JH, Cha HS. Screw loosening and changes in removal torque relative to abutment screw length in a dental implant with external abutment connection after oblique cyclic loading. J Adv Prosthodont. 2018;10(6):415–421. doi:10.4047/jap.2018.10.6.415.
  • El-Sheikh MAY, Mostafa TMN, El-Sheikh MM. Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading. Int J Implant Dent. 2018;4(1):39. doi:10.1186/s40729-018-0149-z.
  • Kanawati A, Richards MW, Becker JJ, Monaco NE. Measurement of clinicians’ ability to hand torque dental implant components. J Oral Implantol. 2009;35(4):185–188. doi:10.1563/1548-1336-35.4.185.
  • DeLong R, Douglas WH. An artificial oral environment for testing dental materials. IEEE Trans Biomed Eng. 1991;38(4):339–345. doi:10.1109/10.133228.
  • Reis TAD, Zancopé K, Karam FK, Neves FDD. Biomechanical behavior of extra-narrow implants after fatigue and pull-out tests. J Prosthet Dent. 2019;122(1):54.e1–54.e6. doi:10.1016/j.prosdent.2019.04.005.
  • De Kok IJ, Katz LH, Duqum IS. CAD/CAM custom abutments for esthetic anterior implant-supported restoration: materials and design. Curr Oral Health Rep. 2018;5(2):121–126. doi:10.1007/s40496-018-0179-x.
  • Sailer I, Sailer T, Stawarczyk B, Jung RE, Hämmerle C. In vitro study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connections. Int J Oral Maxillofac Implants. 2009;24(5):850–858. doi:10.5167/uzh-26251.
  • Zonfrillo G, Pratesi F. Mechanical strength of dental implants. J Appl Biomater Biomech. 2008;6(2):110–118. doi:10.1177/228080000800600207.
  • AlHomidhi M, Alqahtani F. Evaluation of fracture load of cement-, screw-, and multiscrew-retained abutments for implant-supported fixed partial dentures. Int J Oral Maxillofac Implants. 2021;36(1). doi:10.11607/jomi.8575.

EVALUATION OF THE FRACTURE STRENGTH OF DIFFERENT IMPLANT ABUTMENTS UNDER MASTICATION

Year 2025, Volume: 52 Issue: 3, 128 - 133
https://doi.org/10.52037/eads.2025.0019

Abstract

Materials and Methods: NucleOSSTM T6 Bone level implant (Turkey) was used. Ti Grade5 Straight abutment was used in the first group, 25° Angled Ti Grade5 fabricated abutment was used in the 2nd Group, and CAD/CAM abutment was used in the 3rd Group. Implants were used in two different diameters (3.5 and 4.8 mm) and each of the samples was fixed on the implant manually or using a torque wrench. Metal crowns were used as a prosthetic superstructure to load the created mechanisms with a chewing simulator. The crowns were cemented to the superstructures, which were torqued to 30 Ncm or hand-tightened twice a day apart, and four years of use of each specimen was simulated in 1 000 000 cycles in the chewing simulator (Esetron, Turkey). All assemblies are fixed in a vertical position within a cylindrical mold to avoid motion artifacts. Afterward, the samples were subjected to fracture testing using a universal testing device (Lloyd-LRX; Lloyd Instruments, Fareham, UK) at a speed of 1 mm/min to determine the maximum breaking values by the standard TS ISO 14801;2007. The breaking or bending of the samples was recorded using a light microscope (Leica MZ 12, Heerbrugg, Switzerland) in our faculty research laboratory.
Results: It has been observed that implant-abutment connection resistances are affected by the thickness of the implant body and the screw-tightening protocol. Considering the fracture values, it has been observed that the most stable high-strength values are generally in the CAD/CAM samples with groups tightened with a 30 Ncm torque wrench (1342.49 N).
Conclusion: Accordingly, under the same conditions, while thicker implants break under higher forces and exhibit greater durability than thinner ones, it has been determined that tightening the screw with a torque wrench under 30 Ncm significantly increases the junctional strength compared to manual tightening.
Key words: Implant-abutment connection, Implant-screw fracture, Implant-abutment fracture, Implant body fracture.

References

  • The Academy of Prosthodontics. The Glossary of Prosthodontic Terms: Ninth Edition. J Prosthet Dent. 2017;117(5s):e1–e105. doi:10.1016/j.prosdent.2016.12.001.
  • Karunagaran S, Markose S, Paprocki G, Wicks R. A systematic approach to definitive planning and designing single and multiple unit implant abutments. J Prosthodont. 2014;23(8):639–648. doi:10.1111/jopr.12161.
  • Karunagaran S, Paprocki GJ, Wicks R, Markose S. A review of implant abutments–abutment classification to aid prosthetic selection. J Tenn Dent Assoc. 2013;93(2):18–23; quiz 23.
  • Kotick PG, Blumenkopf B. Abutment selection for implant restorations. Inside Dentistry. 2011;7(7):76–79.
  • Harder S, Quabius ES, Ossenkop L, Kern M. Assessment of lipopolysaccharide microleakage at conical implant-abutment connections. Clin Oral Investig. 2012;16(5):1377–1384. doi:10.1007/s00784-011-0646-4.
  • Sarfaraz H, Paulose A, Shenoy KK, Hussain A. A three-dimensional finite element analysis of a passive and friction fit implant abutment interface and the influence of occlusal table dimension on the stress distribution pattern on the implant and surrounding bone. J Indian Prosthodont Soc. 2015;15(3):229–236. doi:10.4103/0972-4052.161559.
  • Semper W, Heberer S, Mehrhof J, Schink T, Nelson K. Effects of repeated manual disassembly and reassembly on the positional stability of various implant-abutment complexes: an experimental study. Int J Oral Maxillofac Implants. 2010;25(1).
  • Balfour A, O’Brien GR. Comparative study of antirotational single tooth abutments. J Prosthet Dent. 1995;73(1):36–43. doi:10.1016/s0022-3913(05)80270-7.
  • Norton MR. An in vitro evaluation of the strength of an internal conical interface compared to a butt joint interface in implant design. Clin Oral Implants Res. 1997;8(4):290–298. doi:10.1034/j.1600-0501.1997.080407.x.
  • Ricciardi Coppedê A, De Mattos MdGC, Rodrigues RCS, Ribeiro RF. Effect of repeated torque/mechanical loading cycles on two different abutment types in implants with internal tapered connections: an in vitro study. Clin Oral Implants Res. 2009;20(6):624–632. doi:10.1111/j.1600-0501.2008.01690.x.
  • Ramalho I, Witek L, Coelho PG, Bergamo E, Pegoraro LF, Bonfante EA. Influence of abutment fabrication method on 3D fit at the implant-abutment connection. Int J Prosthodont. 2020;33(6):641–647. doi:10.11607/ijp.6574.
  • Canpolat C, Özkurt-Kayahan Z, Kazazoğlu E. Management of a fractured implant abutment screw: a clinical report. J Prosthodont. 2014;23(5):402–405. doi:10.1111/jopr.12111.
  • Gupta S, Gupta H, Tandan A. Technical complications of implant—causes and management: a comprehensive review. Natl J Maxillofac Surg. 2015;6(1):3–8. doi:10.4103/0975-5950.168233.
  • International Organization for Standardization. ISO 14801:2007(E). Dentistry—Implants—Dynamic fatigue test for endosseous dental implants [Standard]. Geneva: ISO; 2007. Available from: https://www.iso.org/standard/41034.html .
  • Armentia M, Abasolo M, Coria I, Sainitier N. Effect of the geometry of butt-joint implant-supported restorations on the fatigue life of prosthetic screws. J Prosthet Dent. 2022;127(3):477.e1–477.e9. doi:10.1016/j.prosdent.2021.12.010.
  • Zipprich H, Weigl P, Ratka C, Lange B, Lauer HC. The micromechanical behavior of implant-abutment connections under a dynamic load protocol. Clin Implant Dent Relat Res. 2018;20(5):814–823. doi:10.1111/cid.12651.
  • Lee JH, Cha HS. Screw loosening and changes in removal torque relative to abutment screw length in a dental implant with external abutment connection after oblique cyclic loading. J Adv Prosthodont. 2018;10(6):415–421. doi:10.4047/jap.2018.10.6.415.
  • El-Sheikh MAY, Mostafa TMN, El-Sheikh MM. Effect of different angulations and collar lengths of conical hybrid implant abutment on screw loosening after dynamic cyclic loading. Int J Implant Dent. 2018;4(1):39. doi:10.1186/s40729-018-0149-z.
  • Kanawati A, Richards MW, Becker JJ, Monaco NE. Measurement of clinicians’ ability to hand torque dental implant components. J Oral Implantol. 2009;35(4):185–188. doi:10.1563/1548-1336-35.4.185.
  • DeLong R, Douglas WH. An artificial oral environment for testing dental materials. IEEE Trans Biomed Eng. 1991;38(4):339–345. doi:10.1109/10.133228.
  • Reis TAD, Zancopé K, Karam FK, Neves FDD. Biomechanical behavior of extra-narrow implants after fatigue and pull-out tests. J Prosthet Dent. 2019;122(1):54.e1–54.e6. doi:10.1016/j.prosdent.2019.04.005.
  • De Kok IJ, Katz LH, Duqum IS. CAD/CAM custom abutments for esthetic anterior implant-supported restoration: materials and design. Curr Oral Health Rep. 2018;5(2):121–126. doi:10.1007/s40496-018-0179-x.
  • Sailer I, Sailer T, Stawarczyk B, Jung RE, Hämmerle C. In vitro study of the influence of the type of connection on the fracture load of zirconia abutments with internal and external implant-abutment connections. Int J Oral Maxillofac Implants. 2009;24(5):850–858. doi:10.5167/uzh-26251.
  • Zonfrillo G, Pratesi F. Mechanical strength of dental implants. J Appl Biomater Biomech. 2008;6(2):110–118. doi:10.1177/228080000800600207.
  • AlHomidhi M, Alqahtani F. Evaluation of fracture load of cement-, screw-, and multiscrew-retained abutments for implant-supported fixed partial dentures. Int J Oral Maxillofac Implants. 2021;36(1). doi:10.11607/jomi.8575.
There are 25 citations in total.

Details

Primary Language English
Subjects Dental Materials and Equipment, Oral Implantology, Prosthodontics
Journal Section Original Research Articles
Authors

Yezdan Dilan Erkcan 0000-0002-0582-8208

Mehmet Ali Kılıçarslan 0000-0002-8619-957X

Bora Akat 0000-0003-2928-2526

Burak Bilecenoğlu 0000-0001-7097-1572

Early Pub Date October 2, 2025
Publication Date October 11, 2025
Submission Date August 26, 2024
Acceptance Date January 2, 2025
Published in Issue Year 2025 Volume: 52 Issue: 3

Cite

Vancouver Erkcan YD, Kılıçarslan MA, Akat B, Bilecenoğlu B. EVALUATION OF THE FRACTURE STRENGTH OF DIFFERENT IMPLANT ABUTMENTS UNDER MASTICATION. EADS. 2025;52(3):128-33.