Year 2024,
Volume: 10 Issue: 2, 5 - 11, 31.12.2024
Mucahit Buyankara
,
Murat Çağlar
References
- AKTAŞ, İ., HAMARAT, D. (2023). Generalized bivariate Fibonacci polynomial and two new subclasses of bi-univalent functions. Asian-European Journal of Mathematics, 16(8), 2350147.
- AKTAŞ, İ., KARAMAN, İ. (2023). On some new subclasses of bi-univalent functions defined by Balancing polynomials. Karamanoglu Mehmetbey University Journal of Engineering and Natural Sciences, 5(1), 25-32.
- AKTAŞ, İ. YILMAZ, N. (2022). Initial coefficients estimate and Fekete-Szegö problems for two new subclasses of bi-univalent functions. Konuralp Journal of Mathematics, 10(1), 138-148.
- BEHERA, A., PANDA, G.K. (1999). On the square roots of triangular numbers. Fibonacci Quarterly, 37, 98-105.
- BRANNAN, D., CLUNIE J. (1980). Aspects of contemporary complex analysis. Academic Press, New York.
- BRANNAN, D., TAHA, T.S. (1988). On some classes of bi-univalent functions. In: Proceedings of the International Conference on Mathematical Analysis and its Applications, Math. Anal. Appl., 53-60.
- BUYANKARA, M., ÇAĞLAR, M., COTIRLA, L.I. (2022). New subclasses of bi-univalent functions with respect to the symmetric points defined by Bernoulli polynomials. Axioms, 11(11), Art. 652.
- ÇAĞLAR, M., COTIRLA, L.I., BUYANKARA, M. (2022). Fekete-Szegö inequalities for a new subclass of bi-univalent functions associated with Gegenbauer polynomials. Symmetry, 14(8), Art. 1572.
- ÇAĞLAR, M. (2019). Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. C.R. Acad. Bulgare Sci., 72, 1608-1615.
- ÇAĞLAR, M., ORHAN, H., YAĞMUR N. (2013). Coefficient bounds for new subclasses of bi-univalent functions. Filomat, 27, 1165-1171.
- DAVALA, R.K., PANDA, G.K. (2015). On sum and ratio formulas for balancing numbers. Journal of the Ind. Math. Soc., 82(1-2), 23-32.
DUREN, P.L. (1983). Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag.
FRASIN, B.A., SWAMY, S.R., ALDAWISH, I. (2021). A comprehensive family of bi-univalent functions defined by k-Fibonacci numbers. J. Funct. Spaces, Art. 4249509.
FRASIN, B.A., SWAMY, S.R., NIRMALA, J. (2021). Some special families of holomorphic and Al-Oboudi type, k-Fibonacci numbers involving modified Sigmoid activation function. Afr. Math., 32, 631-643.
- FRONTCZAK, R. (2019). On balancing polynomials. Appl. Math. Sci., 13(2), 57-66.
- FRONTCZAK, R., BADEN-WÜRTTEMBERG L. (2018). Sums of balancing and Lucas-Balancing numbers with binomial coefficients. Int. J. Math. Anal., 12(12), 585-594.
FRONTCZAK, R., BADEN-WÜRTTEMBERG L. (2018). A note on hybrid convolutions involving balancing and Lucas-balancing numbers. Appl. Math. Sci., 12(25), 2001-2008.
GÜNEY, H.O., MURUGUSUNDARAMOORTHY, G., SOKOL, J. (2018). Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapientiae Math., 10, 70-84.
- GÜNEY, H.O., MURUGUSUNDARAMOORTHY, G., SOKOL, J. (2019). Certain subclasses of bi-univalent functions related to k- Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. Al. Math. Stat., 68, 1909-1921.
- KESKİN, R., KARAATLI, O. (2012). Some new properties of balancing numbers and square triangular numbers. Journal of Integer Sequences, 15(1), 1-13.
- KOMATSU, T., PANDA, G.K. (2016). On several kinds of sums of balancing numbers. arXiv:1608.05918.
- KORKMAZ, Y., AKTAŞ, İ. (2024). Fekete-Szegö problem for two new subclasses of bi-univalent functions defined by Bernoulli polynomial. International Journal of Nonlinear Analysis and Applications, 15(10), 1-10.
LEWIN, M. (1967). On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc., 18, 63-68.
- MILLER, S.S., MOCANU, P.T. (2000). Differential Subordinations. Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York.
- ORHAN, H., AKTAŞ, İ., ARIKAN, H. (2023). On a new subclass of bi-univalent functions associated with the (p,q)-Lucas polynomials and bi-Bazilevic type functions of order ρ + iξ. Turkish J. Math., 47(1), 98–109.
- ORHAN, H., TOKLU, E., KADIOĞLU, E. (2018). Second Hankel determinant for certain subclasses of bi-univalent functions involving Chebyshev polynomials. Turkish J. Math., 42(4), 1927–1940.
- ÖZTÜRK, R., AKTAŞ, İ. (2023). Coefficient estimates for two new subclasses of bi-univalent functions defined by Lucas-Balancing polynomials. Turkish Journal of Inequalities, 7(1), 55-64.
- ÖZTÜRK, R., AKTAŞ, İ. (2024). Coefficient Estimate and Fekete-Szegö Problems for Certain New Subclasses of Bi-univalent Functions Defined by Generalized Bivariate Fibonacci Polynomial. Sahand Communications in Mathematical Analysis, 21(3), 35-53.
- PATEL, B.K., IRMAK, N., RAY P.K. (2018). Incomplete balancing and Lucas-Balancing numbers. Math. Rep., 20(70), 59-72.
RAY, P.K. (2014). Some congruences for balancing and Lucas-Balancing numbers and their applications. Integers, 14A8.
- RAY, P.K. (2015). Balancing and Lucas-balancing sums by matrix methods. Math. Rep., 17(2), 225-233.
- RAY, P.K. (2018). On the properties of k-balancing numbers. Ain Shams Engineering Journal, 9(3), 395-402.
- SRIVASTAVA, H.M., MISHRA, A.K., GOCHHAYAT, P. (2010). Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett., 23, 1188-1192.
- SRIVASTAVA, H.M., BULUT, S., ÇAĞLAR, M., YAĞMUR, N. (2013). Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat, 27, 831-842.
- TOKLU, E. (2019). A new subclass of bi-univalent functions defined by q-derivative. TWMS J. of Apl. & Eng. Math., 9(1), 84-90.
- TOKLU, E., AKTAŞ, İ., SAĞSÖZ, F. (2019). On new subclasses of bi-univalent functions defined by generalized Salagean differantial operator. Commun. Fac. Sci. Univ. Ank. Ser. Al. Math. Stat., 68(1), 776-783.
- YILMAZ, N., AKTAŞ, İ. (2022). On som new subclass of bi-univalent functions defined by generalized Bivariate Fibonacci polynomial. Afrika Matematika, 33(2), 59.
- ZAPRAWA, P. (2014). On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin. 21(1), 169-178.
Coefficient Inequalities For Two New Subclasses of Bi-univalent Functions Involving Lucas-Balancing Polynomials
Year 2024,
Volume: 10 Issue: 2, 5 - 11, 31.12.2024
Mucahit Buyankara
,
Murat Çağlar
Abstract
In this article, by making use of Lucas-Balancing polynomials two new subclasses of bi-univalent functions are introduced. Then we establish the bounds for the initial Taylor–Maclaurin coefficients |a_2 | and |a_3 | for a new family of analytic and bi-univalent functions in the open unit disk which involve Lucas-Balancing polynomials. Furthermore, we investigate the special cases and consequences for the new family functions. In addition, the Fekete-Szegö problem is handled for the functions belonging to these new subclasses.
References
- AKTAŞ, İ., HAMARAT, D. (2023). Generalized bivariate Fibonacci polynomial and two new subclasses of bi-univalent functions. Asian-European Journal of Mathematics, 16(8), 2350147.
- AKTAŞ, İ., KARAMAN, İ. (2023). On some new subclasses of bi-univalent functions defined by Balancing polynomials. Karamanoglu Mehmetbey University Journal of Engineering and Natural Sciences, 5(1), 25-32.
- AKTAŞ, İ. YILMAZ, N. (2022). Initial coefficients estimate and Fekete-Szegö problems for two new subclasses of bi-univalent functions. Konuralp Journal of Mathematics, 10(1), 138-148.
- BEHERA, A., PANDA, G.K. (1999). On the square roots of triangular numbers. Fibonacci Quarterly, 37, 98-105.
- BRANNAN, D., CLUNIE J. (1980). Aspects of contemporary complex analysis. Academic Press, New York.
- BRANNAN, D., TAHA, T.S. (1988). On some classes of bi-univalent functions. In: Proceedings of the International Conference on Mathematical Analysis and its Applications, Math. Anal. Appl., 53-60.
- BUYANKARA, M., ÇAĞLAR, M., COTIRLA, L.I. (2022). New subclasses of bi-univalent functions with respect to the symmetric points defined by Bernoulli polynomials. Axioms, 11(11), Art. 652.
- ÇAĞLAR, M., COTIRLA, L.I., BUYANKARA, M. (2022). Fekete-Szegö inequalities for a new subclass of bi-univalent functions associated with Gegenbauer polynomials. Symmetry, 14(8), Art. 1572.
- ÇAĞLAR, M. (2019). Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. C.R. Acad. Bulgare Sci., 72, 1608-1615.
- ÇAĞLAR, M., ORHAN, H., YAĞMUR N. (2013). Coefficient bounds for new subclasses of bi-univalent functions. Filomat, 27, 1165-1171.
- DAVALA, R.K., PANDA, G.K. (2015). On sum and ratio formulas for balancing numbers. Journal of the Ind. Math. Soc., 82(1-2), 23-32.
DUREN, P.L. (1983). Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften, Band 259, New York, Berlin, Heidelberg and Tokyo, Springer-Verlag.
FRASIN, B.A., SWAMY, S.R., ALDAWISH, I. (2021). A comprehensive family of bi-univalent functions defined by k-Fibonacci numbers. J. Funct. Spaces, Art. 4249509.
FRASIN, B.A., SWAMY, S.R., NIRMALA, J. (2021). Some special families of holomorphic and Al-Oboudi type, k-Fibonacci numbers involving modified Sigmoid activation function. Afr. Math., 32, 631-643.
- FRONTCZAK, R. (2019). On balancing polynomials. Appl. Math. Sci., 13(2), 57-66.
- FRONTCZAK, R., BADEN-WÜRTTEMBERG L. (2018). Sums of balancing and Lucas-Balancing numbers with binomial coefficients. Int. J. Math. Anal., 12(12), 585-594.
FRONTCZAK, R., BADEN-WÜRTTEMBERG L. (2018). A note on hybrid convolutions involving balancing and Lucas-balancing numbers. Appl. Math. Sci., 12(25), 2001-2008.
GÜNEY, H.O., MURUGUSUNDARAMOORTHY, G., SOKOL, J. (2018). Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapientiae Math., 10, 70-84.
- GÜNEY, H.O., MURUGUSUNDARAMOORTHY, G., SOKOL, J. (2019). Certain subclasses of bi-univalent functions related to k- Fibonacci numbers. Commun. Fac. Sci. Univ. Ank. Ser. Al. Math. Stat., 68, 1909-1921.
- KESKİN, R., KARAATLI, O. (2012). Some new properties of balancing numbers and square triangular numbers. Journal of Integer Sequences, 15(1), 1-13.
- KOMATSU, T., PANDA, G.K. (2016). On several kinds of sums of balancing numbers. arXiv:1608.05918.
- KORKMAZ, Y., AKTAŞ, İ. (2024). Fekete-Szegö problem for two new subclasses of bi-univalent functions defined by Bernoulli polynomial. International Journal of Nonlinear Analysis and Applications, 15(10), 1-10.
LEWIN, M. (1967). On a coefficient problem for bi-univalent functions. Proc. Amer. Math. Soc., 18, 63-68.
- MILLER, S.S., MOCANU, P.T. (2000). Differential Subordinations. Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York.
- ORHAN, H., AKTAŞ, İ., ARIKAN, H. (2023). On a new subclass of bi-univalent functions associated with the (p,q)-Lucas polynomials and bi-Bazilevic type functions of order ρ + iξ. Turkish J. Math., 47(1), 98–109.
- ORHAN, H., TOKLU, E., KADIOĞLU, E. (2018). Second Hankel determinant for certain subclasses of bi-univalent functions involving Chebyshev polynomials. Turkish J. Math., 42(4), 1927–1940.
- ÖZTÜRK, R., AKTAŞ, İ. (2023). Coefficient estimates for two new subclasses of bi-univalent functions defined by Lucas-Balancing polynomials. Turkish Journal of Inequalities, 7(1), 55-64.
- ÖZTÜRK, R., AKTAŞ, İ. (2024). Coefficient Estimate and Fekete-Szegö Problems for Certain New Subclasses of Bi-univalent Functions Defined by Generalized Bivariate Fibonacci Polynomial. Sahand Communications in Mathematical Analysis, 21(3), 35-53.
- PATEL, B.K., IRMAK, N., RAY P.K. (2018). Incomplete balancing and Lucas-Balancing numbers. Math. Rep., 20(70), 59-72.
RAY, P.K. (2014). Some congruences for balancing and Lucas-Balancing numbers and their applications. Integers, 14A8.
- RAY, P.K. (2015). Balancing and Lucas-balancing sums by matrix methods. Math. Rep., 17(2), 225-233.
- RAY, P.K. (2018). On the properties of k-balancing numbers. Ain Shams Engineering Journal, 9(3), 395-402.
- SRIVASTAVA, H.M., MISHRA, A.K., GOCHHAYAT, P. (2010). Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett., 23, 1188-1192.
- SRIVASTAVA, H.M., BULUT, S., ÇAĞLAR, M., YAĞMUR, N. (2013). Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat, 27, 831-842.
- TOKLU, E. (2019). A new subclass of bi-univalent functions defined by q-derivative. TWMS J. of Apl. & Eng. Math., 9(1), 84-90.
- TOKLU, E., AKTAŞ, İ., SAĞSÖZ, F. (2019). On new subclasses of bi-univalent functions defined by generalized Salagean differantial operator. Commun. Fac. Sci. Univ. Ank. Ser. Al. Math. Stat., 68(1), 776-783.
- YILMAZ, N., AKTAŞ, İ. (2022). On som new subclass of bi-univalent functions defined by generalized Bivariate Fibonacci polynomial. Afrika Matematika, 33(2), 59.
- ZAPRAWA, P. (2014). On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin. 21(1), 169-178.