Research Article
BibTex RIS Cite
Year 2024, Volume: 10 Issue: 2, 12 - 19, 31.12.2024

Abstract

Project Number

FYL-2019/6981

References

  • AL-KHAFAJİ, M. A. A., AL-REFAİ'A, R. A., & AL-ZAMELY, O. M. Y. (2022). Green synthesis of copper nanoparticles using Artemisia plant extract. Materials Today: Proceedings, 49, 2831-2835.
  • AZAM, A., AHMED, A. S., OVES, M., KHAN, M. S., & MEMİC, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and Gram-negative bacterial strains. International Journal of Nanomedicine, 7, 3527-3535.
  • BAR, H., BHUİ, D. K., SAHOO, G. P., SARKAR, P., DE, S. P., & MİSRA, A. (2009). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339(1-3), 134-139.
  • BERRA, D., LAOUİNİ, S. E., BENHAOUA, B., OUAHRANİ, M. R., BERRANİ, D., & RAHAL, A. (2018). Green synthesis of copper oxide nanoparticles by Phoenix dactylifera L. leaves extract. Digest Journal of Nanomaterials and Biostructures, 13(4), 1231-1238.
  • BEYTH, N., HOURİ-HADDAD, Y., DOMB, A., KHAN, W., & HAZAN, R. (2015). Alternative antimicrobial approach: nano-antimicrobial materials. Evidence-Based Complementary and Alternative Medicine, 2015, 246012. https://doi.org/10.1155/2015/246012
  • CANLI, K., YETGİN, A., BENEK, A., BOZYEL, M. E., & MURAT ALTUNER, E. (2019). In vitro antimicrobial activity screening of ethanol extract of Lavandula stoechas and investigation of its biochemical composition. Advances in Pharmacological Sciences, 2019, 5623948. https://doi.org/10.1155/2019/5623948
  • CONRAD, A. O., RODRİGUEZ-SAONA, L. E., MCPHERSON, B. A., WOOD, D. L., & BONELLO, P. (2014). Identification of Quercus agrifolia (coast live oak) resistant to the invasive pathogen Phytophthora ramorum in native stands using Fourier-transform infrared (FT-IR) spectroscopy. Frontiers in Plant Science, 5, 521. https://doi.org/10.3389/fpls.2014.00521
  • DİZAJ, S. M., LOTFİPOUR, F., BARZEGAR-JALALİ, M., ZARRİNTAN, M. H., & ADİBKİA, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278-284. https://doi.org/10.1016/j.msec.2014.08.031
  • HASSAN, S. E. D., SALEM, S. S., FOUDA, A., AWAD, M. A., EL-GAMAL, M. S., & ABDO, A. M. (2018). New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. Journal of Radiation Research and Applied Sciences, 11(3), 262-270. https://doi.org/10.1016/j.jrras.2018.05.003
  • HASSANİEN, R., HUSEİN, D. Z., & AL-HAKKANİ, M. F. (2018). Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities. Heliyon, 4(12), e01077. https://doi.org/10.1016/j.heliyon.2018.e01077
  • HOSEİNZADEH, E., MAKHDOUMİ, P., TAHA, P., HOSSİNİ, H., STELLİNG, J., & AMJAD KAMAL, M. (2017). A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Current Drug Metabolism, 18(2),120-128. https://doi.org/10.2174/1389200218666170124155154
  • JAYARAMBABU, N., AKSHAYKRANTH, A., RAO, T. V., RAO, K. V., & KUMAR, R. R. (2020). Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Materials Letters, 259, 126813.
  • JUNG, W. K., KOO, H. C., KİM, K. W., SHİN, S., KİM, S. H., & PARK, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171-2178. https://doi.org/10.1128/AEM.02001-07
  • KAHRİLAS, G. A., WALLY, L. M., FREDRİCK, S. J., HİSKEY, M., PRİETO, A. L., & OWENS, J. E. (2014). Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chemistry & Engineering, 2(3), 367-376. https://doi.org/10.1021/sc4003664
  • KUMAR, V., MOHAN, S., SİNGH, D. K., VERMA, D. K., SİNGH, V. K., & HASAN, S. H. (2017). Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron (III), antibacterial and antioxidant activity. Materials Science and Engineering: C, 71, 1004-1019. https://doi.org/10.1016/j.msec.2016.11.112
  • LAGEDROSTE, M., REİNERS, J., SMİTS, S. H., & SCHMİTT, L. (2019). Systematic characterization of position one variants within the lantibiotic nisin. Scientific Reports, 9, 935. https://doi.org/10.1038/s41598-018-36949-4
  • Lİ, Z., XİN, Y., ZHANG, Z., WU, H., & WANG, P. (2015). Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection. Scientific Reports, 5, 10432. https://doi.org/10.1038/srep10432
  • MANİKANDAN, V., VELMURUGAN, P., PARK, J. H., CHANG, W. S., PARK, Y. J., JAYANTHİ, P., ... & OH, B. T. (2017). Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech, 7(1), 72. https://doi.org/10.1007/s13205-017-0663-8
  • MAULANA, I., GİNTİNG, B., & AZİZAH, K. (2023). Green synthesis of copper nanoparticles employing Annona squamosa L extract as antimicrobial and anticancer agents. South African Journal of Chemical Engineering, 46(1), 65-71.
  • MAULANA, I., GİNTİNG, B., MUSTAFA, I., & ISLAMİ, R. A. (2024). Green Synthesis of Copper Nanoparticles Using Polyalthia longifolia Roots and their Bioactivities Against Escherichia coli, Staphylococcus aureus, and Candida albicans. Journal of Pharmacy and Bioallied Sciences, 16(Suppl 3), S2218-S2223.
  • MOTT, D., GALKOWSKİ, J., WANG, L., LUO, J., & ZHONG, C. J. (2007). Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 23(10), 5740-5745. https://doi.org/10.1021/la070155s
  • OLAJİRE, A. A., IFEDİORA, N. F., BELLO, M. D., & BENSON, N. U. (2018). Green synthesis of copper nanoparticles using Alchornea laxiflora leaf extract and their catalytic application for oxidative desulphurization of model oil. Iranian Journal of Science and Technology, Transactions A: Science, 42(4), 1935-1946. https://doi.org/10.1007/s40995-017-0335-y
  • PELGRİFT, R. Y., & FRİEDMAN, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65(13-14), 1803-1815. https://doi.org/10.1016/j.addr.2013.07.011
  • PRABHU, S., & POULOSE, E. K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2(1), 1-10. https://doi.org/10.1186/2228-5326-2-32
  • RAFFİ, M., HUSSAİN, F., BHATTİ, T. M., AKHTER, J. I., HAMEED, A., & HASAN, M. M. (2008). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Science and Technology, 24(2), 192-196.
  • RAJESH, K. M., AJİTHA, B., REDDY, Y. A. K., SUNEETHA, Y., & REDDY, P. S. (2018). Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical, and antimicrobial properties. Optik, 154, 593-600. https://doi.org/10.1016/j.ijleo.2017.10.144
  • RUDRAMURTHY, G. R., SWAMY, M. K., SİNNİAH, U. R., & GHASEMZADEH, A. (2016). Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules, 21(7), 836. https://doi.org/10.3390/molecules21070836
  • RUPARELİA, J. P., CHATTERJEE, A. K., DUTTAGUPTA, S. P., & MUKHERJİ, S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta biomaterialia, 4(3), 707-716.
  • SHARMA, J., DUTTA, S., PRAKASH, J., KAUSHİK, A., & PRAKASH, R. (2017). Morphological evolution and surface study of multi-functional copper oxide nanostructures synthesized by spray pyrolysis. Journal of Materials Science: Materials in Electronics, 28(18), 13493-13506. https://doi.org/10.1007/s10854-017-7194-5
  • WIEGAND, I., HILPERT, K., & HANCOCK, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols, 3(2), 163-175.

Synthesis, Characterization and Antimicrobial Activity of Copper Nanoparticles from Lavandula Stoechas L. by Green Synthesis Method

Year 2024, Volume: 10 Issue: 2, 12 - 19, 31.12.2024

Abstract

Metal nanoparticles (copper (Cu), silver (Ag), gold (Au), platinum (Pt), zinc (Zn)) have a wide antimicrobial activity against different types of microorganisms such as gram negative-gram positive bacteria and fungi and are alternatives to antibiotics. Green synthesis is particularly preferred among synthesis methods because it is simple, environmentally friendly, cost-effective, and yields products quickly. In this study, copper nanoparticles (CuNPs) were synthesized using Lavandula stoechas extract as a stabilizing agent, leveraging the properties of this medicinal and aromatic plant.
The synthesized CuNPs were characterized, showing that they were spherical and less than 50 nm in size. Their antibacterial activity was assessed using both broth dilution and disc diffusion methods. The minimum inhibitory concentration (MIC) values for the bacterial strains were as follows: 250 μg/mL for Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enteritidis; and 500 μg/mL for Enterococcus faecalis and Escherichia coli. In the disc diffusion test, the inhibition zone diameters increased with higher CuNP concentrations across all Gram-negative and Gram-positive strains. The highest inhibition zones were recorded as 15 mm for B. subtilis, 16.5 mm for S. aureus, 14 mm for E. faecalis, 19.5 mm for P. aeruginosa, 16.5 mm for S. enteritidis, and 13.5 mm for E. coli.
In summary, this study demonstrates that CuNPs can be successfully synthesised using Lavandula stoechas extract and exhibit significant antimicrobial properties. These findings suggest that CuNPs could serve as effective alternatives to traditional antibiotics, potentially helping to address the growing issue of antibiotic resistance.

Project Number

FYL-2019/6981

References

  • AL-KHAFAJİ, M. A. A., AL-REFAİ'A, R. A., & AL-ZAMELY, O. M. Y. (2022). Green synthesis of copper nanoparticles using Artemisia plant extract. Materials Today: Proceedings, 49, 2831-2835.
  • AZAM, A., AHMED, A. S., OVES, M., KHAN, M. S., & MEMİC, A. (2012). Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and Gram-negative bacterial strains. International Journal of Nanomedicine, 7, 3527-3535.
  • BAR, H., BHUİ, D. K., SAHOO, G. P., SARKAR, P., DE, S. P., & MİSRA, A. (2009). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339(1-3), 134-139.
  • BERRA, D., LAOUİNİ, S. E., BENHAOUA, B., OUAHRANİ, M. R., BERRANİ, D., & RAHAL, A. (2018). Green synthesis of copper oxide nanoparticles by Phoenix dactylifera L. leaves extract. Digest Journal of Nanomaterials and Biostructures, 13(4), 1231-1238.
  • BEYTH, N., HOURİ-HADDAD, Y., DOMB, A., KHAN, W., & HAZAN, R. (2015). Alternative antimicrobial approach: nano-antimicrobial materials. Evidence-Based Complementary and Alternative Medicine, 2015, 246012. https://doi.org/10.1155/2015/246012
  • CANLI, K., YETGİN, A., BENEK, A., BOZYEL, M. E., & MURAT ALTUNER, E. (2019). In vitro antimicrobial activity screening of ethanol extract of Lavandula stoechas and investigation of its biochemical composition. Advances in Pharmacological Sciences, 2019, 5623948. https://doi.org/10.1155/2019/5623948
  • CONRAD, A. O., RODRİGUEZ-SAONA, L. E., MCPHERSON, B. A., WOOD, D. L., & BONELLO, P. (2014). Identification of Quercus agrifolia (coast live oak) resistant to the invasive pathogen Phytophthora ramorum in native stands using Fourier-transform infrared (FT-IR) spectroscopy. Frontiers in Plant Science, 5, 521. https://doi.org/10.3389/fpls.2014.00521
  • DİZAJ, S. M., LOTFİPOUR, F., BARZEGAR-JALALİ, M., ZARRİNTAN, M. H., & ADİBKİA, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278-284. https://doi.org/10.1016/j.msec.2014.08.031
  • HASSAN, S. E. D., SALEM, S. S., FOUDA, A., AWAD, M. A., EL-GAMAL, M. S., & ABDO, A. M. (2018). New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. Journal of Radiation Research and Applied Sciences, 11(3), 262-270. https://doi.org/10.1016/j.jrras.2018.05.003
  • HASSANİEN, R., HUSEİN, D. Z., & AL-HAKKANİ, M. F. (2018). Biosynthesis of copper nanoparticles using aqueous Tilia extract: antimicrobial and anticancer activities. Heliyon, 4(12), e01077. https://doi.org/10.1016/j.heliyon.2018.e01077
  • HOSEİNZADEH, E., MAKHDOUMİ, P., TAHA, P., HOSSİNİ, H., STELLİNG, J., & AMJAD KAMAL, M. (2017). A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Current Drug Metabolism, 18(2),120-128. https://doi.org/10.2174/1389200218666170124155154
  • JAYARAMBABU, N., AKSHAYKRANTH, A., RAO, T. V., RAO, K. V., & KUMAR, R. R. (2020). Green synthesis of Cu nanoparticles using Curcuma longa extract and their application in antimicrobial activity. Materials Letters, 259, 126813.
  • JUNG, W. K., KOO, H. C., KİM, K. W., SHİN, S., KİM, S. H., & PARK, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74(7), 2171-2178. https://doi.org/10.1128/AEM.02001-07
  • KAHRİLAS, G. A., WALLY, L. M., FREDRİCK, S. J., HİSKEY, M., PRİETO, A. L., & OWENS, J. E. (2014). Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustainable Chemistry & Engineering, 2(3), 367-376. https://doi.org/10.1021/sc4003664
  • KUMAR, V., MOHAN, S., SİNGH, D. K., VERMA, D. K., SİNGH, V. K., & HASAN, S. H. (2017). Photo-mediated optimized synthesis of silver nanoparticles for the selective detection of Iron (III), antibacterial and antioxidant activity. Materials Science and Engineering: C, 71, 1004-1019. https://doi.org/10.1016/j.msec.2016.11.112
  • LAGEDROSTE, M., REİNERS, J., SMİTS, S. H., & SCHMİTT, L. (2019). Systematic characterization of position one variants within the lantibiotic nisin. Scientific Reports, 9, 935. https://doi.org/10.1038/s41598-018-36949-4
  • Lİ, Z., XİN, Y., ZHANG, Z., WU, H., & WANG, P. (2015). Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection. Scientific Reports, 5, 10432. https://doi.org/10.1038/srep10432
  • MANİKANDAN, V., VELMURUGAN, P., PARK, J. H., CHANG, W. S., PARK, Y. J., JAYANTHİ, P., ... & OH, B. T. (2017). Green synthesis of silver oxide nanoparticles and its antibacterial activity against dental pathogens. 3 Biotech, 7(1), 72. https://doi.org/10.1007/s13205-017-0663-8
  • MAULANA, I., GİNTİNG, B., & AZİZAH, K. (2023). Green synthesis of copper nanoparticles employing Annona squamosa L extract as antimicrobial and anticancer agents. South African Journal of Chemical Engineering, 46(1), 65-71.
  • MAULANA, I., GİNTİNG, B., MUSTAFA, I., & ISLAMİ, R. A. (2024). Green Synthesis of Copper Nanoparticles Using Polyalthia longifolia Roots and their Bioactivities Against Escherichia coli, Staphylococcus aureus, and Candida albicans. Journal of Pharmacy and Bioallied Sciences, 16(Suppl 3), S2218-S2223.
  • MOTT, D., GALKOWSKİ, J., WANG, L., LUO, J., & ZHONG, C. J. (2007). Synthesis of size-controlled and shaped copper nanoparticles. Langmuir, 23(10), 5740-5745. https://doi.org/10.1021/la070155s
  • OLAJİRE, A. A., IFEDİORA, N. F., BELLO, M. D., & BENSON, N. U. (2018). Green synthesis of copper nanoparticles using Alchornea laxiflora leaf extract and their catalytic application for oxidative desulphurization of model oil. Iranian Journal of Science and Technology, Transactions A: Science, 42(4), 1935-1946. https://doi.org/10.1007/s40995-017-0335-y
  • PELGRİFT, R. Y., & FRİEDMAN, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced Drug Delivery Reviews, 65(13-14), 1803-1815. https://doi.org/10.1016/j.addr.2013.07.011
  • PRABHU, S., & POULOSE, E. K. (2012). Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. International Nano Letters, 2(1), 1-10. https://doi.org/10.1186/2228-5326-2-32
  • RAFFİ, M., HUSSAİN, F., BHATTİ, T. M., AKHTER, J. I., HAMEED, A., & HASAN, M. M. (2008). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Science and Technology, 24(2), 192-196.
  • RAJESH, K. M., AJİTHA, B., REDDY, Y. A. K., SUNEETHA, Y., & REDDY, P. S. (2018). Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: Physical, optical, and antimicrobial properties. Optik, 154, 593-600. https://doi.org/10.1016/j.ijleo.2017.10.144
  • RUDRAMURTHY, G. R., SWAMY, M. K., SİNNİAH, U. R., & GHASEMZADEH, A. (2016). Nanoparticles: Alternatives against drug-resistant pathogenic microbes. Molecules, 21(7), 836. https://doi.org/10.3390/molecules21070836
  • RUPARELİA, J. P., CHATTERJEE, A. K., DUTTAGUPTA, S. P., & MUKHERJİ, S. (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta biomaterialia, 4(3), 707-716.
  • SHARMA, J., DUTTA, S., PRAKASH, J., KAUSHİK, A., & PRAKASH, R. (2017). Morphological evolution and surface study of multi-functional copper oxide nanostructures synthesized by spray pyrolysis. Journal of Materials Science: Materials in Electronics, 28(18), 13493-13506. https://doi.org/10.1007/s10854-017-7194-5
  • WIEGAND, I., HILPERT, K., & HANCOCK, R. E. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nature protocols, 3(2), 163-175.
There are 30 citations in total.

Details

Primary Language English
Subjects Nanobiotechnology
Journal Section makaleler
Authors

Esra Yaprak 0000-0002-8753-494X

Abdulkadir Çiltaş 0000-0002-8225-4754

Project Number FYL-2019/6981
Early Pub Date December 28, 2024
Publication Date December 31, 2024
Submission Date November 12, 2024
Acceptance Date December 26, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

APA Yaprak, E., & Çiltaş, A. (2024). Synthesis, Characterization and Antimicrobial Activity of Copper Nanoparticles from Lavandula Stoechas L. by Green Synthesis Method. Eastern Anatolian Journal of Science, 10(2), 12-19.
AMA Yaprak E, Çiltaş A. Synthesis, Characterization and Antimicrobial Activity of Copper Nanoparticles from Lavandula Stoechas L. by Green Synthesis Method. Eastern Anatolian Journal of Science. December 2024;10(2):12-19.
Chicago Yaprak, Esra, and Abdulkadir Çiltaş. “Synthesis, Characterization and Antimicrobial Activity of Copper Nanoparticles from Lavandula Stoechas L. By Green Synthesis Method”. Eastern Anatolian Journal of Science 10, no. 2 (December 2024): 12-19.
EndNote Yaprak E, Çiltaş A (December 1, 2024) Synthesis, Characterization and Antimicrobial Activity of Copper Nanoparticles from Lavandula Stoechas L. by Green Synthesis Method. Eastern Anatolian Journal of Science 10 2 12–19.
IEEE E. Yaprak and A. Çiltaş, “Synthesis, Characterization and Antimicrobial Activity of Copper Nanoparticles from Lavandula Stoechas L. by Green Synthesis Method”, Eastern Anatolian Journal of Science, vol. 10, no. 2, pp. 12–19, 2024.
ISNAD Yaprak, Esra - Çiltaş, Abdulkadir. “Synthesis, Characterization and Antimicrobial Activity of Copper Nanoparticles from Lavandula Stoechas L. By Green Synthesis Method”. Eastern Anatolian Journal of Science 10/2 (December 2024), 12-19.
JAMA Yaprak E, Çiltaş A. Synthesis, Characterization and Antimicrobial Activity of Copper Nanoparticles from Lavandula Stoechas L. by Green Synthesis Method. Eastern Anatolian Journal of Science. 2024;10:12–19.
MLA Yaprak, Esra and Abdulkadir Çiltaş. “Synthesis, Characterization and Antimicrobial Activity of Copper Nanoparticles from Lavandula Stoechas L. By Green Synthesis Method”. Eastern Anatolian Journal of Science, vol. 10, no. 2, 2024, pp. 12-19.
Vancouver Yaprak E, Çiltaş A. Synthesis, Characterization and Antimicrobial Activity of Copper Nanoparticles from Lavandula Stoechas L. by Green Synthesis Method. Eastern Anatolian Journal of Science. 2024;10(2):12-9.