Review Article
BibTex RIS Cite

An Overview of The Various Appropriate Types of Cell Lines for The Production of Monoclonal Antibodies

Year 2023, Volume: 4 Issue: 1, 495 - 510
https://doi.org/10.46871/eams.1254823

Abstract

As the first monoclonal antibodies [mAbs] were produced in 1975, the challenge to improve antibody engineering started. Since then, therapeutic antibodies have become the predominant class of new drugs developed recently, and an essential part of progress has affected cell lines. From the first pioneer hybridoma cells to the current vanguard Chinese hamster ovary [CHO] cells dramatic improvement has been seen. An essential part of this process is choosing the suitable cell line to seed the targeted antibody gene. This review encompasses all the current evidence to compare various proper cell lines for monoclonal antibody production such as mammalian cells, plant cells, bacterial cells, and yeast cells. Valid long-term data, regarding glycosylation, efficiency, and safety, support the current popularity of CHO cells. At the same time, other types of cell lines also show some promise for emerging needs for more therapeutic antibodies on the market.

References

  • 1. James K, Bell GT. Human monoclonal antibody production. Current status and future prospects. J Immunol Methods. 1987;100(1-2):5-40. doi: 10.1016/0022-1759(87)90170-0, PMID 3298441.
  • 2. Cui Y, Cui P, Chen B, Li S, Guan H. Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Dev Ind Pharm. 2017;43(4):519-30. doi: 10.1080/03639045.2017.1278768, PMID 28049357.
  • 3. Talotta R, Rucci F, Canti G, Scaglione F. Pros and cons of the immunogenicity of monoclonal antibodies in cancer treatment: a lesson from autoimmune diseases. Immunotherapy. 2019;11(3):241-54. doi: 10.2217/imt-2018-0081, PMID 30730275.
  • 4. Rita Costa A, Elisa Rodrigues M, Henriques M, Azeredo J, Oliveira R. Guidelines to cell engineering for monoclonal antibody production. Eur J Pharm Biopharm. 2010;74(2):127-38. doi: 10.1016/j.ejpb.2009.10.002, PMID 19853660.
  • 5. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1. doi: 10.1186/s12929-019-0592-z, PMID 31894001.
  • 6. Barnard GC, Kull AR, Sharkey NS, Shaikh SS, Rittenhour AM, Burnina I, et al. High-throughput screening and selection of yeast cell lines expressing monoclonal antibodies. J Ind Microbiol Biotechnol. 2010;37(9):961-71. doi: 10.1007/s10295-010-0746-1, PMID 20711797.
  • 7. Hussain H, Patel T, Ozanne AMS, Vito D, Ellis M, Hinchliffe M, et al. A comparative analysis of recombinant Fab and full-length antibody production in Chinese hamster ovary cells. Biotechnol Bioeng. 2021;118(12):4815-28. doi: 10.1002/bit.27944, PMID 34585737.
  • 8. Yang O, Prabhu S, Ierapetritou M. Comparison between batch and continuous monoclonal antibody production and economic analysis. Ind Eng Chem Res. 2019;58(15):5851-63. doi: 10.1021/acs.iecr.8b04717.
  • 9. Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies (Basel). 2020;9(3):34. doi: 10.3390/antib9030034, PMID 32698317.
  • 10. Spadiut O, Capone S, Krainer F, Glieder A, Herwig C. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol. 2014;32(1):54-60. doi: 10.1016/j.tibtech.2013.10.002, PMID 24183828.
  • 11. Reichert JM. Marketed therapeutic antibodies compendium. mAbs. 2012;4(3):413-5. doi: 10.4161/mabs.19931, PMID 22531442.
  • 12. British Society for Immunology. BiteSized immunology: immune development. Generation of B-cell / antibody diversity. London: BSI Diversity and Inclusion Framework. Available from: https://wwwhttps://www. Available from: http://immunology.org/public-information/bitesized-immunology/immune-development/generation-b-cell-antibody-diversity; [[accessed Mar 21],2022].
  • 13. Tabll A, Abbas AT, El-Kafrawy S, Wahid A. Monoclonal antibodies: principles and applications of immunodiagnosis and immunotherapy for hepatitis C virus. World J Hepatol. 2015;7(22):2369-83. doi: 10.4254/wjh.v7.i22.2369, PMID 26464752.
  • 14. Moussavou G, Ko K, Lee JH, Choo YK. Production of monoclonal antibodies in plants for cancer immunotherapy. BioMed Res Int. 2015;2015:306164. doi: 10.1155/2015/306164, PMID 26550566.
  • 15. Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. mAbs. 2010;2(5):466-79. doi: 10.4161/mabs.2.5.12720, PMID 20622510.
  • 16. Ozturk S, Hu W-S. Cell culture technology for pharmaceutical and cell-based therapies. 1st ed. Boca Raton: CRC Press; 2005. 627p.
  • 17. Kelley B, et al. A different perspective: how much innovation is really needed for monoclonal antibody production using mammalian cell technology? Adv Biochem Eng Biotechnol. 2018;165:443-62.
  • 18. Kunert R, Reinhart D. Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol. 2016;100(8):3451-61. doi: 10.1007/s00253-016-7388-9, PMID 26936774.
  • 19. Villacrés C, Tayi VS, Butler M. Strategic feeding of NS0 and CHO cell cultures to control glycan profiles and immunogenic epitopes of monoclonal antibodies. J Biotechnol. 2021;333:49-62. doi: 10.1016/j.jbiotec.2021.04.005, PMID 33901620.
  • 20. Yu DY, Lee SY, Lee GM. Glutamine synthetase gene knockout-human embryonic kidney 293E cells for stable production of monoclonal antibodies. Biotechnol Bioeng. 2018;115(5):1367-72. doi: 10.1002/bit.26552, PMID 29359789.
  • 21. Butler M, Meneses-Acosta A. Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol. 2012;96(4):885-94. doi: 10.1007/s00253-012-4451-z, PMID 23053101.
  • 22. Ho SCL, Tong YW, Yang Y. Generation of monoclonal antibody-producing mammalian cell lines. Pharm Bioprocess. 2013;1(1):71-87. doi: 10.4155/pbp.13.8.
  • 23. Dhara VG, Naik HM, Majewska NI, Betenbaugh MJ. Recombinant antibody production in CHO and NS0 cells: differences and similarities. BioDrugs. 2018;32(6):571-84. doi: 10.1007/s40259-018-0319-9, PMID 30499081.
  • 24. Madabhushi SR, Podtelezhnikov AA, Murgolo N, Xu S, Lin H. Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells. J Biotechnol. 2021;329:92-103. doi: 10.1016/j.jbiotec.2021.01.023, PMID 33549674.
  • 25. Jossé L, Zhang L, Smales CM. Application of microRNA targeted 3′UTRs to repress DHFR selection marker expression for development of recombinant antibody expressing CHO cell pools. Biotechnol J. 2018;13(10):e1800129. doi: 10.1002/biot.201800129, PMID 29981248.
  • 26. Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, et al. A study of monoclonal antibody- producing CHO cell lines: what makes a stable high producer? Biotechnol Bioeng. 2009;102(4):1182-96. doi: 10.1002/bit.22158, PMID 18979540.
  • 27. van Berkel PH, Gerritsen J, Perdok G, Valbjørn J, Vink T, van de Winkel JG, et al. N-linked glycosylation is an important parameter for optimal selection of cell lines producing biopharmaceutical human IgG. Biotechnol Prog. 2009;25(1):244-51. doi: 10.1002/btpr.92, PMID 19224598.
  • 28. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109-17. doi: 10.1056/NEJMoa074943, PMID 18337601.
  • 29. Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 2009;19(9):936-49. doi: 10.1093/glycob/cwp079, PMID 19494347.
  • 30. Yee JC, Gerdtzen ZP, Hu WS. Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells. Biotechnol Bioeng. 2009;102(1):246-63. doi: 10.1002/bit.22039, PMID 18726962.
  • 31. Jimenez Del Val I, Fan Y, Weilguny D. Dynamics of immature mAb glycoform secretion during CHO cell culture: an integrated modeling framework. Biotechnol J. 2016;11(5):610-23. doi: 10.1002/biot.201400663, PMID 26743760.
  • 32. Chauhan G, Schmelzer AE. A novel cholesterol/lipid delivery system for murine myeloma cell lines. Biotechnol Prog. 2017;33(3):795-803. doi: 10.1002/btpr.2441, PMID 28187511.
  • 33. Birch JR, Racher AJ. Antibody production. Adv Drug Deliv Rev. 2006;58(5-6):671-85. doi: 10.1016/j.addr.2005.12.006, PMID 16822577.
  • 34. Barnes LM, Bentley CM, Dickson AJ. Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology. 2000;32(2):109-23. doi: 10.1023/A:1008170710003, PMID 19002973.
  • 35. Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol. 2017;251:128-40. doi: 10.1016/j.jbiotec.2017.04.028, PMID 28465209.
  • 36. Lindl T. Development of human monoclonal antibodies: a review. Cytotechnology. 1996;21(3):183-93. doi: 10.1007/BF00365341, PMID 22358750.
  • 37. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol. 2016;36(6):1110-22. doi: 10.3109/07388551.2015.1084266, PMID 26383226.
  • 38. Abaandou L, Quan D, Shiloach J. Affecting HEK293 cell growth and production performance by modifying the expression of specific genes. Cells. 2021;10(7). doi: 10.3390/cells10071667, PMID 34359846.
  • 39. Beck M. Agalsidase alfa for the treatment of Fabry disease: new data on clinical efficacy and safety. Expert Opin Biol Ther. 2009;9(2):255-61. doi: 10.1517/14712590802658428, PMID 19236256.
  • 40. Loignon M, Perret S, Kelly J, Boulais D, Cass B, Bisson L, et al. Stable high volumetric production of glycosylated human recombinant IFNalpha2b in HEK293 cells. BMC Biotechnol. 2008;8:65. doi: 10.1186/1472-6750-8-65, PMID 18752669.
Year 2023, Volume: 4 Issue: 1, 495 - 510
https://doi.org/10.46871/eams.1254823

Abstract

References

  • 1. James K, Bell GT. Human monoclonal antibody production. Current status and future prospects. J Immunol Methods. 1987;100(1-2):5-40. doi: 10.1016/0022-1759(87)90170-0, PMID 3298441.
  • 2. Cui Y, Cui P, Chen B, Li S, Guan H. Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Dev Ind Pharm. 2017;43(4):519-30. doi: 10.1080/03639045.2017.1278768, PMID 28049357.
  • 3. Talotta R, Rucci F, Canti G, Scaglione F. Pros and cons of the immunogenicity of monoclonal antibodies in cancer treatment: a lesson from autoimmune diseases. Immunotherapy. 2019;11(3):241-54. doi: 10.2217/imt-2018-0081, PMID 30730275.
  • 4. Rita Costa A, Elisa Rodrigues M, Henriques M, Azeredo J, Oliveira R. Guidelines to cell engineering for monoclonal antibody production. Eur J Pharm Biopharm. 2010;74(2):127-38. doi: 10.1016/j.ejpb.2009.10.002, PMID 19853660.
  • 5. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, et al. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020;27(1):1. doi: 10.1186/s12929-019-0592-z, PMID 31894001.
  • 6. Barnard GC, Kull AR, Sharkey NS, Shaikh SS, Rittenhour AM, Burnina I, et al. High-throughput screening and selection of yeast cell lines expressing monoclonal antibodies. J Ind Microbiol Biotechnol. 2010;37(9):961-71. doi: 10.1007/s10295-010-0746-1, PMID 20711797.
  • 7. Hussain H, Patel T, Ozanne AMS, Vito D, Ellis M, Hinchliffe M, et al. A comparative analysis of recombinant Fab and full-length antibody production in Chinese hamster ovary cells. Biotechnol Bioeng. 2021;118(12):4815-28. doi: 10.1002/bit.27944, PMID 34585737.
  • 8. Yang O, Prabhu S, Ierapetritou M. Comparison between batch and continuous monoclonal antibody production and economic analysis. Ind Eng Chem Res. 2019;58(15):5851-63. doi: 10.1021/acs.iecr.8b04717.
  • 9. Zahavi D, Weiner L. Monoclonal antibodies in cancer therapy. Antibodies (Basel). 2020;9(3):34. doi: 10.3390/antib9030034, PMID 32698317.
  • 10. Spadiut O, Capone S, Krainer F, Glieder A, Herwig C. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol. 2014;32(1):54-60. doi: 10.1016/j.tibtech.2013.10.002, PMID 24183828.
  • 11. Reichert JM. Marketed therapeutic antibodies compendium. mAbs. 2012;4(3):413-5. doi: 10.4161/mabs.19931, PMID 22531442.
  • 12. British Society for Immunology. BiteSized immunology: immune development. Generation of B-cell / antibody diversity. London: BSI Diversity and Inclusion Framework. Available from: https://wwwhttps://www. Available from: http://immunology.org/public-information/bitesized-immunology/immune-development/generation-b-cell-antibody-diversity; [[accessed Mar 21],2022].
  • 13. Tabll A, Abbas AT, El-Kafrawy S, Wahid A. Monoclonal antibodies: principles and applications of immunodiagnosis and immunotherapy for hepatitis C virus. World J Hepatol. 2015;7(22):2369-83. doi: 10.4254/wjh.v7.i22.2369, PMID 26464752.
  • 14. Moussavou G, Ko K, Lee JH, Choo YK. Production of monoclonal antibodies in plants for cancer immunotherapy. BioMed Res Int. 2015;2015:306164. doi: 10.1155/2015/306164, PMID 26550566.
  • 15. Li F, Vijayasankaran N, Shen AY, Kiss R, Amanullah A. Cell culture processes for monoclonal antibody production. mAbs. 2010;2(5):466-79. doi: 10.4161/mabs.2.5.12720, PMID 20622510.
  • 16. Ozturk S, Hu W-S. Cell culture technology for pharmaceutical and cell-based therapies. 1st ed. Boca Raton: CRC Press; 2005. 627p.
  • 17. Kelley B, et al. A different perspective: how much innovation is really needed for monoclonal antibody production using mammalian cell technology? Adv Biochem Eng Biotechnol. 2018;165:443-62.
  • 18. Kunert R, Reinhart D. Advances in recombinant antibody manufacturing. Appl Microbiol Biotechnol. 2016;100(8):3451-61. doi: 10.1007/s00253-016-7388-9, PMID 26936774.
  • 19. Villacrés C, Tayi VS, Butler M. Strategic feeding of NS0 and CHO cell cultures to control glycan profiles and immunogenic epitopes of monoclonal antibodies. J Biotechnol. 2021;333:49-62. doi: 10.1016/j.jbiotec.2021.04.005, PMID 33901620.
  • 20. Yu DY, Lee SY, Lee GM. Glutamine synthetase gene knockout-human embryonic kidney 293E cells for stable production of monoclonal antibodies. Biotechnol Bioeng. 2018;115(5):1367-72. doi: 10.1002/bit.26552, PMID 29359789.
  • 21. Butler M, Meneses-Acosta A. Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol. 2012;96(4):885-94. doi: 10.1007/s00253-012-4451-z, PMID 23053101.
  • 22. Ho SCL, Tong YW, Yang Y. Generation of monoclonal antibody-producing mammalian cell lines. Pharm Bioprocess. 2013;1(1):71-87. doi: 10.4155/pbp.13.8.
  • 23. Dhara VG, Naik HM, Majewska NI, Betenbaugh MJ. Recombinant antibody production in CHO and NS0 cells: differences and similarities. BioDrugs. 2018;32(6):571-84. doi: 10.1007/s40259-018-0319-9, PMID 30499081.
  • 24. Madabhushi SR, Podtelezhnikov AA, Murgolo N, Xu S, Lin H. Understanding the effect of increased cell specific productivity on galactosylation of monoclonal antibodies produced using Chinese hamster ovary cells. J Biotechnol. 2021;329:92-103. doi: 10.1016/j.jbiotec.2021.01.023, PMID 33549674.
  • 25. Jossé L, Zhang L, Smales CM. Application of microRNA targeted 3′UTRs to repress DHFR selection marker expression for development of recombinant antibody expressing CHO cell pools. Biotechnol J. 2018;13(10):e1800129. doi: 10.1002/biot.201800129, PMID 29981248.
  • 26. Chusainow J, Yang YS, Yeo JH, Toh PC, Asvadi P, Wong NS, et al. A study of monoclonal antibody- producing CHO cell lines: what makes a stable high producer? Biotechnol Bioeng. 2009;102(4):1182-96. doi: 10.1002/bit.22158, PMID 18979540.
  • 27. van Berkel PH, Gerritsen J, Perdok G, Valbjørn J, Vink T, van de Winkel JG, et al. N-linked glycosylation is an important parameter for optimal selection of cell lines producing biopharmaceutical human IgG. Biotechnol Prog. 2009;25(1):244-51. doi: 10.1002/btpr.92, PMID 19224598.
  • 28. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, et al. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109-17. doi: 10.1056/NEJMoa074943, PMID 18337601.
  • 29. Hossler P, Khattak SF, Li ZJ. Optimal and consistent protein glycosylation in mammalian cell culture. Glycobiology. 2009;19(9):936-49. doi: 10.1093/glycob/cwp079, PMID 19494347.
  • 30. Yee JC, Gerdtzen ZP, Hu WS. Comparative transcriptome analysis to unveil genes affecting recombinant protein productivity in mammalian cells. Biotechnol Bioeng. 2009;102(1):246-63. doi: 10.1002/bit.22039, PMID 18726962.
  • 31. Jimenez Del Val I, Fan Y, Weilguny D. Dynamics of immature mAb glycoform secretion during CHO cell culture: an integrated modeling framework. Biotechnol J. 2016;11(5):610-23. doi: 10.1002/biot.201400663, PMID 26743760.
  • 32. Chauhan G, Schmelzer AE. A novel cholesterol/lipid delivery system for murine myeloma cell lines. Biotechnol Prog. 2017;33(3):795-803. doi: 10.1002/btpr.2441, PMID 28187511.
  • 33. Birch JR, Racher AJ. Antibody production. Adv Drug Deliv Rev. 2006;58(5-6):671-85. doi: 10.1016/j.addr.2005.12.006, PMID 16822577.
  • 34. Barnes LM, Bentley CM, Dickson AJ. Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology. 2000;32(2):109-23. doi: 10.1023/A:1008170710003, PMID 19002973.
  • 35. Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol. 2017;251:128-40. doi: 10.1016/j.jbiotec.2017.04.028, PMID 28465209.
  • 36. Lindl T. Development of human monoclonal antibodies: a review. Cytotechnology. 1996;21(3):183-93. doi: 10.1007/BF00365341, PMID 22358750.
  • 37. Dumont J, Euwart D, Mei B, Estes S, Kshirsagar R. Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol. 2016;36(6):1110-22. doi: 10.3109/07388551.2015.1084266, PMID 26383226.
  • 38. Abaandou L, Quan D, Shiloach J. Affecting HEK293 cell growth and production performance by modifying the expression of specific genes. Cells. 2021;10(7). doi: 10.3390/cells10071667, PMID 34359846.
  • 39. Beck M. Agalsidase alfa for the treatment of Fabry disease: new data on clinical efficacy and safety. Expert Opin Biol Ther. 2009;9(2):255-61. doi: 10.1517/14712590802658428, PMID 19236256.
  • 40. Loignon M, Perret S, Kelly J, Boulais D, Cass B, Bisson L, et al. Stable high volumetric production of glycosylated human recombinant IFNalpha2b in HEK293 cells. BMC Biotechnol. 2008;8:65. doi: 10.1186/1472-6750-8-65, PMID 18752669.
There are 40 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Review
Authors

Shahin Javanmard

Early Pub Date August 2, 2023
Publication Date
Published in Issue Year 2023 Volume: 4 Issue: 1

Cite

Vancouver Javanmard S. An Overview of The Various Appropriate Types of Cell Lines for The Production of Monoclonal Antibodies. Exp Appl Med Sci. 2023;4(1):495-510.

    22718  2043020542   20575   20690    20805   21108       22245 

22392  22684  22717