Research Article
BibTex RIS Cite

Determination of Chemical Composition, Covid-19 Spike ACE2 Binding Inhibition Potential and In Silico Molecular Docking and Adme Properties of Gundelia Cappadocica Plant

Year 2025, Volume: 4 Issue: 2, 150 - 163, 31.07.2025
https://doi.org/10.59312/ebshealth.1703441

Abstract

Aim: The present study was planned to investigate the anti-COVID-19 capacity of the ethanol extract of Gundelia cappadocica Fırat.
Method: For this purpose, the anti-COVID-19 effect was studied using commercial kits. In addition, plant content was determined by HPLC-DAD. ADME properties of the identified components were studied with SwissADME web tool, while molecular docking analysis was performed using CB-DOCK2 web tool.
Results: COVID-19 inhibition was found to be 9.61% at the highest concentration of 10 µl. Resveratrol, quercetin and chrysin fulfilled all drug-like molecule criteria. In molecular docking simulations, naringin molecule showed the highest binding affinity (∆G=-9.5 kcal/mol).
Conclusion:
These results suggest that Gundelia cappadocica can be used in the prevention and treatment of COVID19.

Project Number

BEBAP 2023.21

References

  • Acar, A. (2021). Evaluation of phenolic acids of Corylus avellana L. as potential SARS CoV-2 Main protease inhibitors. Erzincan University Journal of Science and Technology, 14(2), 492-509. doi: https://doi.org/10.18185/erzifbed.897348
  • Ackerfield, J., Susanna, A., Funk, V., Kelch, D., Park, D. S., Thornhill, A. H., & Yildiz, B. (2020). A prickly puzzle: Generic delimitations in the Carduus‐Cirsium group (Compositae: Cardueae: Carduinae). Taxon, 69(4), 715-738. doi:https://doi.org/10.1002/tax.12288
  • Adhikari, B., Marasini, B. P., Rayamajhee, B., Bhattarai, B. R., Lamichhane, G., Khadayat, K., & Parajuli, N. (2021). Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytotherapy Research, 35, 1298-1312. doi: https://doi.org/10.1002/ptr.6893.
  • Aguiar, C., & Camps, I ( 2024). Molecular Docking in Drug Discovery: Techniques, Applications, and Advancements. Current Medicinal Chemistry.
  • Akan, H., Korkut, M. M., & Balos, M. M. (2008). An ethnobotanical study around Arat Mountain and its surroundings (Birecik, Sanlıurfa). Fırat University Journal of Science and Engineering, 20, 67-81.
  • Alam, S., Sarker, M. M. R., Afrin, S., Richi, F.T., Zhao, C., Zhou, J-R. & Mohamed, I. N. (2021). Traditional Herbal Medicines, Bioactive Metabolites, and Plant Products Against COVID-19: Update on Clinical Trials and Mechanism of Actions. Frontiers in pharmacology, 12, 671498. doi: 10.3389/fphar.2021.671498
  • Beşler, Z. N., Bayraktar, D. Z., Koçak, M. C, & Kızıltan, G. (2024). Investigation of potential effects of quercetin on COVID-19 treatment: a systematic review of randomized controlled trials. Clinical Science of Nutrition, 6(2), 107-117. doi:10.62210/ClinSciNutr.2024.86,
  • Bulut, C., & Kato, Y. (2020). Epidemiology of COVID-19. Turkish journal of medical sciences, 50(9), 563-570. doi:10.3906/sag-2004-172.
  • Carlos, W. G., Cruz, C. S., Cao, B., & Pasnick, S. (2020). Novel Wuhan (2019-nCoV) Coronavirus. American Journal of Respiratory & Critical Care Medicine, 201(4), 7-8.
  • Çayan, F., Deveci, E., Tel-Çayan, G.,&Duru, M.E. (2020). Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. J Food Meas Charact 14(3):1690–1698.
  • Çoruh, N., Celep, A. S., Özgökçe, F., & İşcan, M. (2007). Antioxidant capacities of Gundelia tournefortii L. extracts and inhibition on glutathione-S-transferase activity. Food Chemistry, 100(3), 1249-1253. doi:https://doi.org/10.1016/j.foodchem.2005.12.008
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. doi: 10.1038/srep42717 2017
  • Dalar, A., Mukemre, M., Ünal, M., & Özgökce, F. (2018). Traditional medicinal plants of Ağrı province, Turkey. Journal of Ethnopharmacology, 226, 56-72. doi:https://doi.org/10.1016/j.jep.2018.08.004
  • Dalar, A., Zengin, G., Mukemre, M., Bengu, A. S., & İşler, S. (2019). Gundelia rosea seed: Evaluation of biopharmaceutical potential and bioactive composition. South African Journal of Botany, 125, 505-510. doi:https://doi.org/10.1016/j.sajb.2019.08.024
  • Egan, W.J., Merz, K.M. & Baldwin, J.J. (2000). Prediction of Drug Absorption Using Multivariate Statistics. Journal of Medicinal Chemistry, 43(21), 3867-3877.
  • Elfiky, A.A. (2020). Natural products may interfere with SARS-CoV-2 attachment to the host cell. Journal of Biomolecular Structure and Dynamics, 39(9), 3194-3203.
  • El Gizawy, H. A., Boshra, S. A., Mostafa, A., Mahmoud, S. H., Ismail, M. I., Alsfouk, A. A., ... & Al-Karmalawy, A. A. (2021). Pimenta dioica (L.) Merr. bioactive constituents exert anti-SARS-CoV-2 and anti-inflammatory activities: molecular docking and dynamics, in vitro, and in vivo studies. Molecules, 26(19), 5844.doi: 10.3390/molecules26195844.
  • Emon, N. U., Alam, S., Rudra, S., Riya, S. R., Paul, A., Hossen, S. M. M., ... & Ganguly, A. (2021). Antidepressant, Anxiolytic, Antipyretic, and Thrombolytic Profiling of Methanol Extract of the Aerial Part of Piper Nigrum: In Vivo, In Vitro, and In Silico Approaches. Food Science & Nutrition, 9, 833–846. doi:10.1002/fsn3.2047
  • Fırat, M. (2016). Four new species of Gundelia L. (Asteraceae) from Anatolia: G. komagenensis, G. colemerikensis, G. cilicica and G. anatolica. Vameda Ofset Press,Van, 32 pp.69.
  • Fırat, M. (2017a). The resurrection and a new status of Gundelia tournefortii L.var. asperrima Trautv. (Asteraceae). OT Sistematik Botanik Dergisi, 24(2), 57-67.
  • Fırat, M. (2017b). Gundelia mesopotamica (Asteraceae), a new lactiferous species from Mardin (Turkey). Acta Biologica Turcica, 30(3), 64-69.
  • Fırat, M. (2017c). Gundelia rosea (Asteraceae), a new record for the Flora of Turkey with contributions to its systematics. Acta Biologica Turcica, 30(2), 31-35.
  • Fırat, M. (2018a). A new status of Gundelia tournefortii L. forma purpurascens Bornm. (Asteraceae) and a new record for the flora of Turkey. OT Sistematik Botanik Dergisi, 25(1), 11-24.
  • Fırat, M. (2018b). Gundelia armeniaca (Asteraceae), a species new to the flora of Turkey, with contributions to its taxonomy. Communications Faculty of Sciences University of Ankara Series C, 27(2), 35-46.
  • Fırat, M. (2019a). New status of Gundelia tournefortii L. var. armata Freyn & Sint. (Asteraceae), and a new synonym of its. OT Sistematik Botanik Dergisi, 26 (1): 17-32.
  • Fırat, M. (2019b). Gundelia siirtica (Asteraceae), a new lactiferous species from Siirt (south-eastern Anatolia). Phytotaxa, 394(4), 276-284.
  • Fırat, M. (2021b). Gundelia cappadocica (Asteraceae); a new lactiferous species from Cappadocia (Kapadokya) Turkey, belonging to G. subg. Gundelia sect. Komagenenses Acta Biologica Turcica, 34(3), 128- 139.
  • Geiger N, König EM, Oberwinkler H, Roll V, Diesendorf V, Fähr S, Obernolte H, Sewald K, Wronski S, Steinke M, & Bodem J. (2022). Acetylsalicylic Acid and Salicylic Acid Inhibit SARS-CoV-2 Replication in Precision-Cut Lung Slices. Vaccines, 10(10), 1619. doi: 10.3390/vaccines10101619.
  • Halabi, S., Battah, A. A., Aburjai, T., & Hudaib, M. (2005). Phytochemical and Antiplatelet Investigation of Gundelia tournifortii. Pharmaceutical Biology, 43(6), 496-500. doi:https://doi.org/10.1080/13880200500220268
  • Horne, J. R., & Vohl, M. C. (2020). Biological plausibility for interactions between dietary fat, resveratrol, ACE2, and SARS-CoV illness severity. American Journal of Physiology.Endocrinology and Metabolism, 318(5), 830–833. doi:https://doi.org/10.1152/ajpendo.00150.2020
  • Jahan, I., & Onay, A. (2020). Potentials of Plant-Based Substance to Inhabit and Probable Cure for the COVID-19. Turkish Journal of Biology, 44(3), 228–241. doi:10.3906/biy-2005-114
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4-17. doi:https://doi.org/10.1016/j.addr.2012.09.019
  • Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z. X., & Cao, Y. (2022). CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 50(W1), 159-164. doi:https://doi.org/10.1093/nar/gkac394
  • Liu, S., Zhong, M., Wu, H., Su, W., Wang, Y.,& Li, P. (2024). Potential Beneficial Effects of Naringin and Naringenin on Long COVID-A Review of the Literature. Microorganisms, 12(2), 332. doi: 10.3390/microorganisms12020332
  • Muegge, S.L. & Heald, D. (2001). Brittelli, Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841-1846. doi: 0.1021/ jm015507e
  • Ghose, A.K., Viswanadhan, V.N. & Wendoloski, J.J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases.Journal of Combinatorial Chemistry, 1(1), 55–68. doi: 10.1021/cc980007
  • Perrella, F., Coppola, F., Petrone, A., Platella, C., Montesarchio, D., Stringaro, A., ... & Musumeci, D. (2021). Interference of polydatin/resveratrol in the ACE2: spike recognition during COVID-19 infection. A focus on their potential mechanism of action through computational and biochemical assays. Biomolecules, 11(7), 1048. doi: 10.3390/biom11071048
  • Polat, B. (2012). Kayseri ve çevresinde yetişen bazı yabani meyvelerin biyoaktif özelliklerinin araştırılması. Kayseri: Yayımlanmamış Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü.
  • Rehman, M. T., AlAjmi, M. F., &Hussain, A. (2020). Natural Compounds as Inhibitors of SARS-CoV-2 Main Protease (3CLpro): A Molecular Docking and Simulation Approach to Combat COVID-19. Current Pharmaceutical Design, 27(33), 3577-3589. doi: 10.2174/1381612826999201116195851
  • The Plant List, “Compositae”. (2021, 26 Haziran). http://www.theplantlist.org/browse/A/Compositae/ Qui, J. (2007). Traditional medicine: a culture in the balance. Nautre, 448(7150), 126-129.
  • Saeed, A., Ahmad, B., Majaz, S., Nouroz, F., Ahmad, A., & Xie, Y. (2022). Targeting omicron and other reported SARS-CoV-2 lineages by potent inhibitors of main protease 3CL Mpro: molecular simulation analysis. Journal of Infection, 84(6), 133-136. doi: 10.1016/j.jinf.2022.02.012.
  • Sarper, F., Akaydın, G., Yeşilada, E., & Şimşek, I. (2009). An ethnobotanical field survey in the Haymana district of Ankara province in Turkey. Turkish Journal of Biology, 33(1), 79-88. doi:10.3906/biy-0808-28
  • Selvaraj, J., Rekha, U. V., Jh, S. F., Sivabalan, V., Ponnulakshmi, R., Vishnupriya, V., et al. (2021). Molecular docking analysis of SARS-CoV-2 linked RNA dependent RNA polymerase (RdRp) with compounds from Plectranthus amboinicus. Bioinformation, 17(1), 167-170.
  • Shafiq, N., Mehroze, A., Sarwar, W., Arshad, U., Parveen, S., Rashid, M., Farooq, A., Rafiq, N., Wondmie, G. F., Bin Jardan, Y, A., Brogi, S.& Bourhia, M. (2023). Exploration of phenolic acid derivatives as inhibitors of SARS-CoV-2 main protease and receptor binding domain: potential candidates for anti-SARS-CoV-2 therapyFrontiers in Chemistry, 11, 1251529. doi: 10.3389/fchem.2023.1251529
  • Srivastava, N., Garg, P., Srivastava, P.& Seth, P. K. (2021). A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19. PeerJ, 9, e11171. Doi:https://doi.org/10.7717/peerj.11171
  • Şekeroglu, N., Şenol, F. S., Orhan, I. E., Gülpınar, A. R., Kartal, M., & Şener, B. (2012). In vitro prospective effects of various traditional herbal coffees consumed in Anatolia linked to neurodegeneration. Food Research International, 45(1), 197-203. doi:https://doi.org/10.1016/j.foodres.2011.10.008
  • Uce, İ., & Tunçtürk, M. (2014). Hakkâri’de doğal olarak yetişen ve yaygın olarak kullanılan bazı yabani bitkiler. Biyoloji Bilimleri Araştırma Dergisi, 7(2), 21-25.
  • Veber, D.F., Johnson, S., Cheng, H.Y., Smith, B.R., Ward, K.W. & Kopple, K.D. (2002). Molecular Properties that İnfluence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45, 2615–2623.
  • Wang, G., & Zhu, W. (2016). Molecular docking for drug discovery and development: a widely used approach but far from perfect. Future medicinal chemistry, 8(14), 1707–1710. https://doi.org/10.4155/fmc-2016-0143
  • Yang, Y., Islam, M. S., Wang, J., Li, Y., & Chen, X. (2020). Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-new Coronavirus (SARS-CoV-2): a Review and Perspective. International Journal of Biological Sciences, 16(10), 1708. doi:10.7150/ijbs.45538
  • Yang, X., Liu, Y., Gan, J., Xiao, Z. X., & Cao, Y. (2022). FitDock: protein–ligand docking by template fitting. Briefings In Bioinformatics, 23(3), bbac087. Doi: https://doi.org/10.1093/bib/bbac087
  • Yıldız, B., & Aktoklu, E. (2010). Bitki sistematiği: ilkin karasal bitkilerden bir çeneklilere. Palme Yayıncılık.
  • Yi, Y., Yu, R., Xue, H., Jin, Z., Zhang, M., Bao, Y.O., Wang, Z., Wei, H., Qiao, X., & Yang, H. (2024). Chrysin 7-O-β-D-glucuronide, a dual inhibitor of SARS-CoV-2 3CLpro and PLpro, for the prevention and treatment of COVID-19. International Journal of Antimicrobial Agents, 63(1):107039. doi: 10.1016/j.ijantimicag.2023.107039.

GUNDELIA CAPPADOCICA BİTKİSİNİN KİMYASAL KOMPOZİSYONU, COVID-19 SPIKE ACE2 BAĞLANMA İNHİBİSYON POTANSİYELİ İLE IN SILICO MOLECULAR DOCKING VE ADME ÖZELLİKLERİNİN BELİRLENMESİ

Year 2025, Volume: 4 Issue: 2, 150 - 163, 31.07.2025
https://doi.org/10.59312/ebshealth.1703441

Abstract

Amaç: Sunulan çalışma, Gundelia cappadocica Fırat’ın etanol ekstresinin anti-COVID-19 kapasitesini araştırmak amacıyla planlandı.
Yöntem: Bu amaçla, anti-COVID-19 etkisi ticari kitler kullanılarak çalışıldı. Bunun yanında, bitki içeriği HPLC-DAD ile tespit edildi. Belirlenen komponentlerin ADME özellikleri SwissADME web aracı ile çalışılırken, moleküler docking analizleri CB-DOCK2 web aracı kullanılarak yapıldı.
Bulgular: COVID-19 inhibisyonu en yüksek 10 µl konsantrasyonda %9.61 olarak bulundu. Resveratrol, kuersetin ve krisin ilaç benzeri molekül kriterlerinin tamamına uyum gösterdi. Moleküler docking simülasyonlarında ise en yüksek bağlanma afinitesini naringin molekülü gösterdi (∆G=-9.5 kcal/mol).
Sonuç: Bu sonuçlar, Gundelia cappadocica’nın COVID19’un önlenmesi ve tedavisinde kullanılabileceğini göstermektedir

Ethical Statement

yok

Supporting Institution

Sunulan çalışma Bitlis Eren Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından 2023.21 nolu proje olarak desteklenmiştir.

Project Number

BEBAP 2023.21

References

  • Acar, A. (2021). Evaluation of phenolic acids of Corylus avellana L. as potential SARS CoV-2 Main protease inhibitors. Erzincan University Journal of Science and Technology, 14(2), 492-509. doi: https://doi.org/10.18185/erzifbed.897348
  • Ackerfield, J., Susanna, A., Funk, V., Kelch, D., Park, D. S., Thornhill, A. H., & Yildiz, B. (2020). A prickly puzzle: Generic delimitations in the Carduus‐Cirsium group (Compositae: Cardueae: Carduinae). Taxon, 69(4), 715-738. doi:https://doi.org/10.1002/tax.12288
  • Adhikari, B., Marasini, B. P., Rayamajhee, B., Bhattarai, B. R., Lamichhane, G., Khadayat, K., & Parajuli, N. (2021). Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytotherapy Research, 35, 1298-1312. doi: https://doi.org/10.1002/ptr.6893.
  • Aguiar, C., & Camps, I ( 2024). Molecular Docking in Drug Discovery: Techniques, Applications, and Advancements. Current Medicinal Chemistry.
  • Akan, H., Korkut, M. M., & Balos, M. M. (2008). An ethnobotanical study around Arat Mountain and its surroundings (Birecik, Sanlıurfa). Fırat University Journal of Science and Engineering, 20, 67-81.
  • Alam, S., Sarker, M. M. R., Afrin, S., Richi, F.T., Zhao, C., Zhou, J-R. & Mohamed, I. N. (2021). Traditional Herbal Medicines, Bioactive Metabolites, and Plant Products Against COVID-19: Update on Clinical Trials and Mechanism of Actions. Frontiers in pharmacology, 12, 671498. doi: 10.3389/fphar.2021.671498
  • Beşler, Z. N., Bayraktar, D. Z., Koçak, M. C, & Kızıltan, G. (2024). Investigation of potential effects of quercetin on COVID-19 treatment: a systematic review of randomized controlled trials. Clinical Science of Nutrition, 6(2), 107-117. doi:10.62210/ClinSciNutr.2024.86,
  • Bulut, C., & Kato, Y. (2020). Epidemiology of COVID-19. Turkish journal of medical sciences, 50(9), 563-570. doi:10.3906/sag-2004-172.
  • Carlos, W. G., Cruz, C. S., Cao, B., & Pasnick, S. (2020). Novel Wuhan (2019-nCoV) Coronavirus. American Journal of Respiratory & Critical Care Medicine, 201(4), 7-8.
  • Çayan, F., Deveci, E., Tel-Çayan, G.,&Duru, M.E. (2020). Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. J Food Meas Charact 14(3):1690–1698.
  • Çoruh, N., Celep, A. S., Özgökçe, F., & İşcan, M. (2007). Antioxidant capacities of Gundelia tournefortii L. extracts and inhibition on glutathione-S-transferase activity. Food Chemistry, 100(3), 1249-1253. doi:https://doi.org/10.1016/j.foodchem.2005.12.008
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. doi: 10.1038/srep42717 2017
  • Dalar, A., Mukemre, M., Ünal, M., & Özgökce, F. (2018). Traditional medicinal plants of Ağrı province, Turkey. Journal of Ethnopharmacology, 226, 56-72. doi:https://doi.org/10.1016/j.jep.2018.08.004
  • Dalar, A., Zengin, G., Mukemre, M., Bengu, A. S., & İşler, S. (2019). Gundelia rosea seed: Evaluation of biopharmaceutical potential and bioactive composition. South African Journal of Botany, 125, 505-510. doi:https://doi.org/10.1016/j.sajb.2019.08.024
  • Egan, W.J., Merz, K.M. & Baldwin, J.J. (2000). Prediction of Drug Absorption Using Multivariate Statistics. Journal of Medicinal Chemistry, 43(21), 3867-3877.
  • Elfiky, A.A. (2020). Natural products may interfere with SARS-CoV-2 attachment to the host cell. Journal of Biomolecular Structure and Dynamics, 39(9), 3194-3203.
  • El Gizawy, H. A., Boshra, S. A., Mostafa, A., Mahmoud, S. H., Ismail, M. I., Alsfouk, A. A., ... & Al-Karmalawy, A. A. (2021). Pimenta dioica (L.) Merr. bioactive constituents exert anti-SARS-CoV-2 and anti-inflammatory activities: molecular docking and dynamics, in vitro, and in vivo studies. Molecules, 26(19), 5844.doi: 10.3390/molecules26195844.
  • Emon, N. U., Alam, S., Rudra, S., Riya, S. R., Paul, A., Hossen, S. M. M., ... & Ganguly, A. (2021). Antidepressant, Anxiolytic, Antipyretic, and Thrombolytic Profiling of Methanol Extract of the Aerial Part of Piper Nigrum: In Vivo, In Vitro, and In Silico Approaches. Food Science & Nutrition, 9, 833–846. doi:10.1002/fsn3.2047
  • Fırat, M. (2016). Four new species of Gundelia L. (Asteraceae) from Anatolia: G. komagenensis, G. colemerikensis, G. cilicica and G. anatolica. Vameda Ofset Press,Van, 32 pp.69.
  • Fırat, M. (2017a). The resurrection and a new status of Gundelia tournefortii L.var. asperrima Trautv. (Asteraceae). OT Sistematik Botanik Dergisi, 24(2), 57-67.
  • Fırat, M. (2017b). Gundelia mesopotamica (Asteraceae), a new lactiferous species from Mardin (Turkey). Acta Biologica Turcica, 30(3), 64-69.
  • Fırat, M. (2017c). Gundelia rosea (Asteraceae), a new record for the Flora of Turkey with contributions to its systematics. Acta Biologica Turcica, 30(2), 31-35.
  • Fırat, M. (2018a). A new status of Gundelia tournefortii L. forma purpurascens Bornm. (Asteraceae) and a new record for the flora of Turkey. OT Sistematik Botanik Dergisi, 25(1), 11-24.
  • Fırat, M. (2018b). Gundelia armeniaca (Asteraceae), a species new to the flora of Turkey, with contributions to its taxonomy. Communications Faculty of Sciences University of Ankara Series C, 27(2), 35-46.
  • Fırat, M. (2019a). New status of Gundelia tournefortii L. var. armata Freyn & Sint. (Asteraceae), and a new synonym of its. OT Sistematik Botanik Dergisi, 26 (1): 17-32.
  • Fırat, M. (2019b). Gundelia siirtica (Asteraceae), a new lactiferous species from Siirt (south-eastern Anatolia). Phytotaxa, 394(4), 276-284.
  • Fırat, M. (2021b). Gundelia cappadocica (Asteraceae); a new lactiferous species from Cappadocia (Kapadokya) Turkey, belonging to G. subg. Gundelia sect. Komagenenses Acta Biologica Turcica, 34(3), 128- 139.
  • Geiger N, König EM, Oberwinkler H, Roll V, Diesendorf V, Fähr S, Obernolte H, Sewald K, Wronski S, Steinke M, & Bodem J. (2022). Acetylsalicylic Acid and Salicylic Acid Inhibit SARS-CoV-2 Replication in Precision-Cut Lung Slices. Vaccines, 10(10), 1619. doi: 10.3390/vaccines10101619.
  • Halabi, S., Battah, A. A., Aburjai, T., & Hudaib, M. (2005). Phytochemical and Antiplatelet Investigation of Gundelia tournifortii. Pharmaceutical Biology, 43(6), 496-500. doi:https://doi.org/10.1080/13880200500220268
  • Horne, J. R., & Vohl, M. C. (2020). Biological plausibility for interactions between dietary fat, resveratrol, ACE2, and SARS-CoV illness severity. American Journal of Physiology.Endocrinology and Metabolism, 318(5), 830–833. doi:https://doi.org/10.1152/ajpendo.00150.2020
  • Jahan, I., & Onay, A. (2020). Potentials of Plant-Based Substance to Inhabit and Probable Cure for the COVID-19. Turkish Journal of Biology, 44(3), 228–241. doi:10.3906/biy-2005-114
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4-17. doi:https://doi.org/10.1016/j.addr.2012.09.019
  • Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z. X., & Cao, Y. (2022). CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 50(W1), 159-164. doi:https://doi.org/10.1093/nar/gkac394
  • Liu, S., Zhong, M., Wu, H., Su, W., Wang, Y.,& Li, P. (2024). Potential Beneficial Effects of Naringin and Naringenin on Long COVID-A Review of the Literature. Microorganisms, 12(2), 332. doi: 10.3390/microorganisms12020332
  • Muegge, S.L. & Heald, D. (2001). Brittelli, Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841-1846. doi: 0.1021/ jm015507e
  • Ghose, A.K., Viswanadhan, V.N. & Wendoloski, J.J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases.Journal of Combinatorial Chemistry, 1(1), 55–68. doi: 10.1021/cc980007
  • Perrella, F., Coppola, F., Petrone, A., Platella, C., Montesarchio, D., Stringaro, A., ... & Musumeci, D. (2021). Interference of polydatin/resveratrol in the ACE2: spike recognition during COVID-19 infection. A focus on their potential mechanism of action through computational and biochemical assays. Biomolecules, 11(7), 1048. doi: 10.3390/biom11071048
  • Polat, B. (2012). Kayseri ve çevresinde yetişen bazı yabani meyvelerin biyoaktif özelliklerinin araştırılması. Kayseri: Yayımlanmamış Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü.
  • Rehman, M. T., AlAjmi, M. F., &Hussain, A. (2020). Natural Compounds as Inhibitors of SARS-CoV-2 Main Protease (3CLpro): A Molecular Docking and Simulation Approach to Combat COVID-19. Current Pharmaceutical Design, 27(33), 3577-3589. doi: 10.2174/1381612826999201116195851
  • The Plant List, “Compositae”. (2021, 26 Haziran). http://www.theplantlist.org/browse/A/Compositae/ Qui, J. (2007). Traditional medicine: a culture in the balance. Nautre, 448(7150), 126-129.
  • Saeed, A., Ahmad, B., Majaz, S., Nouroz, F., Ahmad, A., & Xie, Y. (2022). Targeting omicron and other reported SARS-CoV-2 lineages by potent inhibitors of main protease 3CL Mpro: molecular simulation analysis. Journal of Infection, 84(6), 133-136. doi: 10.1016/j.jinf.2022.02.012.
  • Sarper, F., Akaydın, G., Yeşilada, E., & Şimşek, I. (2009). An ethnobotanical field survey in the Haymana district of Ankara province in Turkey. Turkish Journal of Biology, 33(1), 79-88. doi:10.3906/biy-0808-28
  • Selvaraj, J., Rekha, U. V., Jh, S. F., Sivabalan, V., Ponnulakshmi, R., Vishnupriya, V., et al. (2021). Molecular docking analysis of SARS-CoV-2 linked RNA dependent RNA polymerase (RdRp) with compounds from Plectranthus amboinicus. Bioinformation, 17(1), 167-170.
  • Shafiq, N., Mehroze, A., Sarwar, W., Arshad, U., Parveen, S., Rashid, M., Farooq, A., Rafiq, N., Wondmie, G. F., Bin Jardan, Y, A., Brogi, S.& Bourhia, M. (2023). Exploration of phenolic acid derivatives as inhibitors of SARS-CoV-2 main protease and receptor binding domain: potential candidates for anti-SARS-CoV-2 therapyFrontiers in Chemistry, 11, 1251529. doi: 10.3389/fchem.2023.1251529
  • Srivastava, N., Garg, P., Srivastava, P.& Seth, P. K. (2021). A molecular dynamics simulation study of the ACE2 receptor with screened natural inhibitors to identify novel drug candidate against COVID-19. PeerJ, 9, e11171. Doi:https://doi.org/10.7717/peerj.11171
  • Şekeroglu, N., Şenol, F. S., Orhan, I. E., Gülpınar, A. R., Kartal, M., & Şener, B. (2012). In vitro prospective effects of various traditional herbal coffees consumed in Anatolia linked to neurodegeneration. Food Research International, 45(1), 197-203. doi:https://doi.org/10.1016/j.foodres.2011.10.008
  • Uce, İ., & Tunçtürk, M. (2014). Hakkâri’de doğal olarak yetişen ve yaygın olarak kullanılan bazı yabani bitkiler. Biyoloji Bilimleri Araştırma Dergisi, 7(2), 21-25.
  • Veber, D.F., Johnson, S., Cheng, H.Y., Smith, B.R., Ward, K.W. & Kopple, K.D. (2002). Molecular Properties that İnfluence the Oral Bioavailability of Drug Candidates. Journal of Medicinal Chemistry, 45, 2615–2623.
  • Wang, G., & Zhu, W. (2016). Molecular docking for drug discovery and development: a widely used approach but far from perfect. Future medicinal chemistry, 8(14), 1707–1710. https://doi.org/10.4155/fmc-2016-0143
  • Yang, Y., Islam, M. S., Wang, J., Li, Y., & Chen, X. (2020). Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-new Coronavirus (SARS-CoV-2): a Review and Perspective. International Journal of Biological Sciences, 16(10), 1708. doi:10.7150/ijbs.45538
  • Yang, X., Liu, Y., Gan, J., Xiao, Z. X., & Cao, Y. (2022). FitDock: protein–ligand docking by template fitting. Briefings In Bioinformatics, 23(3), bbac087. Doi: https://doi.org/10.1093/bib/bbac087
  • Yıldız, B., & Aktoklu, E. (2010). Bitki sistematiği: ilkin karasal bitkilerden bir çeneklilere. Palme Yayıncılık.
  • Yi, Y., Yu, R., Xue, H., Jin, Z., Zhang, M., Bao, Y.O., Wang, Z., Wei, H., Qiao, X., & Yang, H. (2024). Chrysin 7-O-β-D-glucuronide, a dual inhibitor of SARS-CoV-2 3CLpro and PLpro, for the prevention and treatment of COVID-19. International Journal of Antimicrobial Agents, 63(1):107039. doi: 10.1016/j.ijantimicag.2023.107039.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Pharmaceutical Chemistry
Journal Section Research Articles
Authors

Fatih Çağlar Çelikezen 0000-0001-5489-7384

Aydın Baştin 0009-0007-7413-0130

Mehmet Fırat 0000-0001-5814-614X

Project Number BEBAP 2023.21
Publication Date July 31, 2025
Submission Date May 21, 2025
Acceptance Date June 25, 2025
Published in Issue Year 2025 Volume: 4 Issue: 2

Cite

APA Çelikezen, F. Ç., Baştin, A., & Fırat, M. (2025). GUNDELIA CAPPADOCICA BİTKİSİNİN KİMYASAL KOMPOZİSYONU, COVID-19 SPIKE ACE2 BAĞLANMA İNHİBİSYON POTANSİYELİ İLE IN SILICO MOLECULAR DOCKING VE ADME ÖZELLİKLERİNİN BELİRLENMESİ. Doğu Karadeniz Sağlık Bilimleri Dergisi, 4(2), 150-163. https://doi.org/10.59312/ebshealth.1703441