Research Article
BibTex RIS Cite

The Role of Artificial Intelligence in Optimizing Banking Services: Analysis of Challenges and Opportunities

Year 2024, Volume: 2 Issue: 2, 182 - 197, 28.12.2024
https://doi.org/10.5281/zenodo.14563412

Abstract

Purpose – This study aims to investigate how Artificial Intelligence (AI) impacts the banking industry by increasing efficiency, customer service, revenue and competitiveness.

Design/data/methodology – In this study, a literature review was conducted, and an analytical methodology combining big data analysis and machine learning methods was employed to identify potential areas for improvement, such as analyzing financial behavior, improving risk management, and enhancing customer service through intelligent assistants. In this context, a survey was conducted with 35 participants. The data obtained were evaluated using quantitative analysis methods and supported by case studies from the banking sector.

Findings – The study highlights AI's effective role in reducing operational costs, increasing the accuracy of financial forecasts, and detecting fraud, leading to an overall improvement in the banking experience. It shows that AI represents a promising future for the banking sector but also identifies some challenges related to security and privacy, which require innovative solutions to ensure the sustainability and development of intelligent applications in this field. Despite potential risks such as the loss of some traditional jobs and cybersecurity challenges, the research demonstrates that the benefits outweigh the drawbacks when supported by appropriate infrastructure and conscious implementation.

Originality/value – This research, unlike general AI studies, focuses on its importance in banking services. The study examined how banking operations are conducted with AI, its impact on facilitating risk management, reducing costs, and increasing customer satisfaction.

References

  • Al Ali, A. (2021). The impact of information sharing and quality assurance on customer service at UAE banking sector. International Journal of Technology, Innovation and Management (IJTIM), 1(1), 01-17.
  • Al-Silmi, A. (2001). Strategic Human Resources Management. Daar Qiba'a for printing and publishing: Cairo.
  • Ansari, A., & Riasi, A. (2016). Modelling and evaluating customer loyalty using neural networks: Evidence from startup insurance companies. Future business journal, 2(1), 15-30. https://doi.org/10.1016/j.fbj.2016.04.001
  • Erdal, H. I., & Ekinci, A. (2013). A comparison of various artificial intelligence methods in the prediction of bank failures. Computational Economics, 42(2), 199-215. https://doi.org/10.1007/s10614-012-9332-0
  • Fernández, A. (2019). Artificial intelligence in financial services. Banco de Espana Article, 3, 19.
  • Future Today Institute (2017). Tech Trends annual report. (Available at: https://futuretodayinstitute.com/2017-tech-trends/)
  • Hussain, K. (2018). Artificial Intelligence and its Applications goal. Artificial Intelligence, 5(01), 838-841.
  • Isik O., Jones C., & Siorova A., (2013). Business Intelligence Success The Roles of BI Capabilities and Decision Environments. Information & Management, 50, 13- 23.
  • Kaya, O., Schildbach, J., AG, D. B., & Schneider, S. (2019). Artificial intelligence in banking. Artificial intelligence. EU Monitor, Global financial markets, Deutsche Bank Research.
  • Kshetri, N. (2021) Economics of Artificial Intelligence in Cybersecurity. IT Professional, 23, 73-77. https://doi.org/10.1109/mitp.2021.3100177
  • Lokeshnath, B., & Sandhya, M. (2023) .Insolvency And Bankruptcy Code: A Study of Indian Banks With Reference To Altman Z Score. EPRA International Journal of Economic and Business Review-Peer Reviewed Journal Volume, 11(8), 69-79. https://doi.org/10.36713/epra14205
  • McCarthy, J. (2007). What is artificial intelligence?’computer science department. Stanford University.
  • Mohammed, R.A.S.A. (2024). The Impact of Applying Artificial Intelligence Techniques on Operational Efficiency in Saudi Banks. Journal of University Studies for Inclusive Research, 17(35), 15682-15711.
  • Partanen, J., Mansouri Jajaee, S., & Cavén, O. (2017). Business Intelligence Within the Customer Relationship Management Sphere. Real-time Strategy and Business Intelligence: Digitizing Practices and Systems, 123-147.
  • Pilatin, A. (2024). Moderating role of big data usage in intellectual capital and innovation performance: evidence from Turkish banking sector. Journal of Intellectual Capital, 25(5/6), 891-913. 30. https://doi.org/10.1108/JIC-10-2023-0247
  • Rabie, D.R.M. (2023). The Future of Education with Artificial Intelligence and Machine Learning in the Arab World: A Systemat. Educational sciences,3, 1-35.‎
  • Raiter, O. (2021). Segmentation of Bank Consumers for Artificial Intelligence Marketing. International Journal of Contemporary Financial Issues, 1(1), 39-54. https://doi.org/10.17613/q0h8-m266
  • Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
  • Simon, (2018). A Future in Accounting without Human Intervention "A comparison of various artificial intelligence methods in the prediction of bank failures. Computational Economics, 42(2), 199-215.
  • Van Liebergen, B. (2017). Machine learning: a revolution in risk management and compliance? Journal of Financial Transformation, 45, 60-67.

Banka Hizmetlerinin Optimize Edilmesinde Yapay Zekanın Rolü: Zorlukların ve Fırsatların Analizi

Year 2024, Volume: 2 Issue: 2, 182 - 197, 28.12.2024
https://doi.org/10.5281/zenodo.14563412

Abstract

Amaç – Bu çalışma, Yapay Zekanın (YZ) verimliliği, müşteri hizmetlerini, geliri ve rekabet düzeyini yükselterek bankacılık sektörünü nasıl etkilediğini araştırmayı amaçlamaktadır.

Tasarım/veri/metodoloji – Bu çalışmada, finansal davranışı analiz etmek, risk yönetimini iyileştirmek ve akıllı asistanlar aracılığıyla müşteri hizmetlerini geliştirmek gibi potansiyel iyileştirme alanlarını belirlemek amacıyla, toplu veri analizi ile makine öğrenimi yöntemlerini birleştiren analitik bir metodoloji kullanılmıştır. Bu bağlamda, 35 katılımcıya yönelik anket uygulanmış. Elde edilen veriler, nicel analiz yöntemleriyle değerlendirilmiş ve bankacılık örnek olaylarıyla desteklenmiştir.

Bulgular – Yapay zeka operasyonel maliyetleri azaltmada, finansal tahminlerin doğruluğunu artırmada ve dolandırıcılığı tespit etmede etkili rolünü ortaya koymakta ve genel bankacılık deneyiminin iyileştirilmesine katkı sağlamaktadır. Yapay zekanın bankacılık sektörü için umut verici bir geleceği temsil ettiğini, ancak bu alandaki akıllı uygulamaların sürdürülebilirliğini ve gelişimini sağlamak için yenilikçi çözümler gerektiren güvenlik ve gizlilikle ilgili bazı zorluklar olduğu anlaşılmaktadır. Geleneksel işlerin bazılarını kaybetme ve siber güvenliği sağlama gibi olası risklere rağmen, araştırma, uygun altyapı ile desteklenen bilinçli uygulamalarla avantajlarının dezavantajlarından ağır bastığını göstermektedir.

Özgünlük/değer – Bu araştırma, genel yapay zeka çalışmalarından farklı olarak, bankacılık hizmetlerindeki önemine odaklanmaktadır. Çalışma, bankacılık işlemlerinin yapay zeka ile nasıl yürütüldüğünü, bunun risk yönetimini kolaylaştırma, maliyetleri düşürme ve müşteri memnuniyetini artırma üzerindeki etkisini incelemiştir.

Ethical Statement

Bu çalışma etik onay gerektirmiyor.

Supporting Institution

Bu araştırmanın yürütülmesi herhangi bir destek ve fon alınmamıştır.

References

  • Al Ali, A. (2021). The impact of information sharing and quality assurance on customer service at UAE banking sector. International Journal of Technology, Innovation and Management (IJTIM), 1(1), 01-17.
  • Al-Silmi, A. (2001). Strategic Human Resources Management. Daar Qiba'a for printing and publishing: Cairo.
  • Ansari, A., & Riasi, A. (2016). Modelling and evaluating customer loyalty using neural networks: Evidence from startup insurance companies. Future business journal, 2(1), 15-30. https://doi.org/10.1016/j.fbj.2016.04.001
  • Erdal, H. I., & Ekinci, A. (2013). A comparison of various artificial intelligence methods in the prediction of bank failures. Computational Economics, 42(2), 199-215. https://doi.org/10.1007/s10614-012-9332-0
  • Fernández, A. (2019). Artificial intelligence in financial services. Banco de Espana Article, 3, 19.
  • Future Today Institute (2017). Tech Trends annual report. (Available at: https://futuretodayinstitute.com/2017-tech-trends/)
  • Hussain, K. (2018). Artificial Intelligence and its Applications goal. Artificial Intelligence, 5(01), 838-841.
  • Isik O., Jones C., & Siorova A., (2013). Business Intelligence Success The Roles of BI Capabilities and Decision Environments. Information & Management, 50, 13- 23.
  • Kaya, O., Schildbach, J., AG, D. B., & Schneider, S. (2019). Artificial intelligence in banking. Artificial intelligence. EU Monitor, Global financial markets, Deutsche Bank Research.
  • Kshetri, N. (2021) Economics of Artificial Intelligence in Cybersecurity. IT Professional, 23, 73-77. https://doi.org/10.1109/mitp.2021.3100177
  • Lokeshnath, B., & Sandhya, M. (2023) .Insolvency And Bankruptcy Code: A Study of Indian Banks With Reference To Altman Z Score. EPRA International Journal of Economic and Business Review-Peer Reviewed Journal Volume, 11(8), 69-79. https://doi.org/10.36713/epra14205
  • McCarthy, J. (2007). What is artificial intelligence?’computer science department. Stanford University.
  • Mohammed, R.A.S.A. (2024). The Impact of Applying Artificial Intelligence Techniques on Operational Efficiency in Saudi Banks. Journal of University Studies for Inclusive Research, 17(35), 15682-15711.
  • Partanen, J., Mansouri Jajaee, S., & Cavén, O. (2017). Business Intelligence Within the Customer Relationship Management Sphere. Real-time Strategy and Business Intelligence: Digitizing Practices and Systems, 123-147.
  • Pilatin, A. (2024). Moderating role of big data usage in intellectual capital and innovation performance: evidence from Turkish banking sector. Journal of Intellectual Capital, 25(5/6), 891-913. 30. https://doi.org/10.1108/JIC-10-2023-0247
  • Rabie, D.R.M. (2023). The Future of Education with Artificial Intelligence and Machine Learning in the Arab World: A Systemat. Educational sciences,3, 1-35.‎
  • Raiter, O. (2021). Segmentation of Bank Consumers for Artificial Intelligence Marketing. International Journal of Contemporary Financial Issues, 1(1), 39-54. https://doi.org/10.17613/q0h8-m266
  • Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach. Pearson.
  • Simon, (2018). A Future in Accounting without Human Intervention "A comparison of various artificial intelligence methods in the prediction of bank failures. Computational Economics, 42(2), 199-215.
  • Van Liebergen, B. (2017). Machine learning: a revolution in risk management and compliance? Journal of Financial Transformation, 45, 60-67.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Finance, Financial Markets and Institutions
Journal Section Research Articles
Authors

Sara Tabbaa 0009-0008-1943-5377

Nazif Çalış 0000-0003-0248-1349

Publication Date December 28, 2024
Submission Date October 29, 2024
Acceptance Date December 25, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

APA Tabbaa, S., & Çalış, N. (2024). Banka Hizmetlerinin Optimize Edilmesinde Yapay Zekanın Rolü: Zorlukların ve Fırsatların Analizi. Journal of Economics, Finance and Sustainability, 2(2), 182-197. https://doi.org/10.5281/zenodo.14563412
AMA Tabbaa S, Çalış N. Banka Hizmetlerinin Optimize Edilmesinde Yapay Zekanın Rolü: Zorlukların ve Fırsatların Analizi. EFS. December 2024;2(2):182-197. doi:10.5281/zenodo.14563412
Chicago Tabbaa, Sara, and Nazif Çalış. “Banka Hizmetlerinin Optimize Edilmesinde Yapay Zekanın Rolü: Zorlukların Ve Fırsatların Analizi”. Journal of Economics, Finance and Sustainability 2, no. 2 (December 2024): 182-97. https://doi.org/10.5281/zenodo.14563412.
EndNote Tabbaa S, Çalış N (December 1, 2024) Banka Hizmetlerinin Optimize Edilmesinde Yapay Zekanın Rolü: Zorlukların ve Fırsatların Analizi. Journal of Economics, Finance and Sustainability 2 2 182–197.
IEEE S. Tabbaa and N. Çalış, “Banka Hizmetlerinin Optimize Edilmesinde Yapay Zekanın Rolü: Zorlukların ve Fırsatların Analizi”, EFS, vol. 2, no. 2, pp. 182–197, 2024, doi: 10.5281/zenodo.14563412.
ISNAD Tabbaa, Sara - Çalış, Nazif. “Banka Hizmetlerinin Optimize Edilmesinde Yapay Zekanın Rolü: Zorlukların Ve Fırsatların Analizi”. Journal of Economics, Finance and Sustainability 2/2 (December 2024), 182-197. https://doi.org/10.5281/zenodo.14563412.
JAMA Tabbaa S, Çalış N. Banka Hizmetlerinin Optimize Edilmesinde Yapay Zekanın Rolü: Zorlukların ve Fırsatların Analizi. EFS. 2024;2:182–197.
MLA Tabbaa, Sara and Nazif Çalış. “Banka Hizmetlerinin Optimize Edilmesinde Yapay Zekanın Rolü: Zorlukların Ve Fırsatların Analizi”. Journal of Economics, Finance and Sustainability, vol. 2, no. 2, 2024, pp. 182-97, doi:10.5281/zenodo.14563412.
Vancouver Tabbaa S, Çalış N. Banka Hizmetlerinin Optimize Edilmesinde Yapay Zekanın Rolü: Zorlukların ve Fırsatların Analizi. EFS. 2024;2(2):182-97.