BibTex RIS Cite

Impact of pH changes on neutral lipid production of the microalga Dunaliella tertiolecta isolated from Meke Crater Lake (Konya/Turkey)

Year 2018, Volume: 14 Issue: 3, 220 - 231, 01.09.2018
https://doi.org/10.22392/egirdir.397153

Abstract

In
this study, the impact of a change in pH
of the growth medium on the production of
triacylglycerol (used as a biodiesel feedstock) and related parameters were evaluated in a green halophilic microalga Dunaliella tertiolecta. Microalgae were cultured
in Johnson's nutrient medium with different initial pH values (pH = 4, 6,
8, 10)  under suitable conditions for 25
days and growth was followed,
triacylglycerol production and related parameters were analyzed. There was an
increase in the growth rate, total chlorophyll and
carotenoid contents, net oxygen production and
consumption ratio did not show a significant change as accompanied by a remarkable increase of neutral lipid and
triacylglycerol content of microalgae in proportion to a decrease in initial
pH. On the other side, there was a decrease
in the total chlorophyll and carotenoid content accompanied by a decrease in
both oxygen production and consumption ration while there was no significant
change in growth rate, neutral lipid, and triacylglycerol production of
microalgae when the medium pH is adjusted as 10. Results show that lowering the
initial pH of the growth medium might be used as a practical approach for
induction of biodiesel feedstock production by Dunaliella tertiolecta.

References

  • Anderson, D.M. & Morel, F.M.M. (1978). Copper sensitivity of Gonyaulax tamarensis. Limnol. Oceanogr., 23, 283–295.
  • Azov, Y. (1982). Effect of pH on inorganic carbon uptake in algal cultures. Appl. Environ. Microbiol., 43, 1300–1306.
  • Avron, M. & Ben-Amotz, A. (eds) (1992). Dunaliella: Physiology, Biochemistry, and Biotechnology. CRC Press, Boca Raton.
  • Borowitzka, M.A. & Borowitzka, L.J. (1988a). Algal growth media sources of algal culture. In Micro-algal Biotechnology. ed. Borowitzka, M.A. & Borowitzka, L.J. University Press, New York: Cambridge, pp. 465–465.
  • Brennan, L. & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production,processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev., 14, 557–577.
  • Cabello, J.,Cervantes A.T., Sánchez L., Revah S., &Morales M (2015). Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions. Bioresource Technol., 181, 128-135.
  • Chen, C.Y. & Durbin, E.G. (1994). Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar. Ecol.-Prog. Ser., 109, 83–94.
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306.
  • Coesel, S. N., Baumgartner, A. C., Teles, L. M., Ramos, A. A., Henriques, N. M., Cancela, L. & Varela, J. C. S. (2008). Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steadystate transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar.Biotechnol., 10, 602–611.
  • Coleman, J.R. & Colman, B. (1981). Inorganic carbon accumulation and photosynthesis in a blue-green alga as a function of external pH. Plant Physiol., 67, 917–921.Colman, B., Huertas, I.E., Bhatti, S. & Dason, J.S. (2002). The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Funct. Plant Biol., 29, 261–270.
  • Elenkov, I., Stefanov, K., Dimitrova Konaklieva, S. & Popov, S. (1996) . Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry, 42, 39–44.
  • Elsey, D., Jameson, D., Raleigh, B. & Cooney, M.J. (2007) . Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods, 68, 639–642.
  • Fuggi, A., Pinto, G., Pollio, A. & Taddei, R. (1988). The role of glycerol in osmoregulation of the acidophilic alga Dunaliella acidophila (Volvocales, Chlorophyta): Effect of solute stress on photosynthesis, respiration and glycerol synthesis. Phycologia. 27, 439–446.
  • Gehl, K.A. & Colman, B. (1985). Effect of external pH on the internal pH of Chlorella saccharophila. Plant Physiol. 77, 917–921.
  • Gensemer, R.W., Smith, R.E.H. & Duthie, H.C. (1993). Comparative effects of pH and aluminum on silica limited growth and nutrient uptake in Asterionella ralfsii var. Americana (Bacillariophyceae). J. Phycol. 29, 36–44.
  • Ghoshal, D., Mach, D., Agarwal, M., Goyal, A. & Goyal, A. (2002). Osmoregulatory isoform of dihydroxyacetone phosphate reductase from Dunaliella tertiolecta: Purification and characterization. Protein Expr. Purif., 24, 404-411.
  • Goldman, J.C., Azov, Y., Riley, C.B., & Dennett, M.R. (1982). The effect of pH in intensive microalgal cultures. I. biomass regulation. J. Exp. Mar. Biol. Ecol. 57, 1–13.
  • Guckert, J.B. & Cooksey, K.E. (1990). Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH induced cell cycle inhibition. J. Phycol. 26, 72–79.
  • Hadi, M. R., Shariati, M. & Afsharzadeh, S. (2008). Microalgal biotechnology: carotenoid and glycerol production by Dunaliella sp. algae isolated from the Gave khooni salt marsh, Iran. Biotech. Bioproc. Eng., 13(5), 540-544.
  • Hansen, P.J. (2002). Effect of high pH on the growth and survival of marine phytoplankton: Implications for species succession. Aquat. Microb. Ecol. 28, 279–288.
  • Hargreaves, J. & Whitton, B.(1976). Effect of pH on growth of acid stream algae. Eur. J. Phycol. 11, 215–223.
  • Hejazi, M.A. & Wijffels, R.H. (2003). Effect of light intensity on production and extraction by Dunaliella salina in two-phase bioreactors. Biomol. Engin. 20(4- 6), 171-175.
  • Hoham, R. W., Bonome, T. A., Martin, C. W. & Leebens-Mack, J. H. (2002). A combined 18S rDNA and rbc-L phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J. Phycol. 38:1051–64.
  • Jeffrey, S.W. & Humphrey, G.F. (1975). New spectrophotometric equations for determining chlorophyll a, b c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol. Pflanz, 167,191-194.
  • Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148,350-382.
  • Mairet, F., Bernard, O., Masci, P., Lacour, T. & Sciandra, A. (2011). Modelling neutral lipid production by the microalga Isochrysis affinis galbana under nitrogen limitation. Bioresource Technology, 102, 142–149.
  • Moroney, J.V. & Tolbert, N.E. (1985). Inorganic carbon uptake by Chlamydomonas reinhardtii. Plant Physiol. 77, 253–258.
  • Myklestad, S.M. & Swift, E. (1998). A new method for measuring soluble cellular organic content and a membrane property, Tm, of planktonic algae. Eur. J. Phycol., 33,333–336.
  • Poerschmann, J., Spijkerman, E. & Langer, U. (2004). Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb. Ecol.48, 78–89.
  • Pruder, G.D.& Bolton, E.T. (1979). The role of CO2 enrichment of aerating gas in the growth of an estuarine diatom. Aquaculture,17, 1–15.
  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43
  • Shah, M.U.S., Radziah, C.C., Ibrahim, S., Latiff , F. & Othman M.F. (2013). Effects of photoperiod, salinity and pH on cell growth and lipid content of Pavlova lutheri. Ann. Microbiol., 64: 157-164. DOI: 10.1007/s13213-013-0645-6.
  • Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High Lipid Induction in Microalgae for Biodiesel Production. Energies, 5,1532-1553.
  • Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Journal of Biosicience and Bioengineering, 101,87-96.
  • Takagi, M. & Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng., 101:223–226.
  • Thompson, Jr. G. A. (1996). Lipids and membrane function in green algae. Biochim. Biophys. Acta. 1302:17–45.
  • Tsukahara, K. & Sawayama, S. (2005). Liquid Fuel Production using Microalgae. Journal of the Japan Petroleum Institute, 48(5):251-259
  • Van den Hoek, C., Mann, D.G. & Jahns, H.M. (1995).Algae: An Introduction to Phycology. Cambridge University Press, Cambridge, UK.
  • Visviki, I. & Santikul, D. (2000). The pH tolerance of Chlamydomonas applanata (Volvocales, Chlorophyta). Arch. Environ. Contam. Toxicol., 38, 147–151.
  • Widjaja, A., Chien, C.C. & Ju, Y.H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng., 40, 13–20.

Meke Krater Gölü’nden (Konya/Türkiye) İzole Edilen Dunaliella tertiolecta Mikroalginin Nötral Lipid İçeriğine pH Değişimlerinin Etkisi

Year 2018, Volume: 14 Issue: 3, 220 - 231, 01.09.2018
https://doi.org/10.22392/egirdir.397153

Abstract

Bu çalışmada, halofil bir yeşil mikroalg
olan Dunaliella tertiolecta’nın
büyüme ortamındaki pH değişikliğinin biyodizel hammaddesi olarak kullanılan
triaçilgliserol üretimi ve ilgili parametrelerde meydana gelen değişimi üzerine
etkisi değerlendirilmiştir. Mikroalgler Johnson’s besin ortamında farklı
pH’larda (pH=4, 6, 8, 10) 25 gün boyunca uygun şartlarda kültüre alınmış ve
büyümeleri takip edilmiş, triaçilgliserol üretimleri ve ilgili parametreler analiz
edilmiştir. Mikroalglerin büyüme ortamının başlangıç pH’sındaki düşüşle doğru
orantılı olarak büyüme hızı, toplam klorofil ve karotenoid miktarlarında artış,
net oksijen üretim ve tüketim hızında önemli bir değişim belirlenmezken nötral
lipid ve triaçilgliserol üretiminde de artma olmuştur. Diğer taraftan ortam
pH’sı 10 olarak ayarlandığında ise mikroalglerin çoğalma hızında önemli bir
değişim belirlenmezken,  toplam klorofil
ve karotenoid miktarlarında düşüş, net oksijen üretim ve tüketim hızlarında
azalma olmuş, nötral lipid ve triaçilgliserol üretiminde dikkate değer bir
değişim gözlenmemiştir. Elde edilen sonuçlar D.tertiolecta’dan biyodizel hammaddesi üretimi için ortam pH’sını düşürmenin
etkili bir sonuç alınabilecek pratik bir yöntem olduğunu göstermiştir. 

References

  • Anderson, D.M. & Morel, F.M.M. (1978). Copper sensitivity of Gonyaulax tamarensis. Limnol. Oceanogr., 23, 283–295.
  • Azov, Y. (1982). Effect of pH on inorganic carbon uptake in algal cultures. Appl. Environ. Microbiol., 43, 1300–1306.
  • Avron, M. & Ben-Amotz, A. (eds) (1992). Dunaliella: Physiology, Biochemistry, and Biotechnology. CRC Press, Boca Raton.
  • Borowitzka, M.A. & Borowitzka, L.J. (1988a). Algal growth media sources of algal culture. In Micro-algal Biotechnology. ed. Borowitzka, M.A. & Borowitzka, L.J. University Press, New York: Cambridge, pp. 465–465.
  • Brennan, L. & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production,processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev., 14, 557–577.
  • Cabello, J.,Cervantes A.T., Sánchez L., Revah S., &Morales M (2015). Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions. Bioresource Technol., 181, 128-135.
  • Chen, C.Y. & Durbin, E.G. (1994). Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar. Ecol.-Prog. Ser., 109, 83–94.
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306.
  • Coesel, S. N., Baumgartner, A. C., Teles, L. M., Ramos, A. A., Henriques, N. M., Cancela, L. & Varela, J. C. S. (2008). Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steadystate transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar.Biotechnol., 10, 602–611.
  • Coleman, J.R. & Colman, B. (1981). Inorganic carbon accumulation and photosynthesis in a blue-green alga as a function of external pH. Plant Physiol., 67, 917–921.Colman, B., Huertas, I.E., Bhatti, S. & Dason, J.S. (2002). The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae. Funct. Plant Biol., 29, 261–270.
  • Elenkov, I., Stefanov, K., Dimitrova Konaklieva, S. & Popov, S. (1996) . Effect of salinity on lipid composition of Cladophora vagabunda. Phytochemistry, 42, 39–44.
  • Elsey, D., Jameson, D., Raleigh, B. & Cooney, M.J. (2007) . Fluorescent measurement of microalgal neutral lipids. Journal of Microbiological Methods, 68, 639–642.
  • Fuggi, A., Pinto, G., Pollio, A. & Taddei, R. (1988). The role of glycerol in osmoregulation of the acidophilic alga Dunaliella acidophila (Volvocales, Chlorophyta): Effect of solute stress on photosynthesis, respiration and glycerol synthesis. Phycologia. 27, 439–446.
  • Gehl, K.A. & Colman, B. (1985). Effect of external pH on the internal pH of Chlorella saccharophila. Plant Physiol. 77, 917–921.
  • Gensemer, R.W., Smith, R.E.H. & Duthie, H.C. (1993). Comparative effects of pH and aluminum on silica limited growth and nutrient uptake in Asterionella ralfsii var. Americana (Bacillariophyceae). J. Phycol. 29, 36–44.
  • Ghoshal, D., Mach, D., Agarwal, M., Goyal, A. & Goyal, A. (2002). Osmoregulatory isoform of dihydroxyacetone phosphate reductase from Dunaliella tertiolecta: Purification and characterization. Protein Expr. Purif., 24, 404-411.
  • Goldman, J.C., Azov, Y., Riley, C.B., & Dennett, M.R. (1982). The effect of pH in intensive microalgal cultures. I. biomass regulation. J. Exp. Mar. Biol. Ecol. 57, 1–13.
  • Guckert, J.B. & Cooksey, K.E. (1990). Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH induced cell cycle inhibition. J. Phycol. 26, 72–79.
  • Hadi, M. R., Shariati, M. & Afsharzadeh, S. (2008). Microalgal biotechnology: carotenoid and glycerol production by Dunaliella sp. algae isolated from the Gave khooni salt marsh, Iran. Biotech. Bioproc. Eng., 13(5), 540-544.
  • Hansen, P.J. (2002). Effect of high pH on the growth and survival of marine phytoplankton: Implications for species succession. Aquat. Microb. Ecol. 28, 279–288.
  • Hargreaves, J. & Whitton, B.(1976). Effect of pH on growth of acid stream algae. Eur. J. Phycol. 11, 215–223.
  • Hejazi, M.A. & Wijffels, R.H. (2003). Effect of light intensity on production and extraction by Dunaliella salina in two-phase bioreactors. Biomol. Engin. 20(4- 6), 171-175.
  • Hoham, R. W., Bonome, T. A., Martin, C. W. & Leebens-Mack, J. H. (2002). A combined 18S rDNA and rbc-L phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J. Phycol. 38:1051–64.
  • Jeffrey, S.W. & Humphrey, G.F. (1975). New spectrophotometric equations for determining chlorophyll a, b c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol. Pflanz, 167,191-194.
  • Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148,350-382.
  • Mairet, F., Bernard, O., Masci, P., Lacour, T. & Sciandra, A. (2011). Modelling neutral lipid production by the microalga Isochrysis affinis galbana under nitrogen limitation. Bioresource Technology, 102, 142–149.
  • Moroney, J.V. & Tolbert, N.E. (1985). Inorganic carbon uptake by Chlamydomonas reinhardtii. Plant Physiol. 77, 253–258.
  • Myklestad, S.M. & Swift, E. (1998). A new method for measuring soluble cellular organic content and a membrane property, Tm, of planktonic algae. Eur. J. Phycol., 33,333–336.
  • Poerschmann, J., Spijkerman, E. & Langer, U. (2004). Fatty acid patterns in Chlamydomonas sp. as a marker for nutritional regimes and temperature under extremely acidic conditions. Microb. Ecol.48, 78–89.
  • Pruder, G.D.& Bolton, E.T. (1979). The role of CO2 enrichment of aerating gas in the growth of an estuarine diatom. Aquaculture,17, 1–15.
  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43
  • Shah, M.U.S., Radziah, C.C., Ibrahim, S., Latiff , F. & Othman M.F. (2013). Effects of photoperiod, salinity and pH on cell growth and lipid content of Pavlova lutheri. Ann. Microbiol., 64: 157-164. DOI: 10.1007/s13213-013-0645-6.
  • Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High Lipid Induction in Microalgae for Biodiesel Production. Energies, 5,1532-1553.
  • Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Journal of Biosicience and Bioengineering, 101,87-96.
  • Takagi, M. & Yoshida, T. (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng., 101:223–226.
  • Thompson, Jr. G. A. (1996). Lipids and membrane function in green algae. Biochim. Biophys. Acta. 1302:17–45.
  • Tsukahara, K. & Sawayama, S. (2005). Liquid Fuel Production using Microalgae. Journal of the Japan Petroleum Institute, 48(5):251-259
  • Van den Hoek, C., Mann, D.G. & Jahns, H.M. (1995).Algae: An Introduction to Phycology. Cambridge University Press, Cambridge, UK.
  • Visviki, I. & Santikul, D. (2000). The pH tolerance of Chlamydomonas applanata (Volvocales, Chlorophyta). Arch. Environ. Contam. Toxicol., 38, 147–151.
  • Widjaja, A., Chien, C.C. & Ju, Y.H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng., 40, 13–20.
There are 40 citations in total.

Details

Primary Language Turkish
Subjects Hydrobiology
Journal Section Articles
Authors

Zeynep Elibol Çakmak

Publication Date September 1, 2018
Published in Issue Year 2018 Volume: 14 Issue: 3

Cite

APA Elibol Çakmak, Z. (2018). Meke Krater Gölü’nden (Konya/Türkiye) İzole Edilen Dunaliella tertiolecta Mikroalginin Nötral Lipid İçeriğine pH Değişimlerinin Etkisi. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 14(3), 220-231. https://doi.org/10.22392/egirdir.397153
AMA Elibol Çakmak Z. Meke Krater Gölü’nden (Konya/Türkiye) İzole Edilen Dunaliella tertiolecta Mikroalginin Nötral Lipid İçeriğine pH Değişimlerinin Etkisi. JEFF. September 2018;14(3):220-231. doi:10.22392/egirdir.397153
Chicago Elibol Çakmak, Zeynep. “Meke Krater Gölü’nden (Konya/Türkiye) İzole Edilen Dunaliella Tertiolecta Mikroalginin Nötral Lipid İçeriğine PH Değişimlerinin Etkisi”. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi 14, no. 3 (September 2018): 220-31. https://doi.org/10.22392/egirdir.397153.
EndNote Elibol Çakmak Z (September 1, 2018) Meke Krater Gölü’nden (Konya/Türkiye) İzole Edilen Dunaliella tertiolecta Mikroalginin Nötral Lipid İçeriğine pH Değişimlerinin Etkisi. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi 14 3 220–231.
IEEE Z. Elibol Çakmak, “Meke Krater Gölü’nden (Konya/Türkiye) İzole Edilen Dunaliella tertiolecta Mikroalginin Nötral Lipid İçeriğine pH Değişimlerinin Etkisi”, JEFF, vol. 14, no. 3, pp. 220–231, 2018, doi: 10.22392/egirdir.397153.
ISNAD Elibol Çakmak, Zeynep. “Meke Krater Gölü’nden (Konya/Türkiye) İzole Edilen Dunaliella Tertiolecta Mikroalginin Nötral Lipid İçeriğine PH Değişimlerinin Etkisi”. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi 14/3 (September 2018), 220-231. https://doi.org/10.22392/egirdir.397153.
JAMA Elibol Çakmak Z. Meke Krater Gölü’nden (Konya/Türkiye) İzole Edilen Dunaliella tertiolecta Mikroalginin Nötral Lipid İçeriğine pH Değişimlerinin Etkisi. JEFF. 2018;14:220–231.
MLA Elibol Çakmak, Zeynep. “Meke Krater Gölü’nden (Konya/Türkiye) İzole Edilen Dunaliella Tertiolecta Mikroalginin Nötral Lipid İçeriğine PH Değişimlerinin Etkisi”. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, vol. 14, no. 3, 2018, pp. 220-31, doi:10.22392/egirdir.397153.
Vancouver Elibol Çakmak Z. Meke Krater Gölü’nden (Konya/Türkiye) İzole Edilen Dunaliella tertiolecta Mikroalginin Nötral Lipid İçeriğine pH Değişimlerinin Etkisi. JEFF. 2018;14(3):220-31.