Research Article
BibTex RIS Cite

Year 2025, Volume: 9 Issue: 1, 32 - 47, 30.06.2025

Abstract

References

  • Avşar Ö. & Karademir E. 2022. Evaluation of quality parameters in cotton production (Gossypium hirsutum L.) under water stress conditions, Journal of Applied Life Sciences and Environment, 1 (189). 45-61. https://doi.org/10.46909/alse-551045
  • Baker J. T., Gitz, D. C., Payton P., Wanjura D. F. & Upchurch D. R. 2007. Using leaf gas exchange to quantify drought in cotton irrigated based on canopy temperature measurements. Agronomy Journal, 99(3), 637-644. Doi: https://doi.org/10.2134/agronj2006.0062
  • Bhutada P. O., Kulkarni G. B. & Shinde R. S. 2019. Cotton vegetation condition monitoring using LSWI and NDVI, Journal of Pharmacognosy and Phytochemistry, 8(3). 1757-1762.
  • Brar A. S., Kaur K., Sindhu V. K., Tsolakis N. & Srai J. S. 2022. Sustainable water uses through multiple cropping systems and precision irrigation, Journal of Cleaner Production, 333. 130117. Doi: https://doi.org/10.1016/j.jclepro.2021.130117 Cetin O. & Bilgel L. 2002. Effects of different irrigation methods on shedding and yield of cotton, Agricultural Water Management, 54(1). 1-15. Doi: https://doi.org/10.1016/S0378-3774(01)00138-X
  • Chapagain A. K., Hoekstra A. Y. Savenije H. H. & Gautam R. 2006. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries, Ecological economics, 60(1). 186-203. Doi: https://doi.org/10.1016/j.ecolecon.2005.11.027
  • Conaty W. C., Mahan J. R., Neilsen J. E., Tan D. K., Yeates S. J. & Sutton B. G. 2015. The relationship between cotton canopy temperature and yield. fibre quality and water-use efficiency, Field Crops Research, 183. 329-341. Doi: https://doi.org/10.1016/j.fcr.2015.08.010
  • Cornic G. & Massacci A. 1996. Leaf photosynthesis under drought stress, In Photosynthesis and the Environment (pp. 347-366), Dordrecht: Springer Netherlands.
  • Çamoğlu G. 2010. Farklı su stresi düzeylerinde mısır bitkisinin bazı fizyolojik ve morfolojik özelliklerinin uzaktan algılama yardımıyla belirlenmesi. Doktora Tezi, Ege Üniversitesi, İzmir.
  • Çamoğlu G., Genç L. & Aşık Ş. 2011. Tatlı mısırda (Zea mays saccharata Sturt) su stresinin fizyolojik ve morfolojik parametreler üzerine etkisi, Ege Üniversitesi Ziraat Fakültesi Dergisi, 48(2), 141-149.
  • Deeba F., Pandey A. K., Ranjan S., Mishra A. Singh R., Sharma Y. K. & Pandey V. 2012. Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress, Plant Physiology and Biochemistry, 53. 6-18. Doi: https://doi.org/10.1016/j.plaphy.2012.01.002
  • DeTar W. R. 2008. Yield and growth characteristics for cotton under various irrigation regimes on sandy soil, Agricultural water management, 95(1), 69-76. Doi: https://doi.org/10.1016/j.agwat.2007.08.009
  • Devi M. J. & Reddy V. R. 2018. Transpiration response of cotton to vapor pressure deficit and its relationship with stomatal traits. Frontiers in plant science, 9, 1572.
  • Dubey R., Pandey B. K., Sawant S. V., Shirke P. A. 2023 Drought stress inhibits stomatal development to improve water use efficiency in cotton. Acta Physiologiae Plantarum, 45:30. Doi: https://doi.org/10.1007/s11738-022-03511-6
  • Ekinci R. 2008. Okra ve normal yapraklı pamuklarda (Gossypium hirsutum L.) bazı fizyo-morfolojik oluşumların verim ile olan ilişkileri, Journal of Agricultural Sciences. 14(03). Doi: https://doi.org/10.1501/Tarimbil_0000001033
  • Espinoza C. Z., Khot R. L., Sankaran S. & Jacoby P.W. 2017. High resolution multispectral and thermal remote sensing-based water stress assessment in subsurface irrigated grapevines, Remote Sensing. 2017. 9(9), 96 doi: https://doi.org/10.3390/rs9090961
  • Fang Y. & Xiong L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants, Cellular and molecular life sciences. 72. 673-689. Doi: https://doi.org/10.1007/s00018-014-1767-0
  • Flexas J. & Medrano H. 2002. Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited, Annals of botany, 89(2). 183-189. Doi: https://doi.org/10.1093/aob/mcf027
  • Gardner W. R, & Gardner H. R. 1983. Principles of water management under drought conditions, Agricultural Water Management. 7(1-3), 143-155. Doi: https://doi.org/10.1016/0378-3774(83)90079-3
  • Gonzalez-Dugo M. P. Moran M. S., Mateos L. & Bryant R. 2006. Canopy temperature variability as an indicator of crop water stress severity, Irrigation Science, 24. 233. Doi: https://doi.org/10.1007/s00271-005-0022-8
  • Gürsoy S., Kılıç H. & Sessiz A. 2006. Güneydoğu Anadolu Bölgesinde Pamuk-Buğday Ekim Nöbeti Sisteminde Pamuk Hasadı Sonrası En Uygun Tohum Yatağı Hazırlığı ve Ekim Şeklinin Belirlenmesi, Araştırma Projesi Sonuç Raporu. TC Tarım ve Köyişleri Bakanlığı, Tarımsal Araştırmalar Genel Müdürlüğü, Güneydoğu Anadolu Tarımsal Araştırma Enstitüsü.
  • Jackson P., Robertson M., Cooper M. & Hammer G. 1996. The role of physiological understanding in plant breeding; from a breeding perspective, Field Crops Research, 49(1), 11-37. Doi: https://doi.org/10.1016/S0378-4290(96)01012-
  • Jaleel C. A., Manivannan P., Wahid A., Farooq M., Al-Juburi H. J., Somasundaram R. & Panneerselvam R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition, Int. J. Agric. Biol, 11(1), 100-105.
  • Johnson J. R., & Saunders J. R. 2002. Evaluation of chlorophyll meter for nitrogen management in cotton. Annual Report, 162-163.
  • Kang Y., Wang R., Wan S., Hu W., Jiang S. & Liu S. 2012. Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China, Agricultural water management, 109, 117-126. Doi: https://doi.org/10.1016/j.agwat.2012.02.013
  • Karademir Ç., Karademir E., Ekinci R. & Gençer O. 2009. Correlations and path coefficient analysis between leaf chlorophyll content, yield and yield components in cotton (Gossypium hirsutum L.) under drought stress conditions Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 241-244. Doi: https://doi.org/10.15835/nbha3723146
  • Khan A., Pan X., Najeeb U., Tan D. K. Y., Fahad S., Zahoor R. & Luo H. 2018. Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness, Biological research, 51. Doi: http://dx.doi.org/10.1186/s40659-018-0198-z
  • Kıran S., Özkay F., Ellialtıoğlu Ş. & Kuşvuran Ş. 2014. Kuraklık stresi uygulanan kavun genotiplerinde bazı fizyolojik değişimler üzerine araştırmalar, Toprak Su Dergisi, 3(1), 53-58.
  • Kırnak H. & Demirtaş M. N. 2002. Su stresi altındaki kiraz fidanlarında fizyolojik ve morfolojik değişimlerin belirlenmesi, Research in Agricultural Sciences, 33(3).
  • Krieg D. R. 1997. Genetic and environmental factors affecting productivity of cotton, In Proceedings of the Beltwide Cotton Conference (pp. 7-10).
  • Lawlor D. W. & Cornic G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants, Plant. cell & environment, 25(2). 275-294. Doi: https://doi.org/10.1046/j.0016-8025.2001.00814.x
  • Li Y. L., Zhang S. Q., Guo W. Z., Zheng W. G., Zhao Q., Yu W. Y. & Li J. S. 2024. Effects of irrigation scheduling on the yield and irrigation water productivity of cucumber in coconut coir culture. Scientific Reports, 14(1), 2944. Doi: https://doi.org/10.1038/s41598-024-52972-x
  • Luo H. H., Zhang Y. L. & Zhang W. F. 2016. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch, Photosynthetica, 54(1), 65-73. Doi: https://doi.org/10.1007/s11099-015-0165-7
  • Mahan J. R., Payton P. R. & Laza H. E. 2016. Seasonal canopy temperatures for normal and okra leaf cotton under variable irrigation in the field. Agriculture, 6(4), 58.
  • Osmond C. B., Austin M. P., Berry J. A., Billings W. D., Boyer J. S., Dacey J. W. H. & Winner W. E. 1987, Stress physiology and the distribution of plants. BioScience, 37(1), 38-48.
  • Öktem A. 2006. Effect of different irrigation intervals to drip irrigated dent corn (Zea mays L. indentata) water-yield relationship, Pakistan Journal of Biological Sciences, 9(8), 1476-1481.
  • Quisenberry J. E., Roark B., & McMichael B. L. 1982. Use of Transpiration Decline Curves to Identify Drought‐Tolerant Cotton Germplasm, 1. Crop Science. 22(5). 918-922.
  • Richards R. A., Rawson H. M. & Johnson D. A. 1986. Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures, Functional Plant Biology, 13(4), 465-473.
  • Singh K., Brar A. S. & Singh H. P. 2018. Drip fertigation improves water and nitrogen use efficiency of Bt cotton, Journal of Soil and Water Conservation, 73(5), 549-557. Doi: https://doi.org/10.2489/jswc.73.5.549
  • Thompson T. L., Pang H. C. & LI, Y. Y. 2009. The potential contribution of subsurface drip irrigation to water-saving agriculture in the western USA, Agricultural Sciences in China, 8(7), 850-854. Doi: https://doi.org/10.1016/S1671-2927(08)60287-4
  • Tüzüner A., Kurucu N., Börekçi M., Gedikoglu Ý., Sönmez B., Eyüpoðlu F. & Aðar A. 1990. Soil and water laboratory handbook. T.C. Ministry of Agriculture, Ankara.
  • Ullah A., Sun H., Yang X. & Zhang X. 2017. Drought coping strategies in cotton: increased crop per drop, Plant Biotechnology Journal, 15(3), 271-284. Doi: https://doi.org/10.1111/pbi.12688
  • Üzen N., Çetin Ö., Temiz M. G. & Başbağ S. 2019. Farklı damla sulama sistemleri ve sulama yönetiminin pamuk lif verimi, verim öğeleri ve lif kalitesine etkisi, Mediterranean Agricultural Sciences, 32(3), 387-393. Doi: https://doi.org/10.29136/mediterranean.458025
  • Wahab A., Abdi G., Saleem M. H., Ali B., Ullah S., Shah W. & Marc R. A. 2022. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants, 11(13), 1620. Doi: https://doi.org/10.3390/plants11131620
  • Wiegand C. L. & Namken L. N. 1966. Influences of plant moisture stress, solar radiation, and air temperature on cotton leaf temperature, 1. Agronomy journal, 58(6),582-586. Doi: https://doi.org/10.2134/agronj1966.00021962005800060009x
  • Yang Y. J., Bi M. H., Nie Z. F., Jiang H., Liu X. D., Fang X. W. & Brodribb T. J. 2021. Evolution of stomatal closure to optimize water‐use efficiency in response to dehydration in ferns and seed plants. New Phytologist, 230(5), 2001-2010.
  • Zakhidov E., Nematov S. & Kuvondikov V. 2016. Monitoring of the drought tolerance of various cotton genotypes using chlorophyll fluorescence, Applied Photosynthesis: New Progress, 91-110. Doi: https://dx.doi.org/10.5772/62232

Evaluation of Physiological Parameters in Cotton Production (Gossypium hirsutum L.) under Water Stress Conditions

Year 2025, Volume: 9 Issue: 1, 32 - 47, 30.06.2025

Abstract

Influences of different irrigation rates on some physiological parameters of various cotton varieties were assessed in Diyarbakır conditions, located in the Southeast Anatolia region of Türkiye. Three different cotton varieties (FiberMax, Stoneville 468 and Kartanesi) were evaluated in the years 2017 and 2018 under three levels of drip irrigation. The data acquired from Class-A pan evaporation included the treatments of I50 (50% water stress), I75 (25% water stress), and the fully irrigated. In the study, the application of water stress resulted in decreased fiber yield, chlorophyll content, normalized difference vegetation index value (NDVI) photosynthesis rate, stomatal conductance, and transpiration rate. In contrast, canopy temperature values increased. In the two-year study, it was revealed that water stress adversely affected cotton fiber yield and many physiological parameters. In light of these findings, it was concluded that water stress should be avoided to achieve optimum efficiency in cotton production.

Thanks

That trial was financially supported by the Republic of Türkiye the Ministry of Agriculture and Forestry. TAGEM (General Directorate of Agricultural Research and Policies) with TAGEM/TBAD/A/18/A7/P5/192 project number and also funded by the Scientific Research Projects Coordination Unit of Siirt University with the project number 2017-SIUFEB-DR-25.

References

  • Avşar Ö. & Karademir E. 2022. Evaluation of quality parameters in cotton production (Gossypium hirsutum L.) under water stress conditions, Journal of Applied Life Sciences and Environment, 1 (189). 45-61. https://doi.org/10.46909/alse-551045
  • Baker J. T., Gitz, D. C., Payton P., Wanjura D. F. & Upchurch D. R. 2007. Using leaf gas exchange to quantify drought in cotton irrigated based on canopy temperature measurements. Agronomy Journal, 99(3), 637-644. Doi: https://doi.org/10.2134/agronj2006.0062
  • Bhutada P. O., Kulkarni G. B. & Shinde R. S. 2019. Cotton vegetation condition monitoring using LSWI and NDVI, Journal of Pharmacognosy and Phytochemistry, 8(3). 1757-1762.
  • Brar A. S., Kaur K., Sindhu V. K., Tsolakis N. & Srai J. S. 2022. Sustainable water uses through multiple cropping systems and precision irrigation, Journal of Cleaner Production, 333. 130117. Doi: https://doi.org/10.1016/j.jclepro.2021.130117 Cetin O. & Bilgel L. 2002. Effects of different irrigation methods on shedding and yield of cotton, Agricultural Water Management, 54(1). 1-15. Doi: https://doi.org/10.1016/S0378-3774(01)00138-X
  • Chapagain A. K., Hoekstra A. Y. Savenije H. H. & Gautam R. 2006. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries, Ecological economics, 60(1). 186-203. Doi: https://doi.org/10.1016/j.ecolecon.2005.11.027
  • Conaty W. C., Mahan J. R., Neilsen J. E., Tan D. K., Yeates S. J. & Sutton B. G. 2015. The relationship between cotton canopy temperature and yield. fibre quality and water-use efficiency, Field Crops Research, 183. 329-341. Doi: https://doi.org/10.1016/j.fcr.2015.08.010
  • Cornic G. & Massacci A. 1996. Leaf photosynthesis under drought stress, In Photosynthesis and the Environment (pp. 347-366), Dordrecht: Springer Netherlands.
  • Çamoğlu G. 2010. Farklı su stresi düzeylerinde mısır bitkisinin bazı fizyolojik ve morfolojik özelliklerinin uzaktan algılama yardımıyla belirlenmesi. Doktora Tezi, Ege Üniversitesi, İzmir.
  • Çamoğlu G., Genç L. & Aşık Ş. 2011. Tatlı mısırda (Zea mays saccharata Sturt) su stresinin fizyolojik ve morfolojik parametreler üzerine etkisi, Ege Üniversitesi Ziraat Fakültesi Dergisi, 48(2), 141-149.
  • Deeba F., Pandey A. K., Ranjan S., Mishra A. Singh R., Sharma Y. K. & Pandey V. 2012. Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress, Plant Physiology and Biochemistry, 53. 6-18. Doi: https://doi.org/10.1016/j.plaphy.2012.01.002
  • DeTar W. R. 2008. Yield and growth characteristics for cotton under various irrigation regimes on sandy soil, Agricultural water management, 95(1), 69-76. Doi: https://doi.org/10.1016/j.agwat.2007.08.009
  • Devi M. J. & Reddy V. R. 2018. Transpiration response of cotton to vapor pressure deficit and its relationship with stomatal traits. Frontiers in plant science, 9, 1572.
  • Dubey R., Pandey B. K., Sawant S. V., Shirke P. A. 2023 Drought stress inhibits stomatal development to improve water use efficiency in cotton. Acta Physiologiae Plantarum, 45:30. Doi: https://doi.org/10.1007/s11738-022-03511-6
  • Ekinci R. 2008. Okra ve normal yapraklı pamuklarda (Gossypium hirsutum L.) bazı fizyo-morfolojik oluşumların verim ile olan ilişkileri, Journal of Agricultural Sciences. 14(03). Doi: https://doi.org/10.1501/Tarimbil_0000001033
  • Espinoza C. Z., Khot R. L., Sankaran S. & Jacoby P.W. 2017. High resolution multispectral and thermal remote sensing-based water stress assessment in subsurface irrigated grapevines, Remote Sensing. 2017. 9(9), 96 doi: https://doi.org/10.3390/rs9090961
  • Fang Y. & Xiong L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants, Cellular and molecular life sciences. 72. 673-689. Doi: https://doi.org/10.1007/s00018-014-1767-0
  • Flexas J. & Medrano H. 2002. Drought‐inhibition of photosynthesis in C3 plants: stomatal and non‐stomatal limitations revisited, Annals of botany, 89(2). 183-189. Doi: https://doi.org/10.1093/aob/mcf027
  • Gardner W. R, & Gardner H. R. 1983. Principles of water management under drought conditions, Agricultural Water Management. 7(1-3), 143-155. Doi: https://doi.org/10.1016/0378-3774(83)90079-3
  • Gonzalez-Dugo M. P. Moran M. S., Mateos L. & Bryant R. 2006. Canopy temperature variability as an indicator of crop water stress severity, Irrigation Science, 24. 233. Doi: https://doi.org/10.1007/s00271-005-0022-8
  • Gürsoy S., Kılıç H. & Sessiz A. 2006. Güneydoğu Anadolu Bölgesinde Pamuk-Buğday Ekim Nöbeti Sisteminde Pamuk Hasadı Sonrası En Uygun Tohum Yatağı Hazırlığı ve Ekim Şeklinin Belirlenmesi, Araştırma Projesi Sonuç Raporu. TC Tarım ve Köyişleri Bakanlığı, Tarımsal Araştırmalar Genel Müdürlüğü, Güneydoğu Anadolu Tarımsal Araştırma Enstitüsü.
  • Jackson P., Robertson M., Cooper M. & Hammer G. 1996. The role of physiological understanding in plant breeding; from a breeding perspective, Field Crops Research, 49(1), 11-37. Doi: https://doi.org/10.1016/S0378-4290(96)01012-
  • Jaleel C. A., Manivannan P., Wahid A., Farooq M., Al-Juburi H. J., Somasundaram R. & Panneerselvam R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition, Int. J. Agric. Biol, 11(1), 100-105.
  • Johnson J. R., & Saunders J. R. 2002. Evaluation of chlorophyll meter for nitrogen management in cotton. Annual Report, 162-163.
  • Kang Y., Wang R., Wan S., Hu W., Jiang S. & Liu S. 2012. Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China, Agricultural water management, 109, 117-126. Doi: https://doi.org/10.1016/j.agwat.2012.02.013
  • Karademir Ç., Karademir E., Ekinci R. & Gençer O. 2009. Correlations and path coefficient analysis between leaf chlorophyll content, yield and yield components in cotton (Gossypium hirsutum L.) under drought stress conditions Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 241-244. Doi: https://doi.org/10.15835/nbha3723146
  • Khan A., Pan X., Najeeb U., Tan D. K. Y., Fahad S., Zahoor R. & Luo H. 2018. Coping with drought: stress and adaptive mechanisms, and management through cultural and molecular alternatives in cotton as vital constituents for plant stress resilience and fitness, Biological research, 51. Doi: http://dx.doi.org/10.1186/s40659-018-0198-z
  • Kıran S., Özkay F., Ellialtıoğlu Ş. & Kuşvuran Ş. 2014. Kuraklık stresi uygulanan kavun genotiplerinde bazı fizyolojik değişimler üzerine araştırmalar, Toprak Su Dergisi, 3(1), 53-58.
  • Kırnak H. & Demirtaş M. N. 2002. Su stresi altındaki kiraz fidanlarında fizyolojik ve morfolojik değişimlerin belirlenmesi, Research in Agricultural Sciences, 33(3).
  • Krieg D. R. 1997. Genetic and environmental factors affecting productivity of cotton, In Proceedings of the Beltwide Cotton Conference (pp. 7-10).
  • Lawlor D. W. & Cornic G. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants, Plant. cell & environment, 25(2). 275-294. Doi: https://doi.org/10.1046/j.0016-8025.2001.00814.x
  • Li Y. L., Zhang S. Q., Guo W. Z., Zheng W. G., Zhao Q., Yu W. Y. & Li J. S. 2024. Effects of irrigation scheduling on the yield and irrigation water productivity of cucumber in coconut coir culture. Scientific Reports, 14(1), 2944. Doi: https://doi.org/10.1038/s41598-024-52972-x
  • Luo H. H., Zhang Y. L. & Zhang W. F. 2016. Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch, Photosynthetica, 54(1), 65-73. Doi: https://doi.org/10.1007/s11099-015-0165-7
  • Mahan J. R., Payton P. R. & Laza H. E. 2016. Seasonal canopy temperatures for normal and okra leaf cotton under variable irrigation in the field. Agriculture, 6(4), 58.
  • Osmond C. B., Austin M. P., Berry J. A., Billings W. D., Boyer J. S., Dacey J. W. H. & Winner W. E. 1987, Stress physiology and the distribution of plants. BioScience, 37(1), 38-48.
  • Öktem A. 2006. Effect of different irrigation intervals to drip irrigated dent corn (Zea mays L. indentata) water-yield relationship, Pakistan Journal of Biological Sciences, 9(8), 1476-1481.
  • Quisenberry J. E., Roark B., & McMichael B. L. 1982. Use of Transpiration Decline Curves to Identify Drought‐Tolerant Cotton Germplasm, 1. Crop Science. 22(5). 918-922.
  • Richards R. A., Rawson H. M. & Johnson D. A. 1986. Glaucousness in wheat: its development and effect on water-use efficiency, gas exchange and photosynthetic tissue temperatures, Functional Plant Biology, 13(4), 465-473.
  • Singh K., Brar A. S. & Singh H. P. 2018. Drip fertigation improves water and nitrogen use efficiency of Bt cotton, Journal of Soil and Water Conservation, 73(5), 549-557. Doi: https://doi.org/10.2489/jswc.73.5.549
  • Thompson T. L., Pang H. C. & LI, Y. Y. 2009. The potential contribution of subsurface drip irrigation to water-saving agriculture in the western USA, Agricultural Sciences in China, 8(7), 850-854. Doi: https://doi.org/10.1016/S1671-2927(08)60287-4
  • Tüzüner A., Kurucu N., Börekçi M., Gedikoglu Ý., Sönmez B., Eyüpoðlu F. & Aðar A. 1990. Soil and water laboratory handbook. T.C. Ministry of Agriculture, Ankara.
  • Ullah A., Sun H., Yang X. & Zhang X. 2017. Drought coping strategies in cotton: increased crop per drop, Plant Biotechnology Journal, 15(3), 271-284. Doi: https://doi.org/10.1111/pbi.12688
  • Üzen N., Çetin Ö., Temiz M. G. & Başbağ S. 2019. Farklı damla sulama sistemleri ve sulama yönetiminin pamuk lif verimi, verim öğeleri ve lif kalitesine etkisi, Mediterranean Agricultural Sciences, 32(3), 387-393. Doi: https://doi.org/10.29136/mediterranean.458025
  • Wahab A., Abdi G., Saleem M. H., Ali B., Ullah S., Shah W. & Marc R. A. 2022. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants, 11(13), 1620. Doi: https://doi.org/10.3390/plants11131620
  • Wiegand C. L. & Namken L. N. 1966. Influences of plant moisture stress, solar radiation, and air temperature on cotton leaf temperature, 1. Agronomy journal, 58(6),582-586. Doi: https://doi.org/10.2134/agronj1966.00021962005800060009x
  • Yang Y. J., Bi M. H., Nie Z. F., Jiang H., Liu X. D., Fang X. W. & Brodribb T. J. 2021. Evolution of stomatal closure to optimize water‐use efficiency in response to dehydration in ferns and seed plants. New Phytologist, 230(5), 2001-2010.
  • Zakhidov E., Nematov S. & Kuvondikov V. 2016. Monitoring of the drought tolerance of various cotton genotypes using chlorophyll fluorescence, Applied Photosynthesis: New Progress, 91-110. Doi: https://dx.doi.org/10.5772/62232
There are 46 citations in total.

Details

Primary Language English
Subjects Irrigation Systems
Journal Section Research Article
Authors

Özlem Avşar This is me

Emine Karademir

Submission Date April 10, 2025
Acceptance Date June 1, 2025
Early Pub Date June 30, 2025
Publication Date June 30, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Avşar, Ö., & Karademir, E. (2025). Evaluation of Physiological Parameters in Cotton Production (Gossypium hirsutum L.) under Water Stress Conditions. Eurasian Journal of Agricultural Research, 9(1), 32-47.
AMA Avşar Ö, Karademir E. Evaluation of Physiological Parameters in Cotton Production (Gossypium hirsutum L.) under Water Stress Conditions. EJAR. June 2025;9(1):32-47.
Chicago Avşar, Özlem, and Emine Karademir. “Evaluation of Physiological Parameters in Cotton Production (Gossypium Hirsutum L.) under Water Stress Conditions”. Eurasian Journal of Agricultural Research 9, no. 1 (June 2025): 32-47.
EndNote Avşar Ö, Karademir E (June 1, 2025) Evaluation of Physiological Parameters in Cotton Production (Gossypium hirsutum L.) under Water Stress Conditions. Eurasian Journal of Agricultural Research 9 1 32–47.
IEEE Ö. Avşar and E. Karademir, “Evaluation of Physiological Parameters in Cotton Production (Gossypium hirsutum L.) under Water Stress Conditions”, EJAR, vol. 9, no. 1, pp. 32–47, 2025.
ISNAD Avşar, Özlem - Karademir, Emine. “Evaluation of Physiological Parameters in Cotton Production (Gossypium Hirsutum L.) under Water Stress Conditions”. Eurasian Journal of Agricultural Research 9/1 (June2025), 32-47.
JAMA Avşar Ö, Karademir E. Evaluation of Physiological Parameters in Cotton Production (Gossypium hirsutum L.) under Water Stress Conditions. EJAR. 2025;9:32–47.
MLA Avşar, Özlem and Emine Karademir. “Evaluation of Physiological Parameters in Cotton Production (Gossypium Hirsutum L.) under Water Stress Conditions”. Eurasian Journal of Agricultural Research, vol. 9, no. 1, 2025, pp. 32-47.
Vancouver Avşar Ö, Karademir E. Evaluation of Physiological Parameters in Cotton Production (Gossypium hirsutum L.) under Water Stress Conditions. EJAR. 2025;9(1):32-47.
Eurasian Journal of Agricultural Research (EJAR)   ISSN: 2636-8226   Web: https://dergipark.org.tr/en/pub/ejar   e-mail: agriculturalresearchjournal@gmail.com