Research Article
BibTex RIS Cite
Year 2023, Volume: 7 Issue: 2, 109 - 126, 26.12.2023

Abstract

References

  • Abdouli H. & Selmi H. 2020. Effects of encapsulated vitamins on growth, nutrient utilization, and oxidative status in fattening goats. Small Ruminant Research, 184, 106041.
  • Adineh H., Harsij M., Jafaryan H., Asadi M. 2020. The effects of microencapsulated garlic (Allium sativum) extract on growth performance, body composition, immune response and antioxidant status of rainbow trout (Oncorhynchus mykiss) juveniles. J. Appl. Anim. Res. 48 (1), 372–378. https://doi.org/10.1080/ 09712119.2020.1808473.
  • Ahmad M. 2014. Application of microencapsulation in food industry: A review. Journal of Saudi Chemical Society, 18(4): 195-205.
  • Akhavan A. 2018. Encapsulation of essential oils to enhance their antimicrobial activity in foods. Food Bioscience, 26, 1-7.
  • Alemu AW, Romero-Pérez A, Araujo RC, Beauchemin KA. 2019. Effect of Encapsulated Nitrate and Microencapsulated Blend of Essential Oils on Growth Performance and Methane Emissions from Beef Steers Fed Backgrounding Diets. Animals (Basel). 2019 Jan 10;9(1):21. doi: 10.3390/ani9010021. PMID: 30634606; PMCID: PMC6356342.
  • Ali B., Sechman A., Skomiał J. & Siwicki A. K. 2019. The effect of feed supplementation with a new glucocorticoid receptor antagonist encapsulated in liposomes on the hypothalamo-pituitary-adrenal axis in transported sheep. PLoS ONE, 14(9), e0222679.
  • Amin N, Tagliapietra F, Arango S, Guzzo N, Bailoni L. 2021. Free and Microencapsulated Essential Oils Incubated In Vitro: Ruminal Stability and Fermentation Parameters. Animals (Basel). (2021) Jan 14;11(1):180. doi: 10.3390/ani11010180. PMID: 33466658; PMCID: PMC7828777.
  • Anwari, K. O., Soltan, M. A., Sallam, S. M. A., & Alencar, S. M. 2020. Encapsulation of Aspergillus oryzae using the extrusion-spheronization process to improve ruminal utilization of dietary protein. Animal Feed Science and Technology, 263, 114462.
  • Aryana K. J. & Meyer A. 2016. Encapsulation of vitamins and minerals for improving the nutritional quality of yogurt made from goat's milk. International Journal of Food Science & Technology, 51(9), 2063-2071.
  • Azari R., Seifdavati J. & Karim G. 2019. Encapsulation of saffron petal anthocyanins by water-soluble protein and gum arabic using emulsification and solvent evaporation. Journal of Food Science and Technology, 56(4), 1875-1883.
  • Azeem T., Akhtar N. & Rehman A. 2017. Encapsulation of feed additives for ruminants: A comprehensive review. Journal of Animal Science and Biotechnology, 8(1), 28.
  • Bach A., Iglesias C. & Devant M. 2007. Performance and metabolic status of dairy cows according to the form of the dietary nitrogen supplement. Journal of Dairy Science, 90(8): 3832-3841.
  • Beauchemin K. A., McGinn S. M. & Benchaar C. 2017. Feeding bioactive forages decreases enteric methane in cattle. Canadian Journal of Animal Science, 97(4): 591-598.
  • Bernabucci U., Basiricò L., Morera P., Dipasquale D., Vitali A., Piccioli-Cappelli F. & Calamari L. 2015. Heat shock in dairy cows: A meta-analysis. Cell Stress and Chaperones, 20(2), 315-327.
  • Bian L., Xing M., Cui L. & Yang L. 2021. Encapsulation of chitosan nanoparticles with HPMC by electrospinning: Release behavior and bioaccessibility of curcumin. Food Chemistry, 347, 128931.
  • Bianchi, M. L., Polidori, P., Bergamaschi, M., Piva, G., & Prandini, A. 2021. Encapsulated additives in dairy goat diets: Effects on milk fatty acid profile and sensory attributes. Journal of Dairy Science, 104(2), 1625-1634.
  • Chin, K. B., Keeton, J. T., & Longnecker, M. T. 2016. Use of microencapsulated essential oils and organic acids to extend the shelf life of fresh beef. Meat Science, 114, 168-176.
  • Coelho M. B. & Marangoni A. G. 2013. Encapsulation of unsaturated fatty acids using hydroxypropyl-beta-cyclodextrin and gum Arabic. Food Chemistry, 136(1): 209-214.
  • Cosco S, Ambrogi V, Musto P. & Carfagna C. 2006. Urea‐Formaldehyde Microcapsules Containing an Epoxy Resin: Influence of Reaction Parameters on the Encapsulation Yield. In Macromolecular symposia. Wiley‐Vch Verlag, p. 184-192.
  • Daniel M. A., Schwedler T. E., Bunney C. J. & Creighton T. R. 2018. Encapsulation as a strategy for improving medication compliance in cattle. Veterinary Record, 183(5), 159-160.
  • Das A., Ranjan S. & Deng X. 2019. Critical factors affecting the encapsulation efficiency of hydrophobically modified inulin. Food Hydrocolloids, 95, 24-30.
  • Di Grigoli A., Piccolo G., Bordonaro S. & Di Miceli G. 2021. Influence of encapsulated active compounds on the intake of dietary bitter supplements in dairy goats. Animals, 11(2), 373.
  • Favaretto J.A., Alba D.F., Marchiori M.S., Marcon H.J., Souza C.F., Baldissera M.D. 2020. Supplementation with a blend based on micro-encapsulated carvacrol, thymol, and cinnamaldehyde in lamb feed inhibits immune cells and improves growth performance. Livest. Sci. 240, 104144. https://doi.org/ 10.1016/j.livsci.2020.104144.
  • Gan S. T., Ng S. H., Lai O. M., Man Y. B. C. & Nazrim Marikkar J. M. 2020. Characterization of a physical blend-based encapsulated fish oil and its application in the enrichment of cookies. Food Hydrocolloids, 106, 105893.
  • Ghorbani B., Bahari A. & Vakili A. R. 2020. Effects of encapsulated live Lactobacillus acidophilus on growth performance, digestibility, and colonic microbial populations in sheep. Animal Feed Science and Technology, 259, 114313.
  • Githiori J. B., Höglund J., Waller P. J. & Baker R. L. 2006. The anthelmintic efficacy of the plant, Albizia anthelmintica, against the nematode parasite, Haemonchus contortus, in artificially infected sheep and goats. Veterinary Parasitology, 139(1-3): 165-171.
  • González-Bernal E., Caja G., Castro-Carrera T., Gasa J. & Losa R. 2019. Evaluation of a bitter taste masking agent in dairy cattle feed supplements. Journal of Dairy Science, 102(9): 8218-8227.
  • Górka P., Winiarska-Mieczan A., Kwiecień M. & Kowalska D. 2021. Effects of encapsulated vitamins and trace minerals on performance and mineral status of dairy cows. Animal Feed Science and Technology, 276, 114932.
  • Gott P.N., Weisbjerg M.R. & Hvelplund T. 2015. Rumen degradability and post-ruminal digestibility of amino acids in dairy cows. Animal, 9(9): 1474-1482.
  • Grilli E., Gallo A., Fustini M., Fantinati P. & Piva A. 2013. Microencapsulated sodium selenite supplementation in dairy cows: effects on selenium status. Animal 7, 1944-1949.
  • Guerin T., Al-Saadi N. & Schock A. 2020. Encapsulation as a strategy for odor masking in sheep medication administration. Veterinary Medicine and Science, 6(4), 950-957.
  • Gupta A., Eral H. B., Hatton T. A. & Doyle P. S. 2021. Controlling surface texture and release from superhydrophobic PDMS/TPX composite surfaces. Soft Matter, 7(6), 6413-6418.
  • Hadjipanayiotou M. 2000. Effect of supplementary polyethylene glycol and/or sodium bicarbonate on intake, digestibility, milk yield and composition in goats fed on lentisk (Pistacia lentiscus var. Chia) and carob (Ceratonia siliqua L.) shrub/grass hay. Small Ruminant Research, 36(2): 169-177.
  • Hegarty R. S., McFarlane J. R. & Godwin I. R. 2017. Use of encapsulated sodium bicarbonate to increase feed intake, fiber digestibility, and growth of weaner sheep. Journal of Animal Science, 95(9): 4121-4129.
  • Hosseini S. F., Khodaiyan F. & Kazemi M. 2016. Improvement of oxidative stability and release behavior of ruminant-derived oil encapsulated by protein nanoparticles. Food Chemistry, 194: 307-314.
  • Hosseini S. F., Rezaei M. & Zandi M. 2020. Preparation and functional properties of protein-based nanoparticles from faba bean protein isolate and its hydrolysate. Food Hydrocolloids, 25(7): 1816-1824.
  • Hristov A. N., Oh J., Giallongo F., Frederick T. W., Harper M. T., Weeks H. L. & Branco A. F. 2015. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences, 112(34): 10663-10668.
  • Hu Z.P., Wang T., Ahmad H., Zhang J.F., Zhang L.L., Zhong X. 2015. Effects of different formulations of α-tocopherol acetate (vitamin E) on growth performance, meat quality and antioxidant capacity in broiler chickens. Br. Poul. Sci. 56 (6), 687–695. https://doi.org/10.1080/00071668.2015.1080814.
  • Jones D. L., Aldridge B. M., Brand M. W. & Doyle R. C. 2018. The effects of encapsulated adaptogens on the physiological and behavioral response to stress in beef steers. Journal of Animal Science, 96(8): 3334-3342. Khezri A., Soltani M. & Rezaei M. 2016. Microencapsulation of feed additives for ruminants. Journal of Applied Animal Research, 44(1), 311-320.
  • Kim T.B., Lee J.S., Cho S.Y., Lee H.G. 2020. In vitro and in vivo studies of rumen-protected microencapsulated supplement comprising linseed oil, vitamin E, Rosemary extract, and hydrogenated palm oil on rumen fermentation, physiological profile, milk yield, and milk composition in dairy cows. Animals, 10 (9), 1631. https://doi.org/10.3390/ani10091631.
  • Konkol D., Wojnarowski K. 2018. The use of nanominerals in animal nutrition as a way to improve the composition and quality of animal products. J. Chem. (2018) https://doi.org/10.1155/2018/5927058.
  • Kumar R., Bera M. B., Tyagi B. & Pujari K. 2018. Encapsulation of quercetin in soy protein isolate/starch matrices by electrospinning. Food Hydrocolloids, 79, 190-200.
  • Kumar S., Ali M., Anjum S. & Tanveer A. 2017. Ruminant livestock production, and socio-economic development of the third world: An overview. Livestock Research for Rural Development, 29(5).
  • Lavilla M. & Calvo M. M. 2017. Encapsulation of antimicrobial agents to extend the shelf-life of dairy products. In Handbook of Encapsulation and Controlled Release (pp. 465-494). CRC Press.
  • Lemos A. R., Castillo J. E., Calado R. & Bettencourt A. F. 2016. Simvastatin lipid nanoparticles for oral delivery: In vitro stability, in vivo safety, and in vivo pharmacokinetics in beagle dogs. International Journal of Pharmaceutics, 506(1-2), 93-101.
  • Li X., Xing J., Guan L. L., Xu Q., Xu X. & Zhou M. 2017. Microencapsulated essential oils and organic acids as modifiers to manipulate in vitro rumen fermentation, reduce methane production and improve feed utilization of a high-concentrate diet. Animal Feed Science and Technology, 234, 96-106.
  • Luo Y., Du Y. & Lou L. 2018. Encapsulation of α-amylase and pullulanase and their applications in retarding retrogradation of rice starch. LWT, 97, 193-198.
  • Mach N., Devant M., Díaz I., Font-Furnols M., Oliver M. A., García J. A. & Bach À. 2017. The use of encapsulated niacin as a feed supplement improves cow performance and health. Journal of Dairy Science, 100(4), 2639-2649.
  • Mavromichalis I., Hancock J. D., Hines R. H. & Senne B. W. 2014. Effects of encapsulated essential oils and organic acids on the performance of broilers and pigs. Journal of Animal Science, 92(6), 2202-2214.
  • Mehdi Y., Létourneau-Montminy M. P., Gaucher M. L., Chorfi Y., Suresh G. & Rouissi T. 2018. Use of feed technology to improve the sustainability of the pork production value chain. Animal Feed Science and Technology, 234, 60-76.
  • Mehrotra M., Bhardwaj N. & Tandon P. 2017. In vitro characterization and dissolution studies of alginate beads encapsulated with Diclofenac sodium. International Journal of Pharmaceutical Sciences and Research, 8(11), 4770.
  • Mehta N., Ahlawat O. P. & Sharma D. P. 2017. Microencapsulation: A promising technique for controlled drug delivery. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(1), 1000-1011.
  • Melo M., da Silva A., Silva Filho E., Oliveira R., Silva Junior J., Oliveira JP., Vaz A., Moura J., Pereira Filho J., Bezerra L. 2021. Polymeric Microparticles of Calcium Pectinate Containing Urea for Slow Release in Ruminant Diet. Polymers (Basel). 2021 Oct 31;13(21):3776. doi: 10.3390/polym13213776. PMID: 34771334; PMCID: PMC8588521.
  • Mitra A., Chakrabarti P., Chatterjee J. & Basak B. 2018. Comparative studies of encapsulated and non-encapsulated Clove (Syzygium aromaticum) oil and clove oleoresin in quality preservation of refrigerated stored fish fillets. LWT-Food Science and Technology, 96, 254-262.
  • Natsir M.H., Hartutik O.S. & Widodo E. 2013. Effect of either powder or encapsulated form of garlic and Phyllanthus niruri L. mixture on broiler performances, intestinal characteristics and intestinal microflora. International Journal of Poultry Science 12, 676.
  • Nocek J. E. 2017. Production, absorption and hepatic metabolism of lysine and methionine by dairy cows. Proceedings of the 2017 Cornell Nutrition Conference for Feed Manufacturers. Cornell University.
  • Noval B., Valero N., Serna‐Andrés S., Esteve M. J. & Frígola A. 2018. Microencapsulation of tocopherol using zein as coating material. Journal of Food Process Engineering, 41(3), e12681.
  • Oliveira B. R., Meale S. J. & Chaves A. V. 2019. Encapsulation technology for protection of additives in ruminant diets. Animals, 9(10), 767.
  • Oliveira B. R., Meale S. J., Lima C. S., Chaves A. V., McAllister T. A. & Wang Y. 2020. Effects of encapsulated tannins and dietary protein content on methane emissions, rumen fermentation, and nutrient digestibility in sheep. Journal of Animal Science, 98(7), skaa181.
  • Oliveira B. R., Meale S. J., Silva A. L., Chaves A. V., McAllister T. A. & Wang Y. 2019. Evaluation of oil encapsulation and processing method on rumen-protected lysine products: In vitro characteristics and in situ recovery. Journal of Animal Science, 97(11), 4551-4563.
  • Ozkan A., Erdogan Y. & Alpas H. 2013. The effects of microencapsulated phase change materials in meat products. Food and Bioproducts Processing, 91(3), 215-222.
  • Papadopoulos S., Quevedo F., Regadas Filho J. G. L., Esposito F. & Bevilaqua C. 2019. Encapsulated glycerides and condensed tannins used as modifiers of rumen fermentation in sheep fed high-forage diets. Journal of Animal Science, 97(4), 1660-1670.
  • Pappa E. C., Kalantzopoulos G. & Psimouli V. 2019. Effect of encapsulated Lactobacillus casei on the physicochemical, microbiological and sensory properties of traditional Greek Feta cheese. LWT, 108704.
  • Rajam R., Subramanian P. 2022. Encapsulation of probiotics: past, present and future. Beni-Suef Univ J Basic Appl Sci 11, 46 https://doi.org/10.1186/s43088-022-00228-w
  • Sabry J. H. 2019. Effect of supplementation with microencapsulated vitamins and minerals on growth and reproductive performance of goats. Animal Nutrition, 5(2), 131-136.
  • Santana R. C., da Silva M. C., Fonseca A. J. M., Oliveira A. J., Oliveira R. L., Pereira M. N., ... & Fernandes M. H. M. R. 2015. Microencapsulation of the xylanase produced by Bacillus pumilus CBMAI 0008 and its use in poultry feed. Applied Biochemistry and Biotechnology, 176(3), 808-820.
  • Sensory R., Coli J. G., Gu D. & Starkey J. D. 2018. Encapsulation improves the delivery of odor and flavor enhancers in beef cattle diets and their effects on sensory characteristics of meat. Meat Science, 137, 137-144.
  • Silva S., Veiga M., Costa E.M., Oliveirals M.A.R., Pintado M. 2018. Nano encapsulation of polyphenols towards dairy beverage incorporation. Beverages 4:1–17. https://doi.org/10.3390/beverages4030061
  • Soares M. C., Bridi A. M., Luna A. S., Silva P. C., Sartori M. M. P. & Faigón A. 2020. Effects of encapsulated antioxidants on meat quality of lambs fed diets containing high levels of rancid fat. Meat Science, 160, 107969.
  • Spears J. W. 2017. Bioavailability of dietary trace minerals to ruminants: Advances and challenges. Animal Frontiers, 7(3), 6-12.
  • Stamilla A., Russo N., Messina A., Spadaro C., Natalello A., Caggia C., Randazzo C.L., Lanza M. 2020. Effects of the microencapsulated blend of organic acids and essential oils as a feed additive on quality of chicken breast meat. Animals 10 (4), 1–17. https://doi.org/10.3390/ani10040640.
  • Sun Q., Wang H., Zhang X. & Xiong H. 2014. Enhancing the stability of encapsulated fish oil by granulation with soy protein isolate. Journal of Food Engineering, 126, 87-94.
  • Suttle N.F. 2010. Mineral nutrition of livestock (4th ed.). CABI.
  • Taghvaei M., Jafari S. M., Assadpoor E., Nowrouzieh S. & Alishah O. 2021. Optimization of microencapsulation of fish oil using response surface methodology. Journal of Food Science and Technology, 58(2), 733-743.
  • Tamine L., Caluwaerts J. P. & Goffin D. 2019. Characterization of the polyphenolic and technological properties of grape pomace: Evaluation of its potential for incorporation into ruminant diets. Animal Feed Science and Technology, 248, 164-173.
  • Tao W.J., Liu L.J., Li H., Pei X., Wang G., Xiao Z.P., Xiao Z.P., Yu R., Li Z.F. & Wang M.Q. 2020. Effects of coated cysteamine on growth performance, carcass characteristics, meat quality and lipid metabolism in finishing pigs. Anim. Feed Sci. Technol. 263, 1–5. https://doi.org/10.1016/j.anifeedsci.2020.114480.
  • United States Food and Drug Administration. 2019. Generally Recognized as Safe (GRAS). [https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras].
  • Van Zijderveld S. M., Dijkstra J., Perdok H. B. & Newbold J. R. 2011. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. Journal of Dairy Science, 94(8), 4028-4038.
  • Vyas D., Martin J. & Teo A. 2020. Microencapsulation and the protection of beneficial probiotic bacteria during the stress of calf weaning. Food and Bioproducts Processing, 124, 103-112.
  • Wang C., Liu Q., Huo W. J., Yang W. Z., Dong K. H., Huang Y. X., ... & Wang F. 2016. Effects of encapsulated nitrate on enteric methane production and nitrogen utilization in beef cattle offered corn stover. Journal of Animal Science, 94(2), 776-787.
  • Wang Y., Zhang Z. & Cui W. 2019. Effects of nanoencapsulated essential oils on in vitro rumen fermentation and growth performance in beef cattle. Journal of Animal Science, 97(4), 1613-1623.
  • Xiong Y. L., & Lee J. H. 2018. Hydrocolloid encapsulation to improve texture of meat products. In Handbook of Hydrocolloids (pp. 345-363). Woodhead Publishing.
  • Yáñez-Ruiz D. R., Bannink A., Dijkstra J., Kebreab E., Morgavi D. P., O'Kiely P., ... & McAllister T. A. 2018. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Animal Feed Science and Technology, 245, 62-81.
  • Yazdankhah S., Hatami M. A., Bakhshalinejad R. & Parvar R. 2018. The effects of encapsulated trace elements on growth performance, antioxidant status, and immunity in fattening lambs. Small Ruminant Research, 168, 93-100.
  • Yu X., Liu Z., Ma X., He L., Guo W., Yan X. & Xu Y. 2020. Encapsulation technology in sheep diets to reduce the off-flavor of meat and its impacts on sheep performance, immune function, and ruminal fermentation. Animals, 10(4), 633.
  • Zanello G., Meurens F., Berri M., Salmon H. & Meunier-Salaün M. C. 2016. Encapsulated microorganisms to enhance gut health in dairy cows. Animal, 10(7), 1116-1122.
  • Zhou Y., Zhao Y., Ma M., Li H. & Xu X. 2017. Microencapsulation of flavor compounds via spray drying: A review. Food Research International, 100, 20-42.
  • Zhu L., Xu J., Xia C., Tang Z., Shi X. & Zhao X. 2018. Effects of microencapsulated probiotics and prebiotics on growth performance, antioxidative abilities, immune functions, and caecal microflora in broilers. Food and Agricultural Immunology, 29(1), 256-266.

Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived – Products

Year 2023, Volume: 7 Issue: 2, 109 - 126, 26.12.2023

Abstract

Encapsulation nutrient technology has emerged as a transformative approach to enhance ruminant nutrition and improve the quality of products derived from ruminants. This method involves the protection of sensitive compounds through encapsulation, enabling controlled release and targeted delivery. In the realm of ruminant nutrition, encapsulation has led to improved nutrient utilization, reduced wastage, and enhanced animal performance. It safeguards essential nutrients, including vitamins, minerals, probiotics, and additives, from rumen degradation, ensuring optimal health and growth. Moreover, in ruminant-derived products, encapsulation practices have contributed to superior product quality by enhancing taste, texture, and shelf life. It can mask unpalatable compounds, release flavor enhancers, and reduce oxidation in meat and dairy products. However, the broader implementation of encapsulation technology faces challenges related to cost, formulation complexities, and regulatory approval. Addressing these obstacles and fostering sustainable practices will be crucial in realizing the full potential of encapsulation technology in the ruminant and ruminant-derived product industries. Future research should focus on sustainable materials, cost-effective methods, and tailored solutions for different ruminant species, bioavailability studies, methane mitigation technologies, and long-term health assessments. Furthermore, education, interdisciplinary collaboration, and the development of regulatory standards are essential to ensure the safe and effective use of encapsulation technology in ruminant and ruminant-derived products.

References

  • Abdouli H. & Selmi H. 2020. Effects of encapsulated vitamins on growth, nutrient utilization, and oxidative status in fattening goats. Small Ruminant Research, 184, 106041.
  • Adineh H., Harsij M., Jafaryan H., Asadi M. 2020. The effects of microencapsulated garlic (Allium sativum) extract on growth performance, body composition, immune response and antioxidant status of rainbow trout (Oncorhynchus mykiss) juveniles. J. Appl. Anim. Res. 48 (1), 372–378. https://doi.org/10.1080/ 09712119.2020.1808473.
  • Ahmad M. 2014. Application of microencapsulation in food industry: A review. Journal of Saudi Chemical Society, 18(4): 195-205.
  • Akhavan A. 2018. Encapsulation of essential oils to enhance their antimicrobial activity in foods. Food Bioscience, 26, 1-7.
  • Alemu AW, Romero-Pérez A, Araujo RC, Beauchemin KA. 2019. Effect of Encapsulated Nitrate and Microencapsulated Blend of Essential Oils on Growth Performance and Methane Emissions from Beef Steers Fed Backgrounding Diets. Animals (Basel). 2019 Jan 10;9(1):21. doi: 10.3390/ani9010021. PMID: 30634606; PMCID: PMC6356342.
  • Ali B., Sechman A., Skomiał J. & Siwicki A. K. 2019. The effect of feed supplementation with a new glucocorticoid receptor antagonist encapsulated in liposomes on the hypothalamo-pituitary-adrenal axis in transported sheep. PLoS ONE, 14(9), e0222679.
  • Amin N, Tagliapietra F, Arango S, Guzzo N, Bailoni L. 2021. Free and Microencapsulated Essential Oils Incubated In Vitro: Ruminal Stability and Fermentation Parameters. Animals (Basel). (2021) Jan 14;11(1):180. doi: 10.3390/ani11010180. PMID: 33466658; PMCID: PMC7828777.
  • Anwari, K. O., Soltan, M. A., Sallam, S. M. A., & Alencar, S. M. 2020. Encapsulation of Aspergillus oryzae using the extrusion-spheronization process to improve ruminal utilization of dietary protein. Animal Feed Science and Technology, 263, 114462.
  • Aryana K. J. & Meyer A. 2016. Encapsulation of vitamins and minerals for improving the nutritional quality of yogurt made from goat's milk. International Journal of Food Science & Technology, 51(9), 2063-2071.
  • Azari R., Seifdavati J. & Karim G. 2019. Encapsulation of saffron petal anthocyanins by water-soluble protein and gum arabic using emulsification and solvent evaporation. Journal of Food Science and Technology, 56(4), 1875-1883.
  • Azeem T., Akhtar N. & Rehman A. 2017. Encapsulation of feed additives for ruminants: A comprehensive review. Journal of Animal Science and Biotechnology, 8(1), 28.
  • Bach A., Iglesias C. & Devant M. 2007. Performance and metabolic status of dairy cows according to the form of the dietary nitrogen supplement. Journal of Dairy Science, 90(8): 3832-3841.
  • Beauchemin K. A., McGinn S. M. & Benchaar C. 2017. Feeding bioactive forages decreases enteric methane in cattle. Canadian Journal of Animal Science, 97(4): 591-598.
  • Bernabucci U., Basiricò L., Morera P., Dipasquale D., Vitali A., Piccioli-Cappelli F. & Calamari L. 2015. Heat shock in dairy cows: A meta-analysis. Cell Stress and Chaperones, 20(2), 315-327.
  • Bian L., Xing M., Cui L. & Yang L. 2021. Encapsulation of chitosan nanoparticles with HPMC by electrospinning: Release behavior and bioaccessibility of curcumin. Food Chemistry, 347, 128931.
  • Bianchi, M. L., Polidori, P., Bergamaschi, M., Piva, G., & Prandini, A. 2021. Encapsulated additives in dairy goat diets: Effects on milk fatty acid profile and sensory attributes. Journal of Dairy Science, 104(2), 1625-1634.
  • Chin, K. B., Keeton, J. T., & Longnecker, M. T. 2016. Use of microencapsulated essential oils and organic acids to extend the shelf life of fresh beef. Meat Science, 114, 168-176.
  • Coelho M. B. & Marangoni A. G. 2013. Encapsulation of unsaturated fatty acids using hydroxypropyl-beta-cyclodextrin and gum Arabic. Food Chemistry, 136(1): 209-214.
  • Cosco S, Ambrogi V, Musto P. & Carfagna C. 2006. Urea‐Formaldehyde Microcapsules Containing an Epoxy Resin: Influence of Reaction Parameters on the Encapsulation Yield. In Macromolecular symposia. Wiley‐Vch Verlag, p. 184-192.
  • Daniel M. A., Schwedler T. E., Bunney C. J. & Creighton T. R. 2018. Encapsulation as a strategy for improving medication compliance in cattle. Veterinary Record, 183(5), 159-160.
  • Das A., Ranjan S. & Deng X. 2019. Critical factors affecting the encapsulation efficiency of hydrophobically modified inulin. Food Hydrocolloids, 95, 24-30.
  • Di Grigoli A., Piccolo G., Bordonaro S. & Di Miceli G. 2021. Influence of encapsulated active compounds on the intake of dietary bitter supplements in dairy goats. Animals, 11(2), 373.
  • Favaretto J.A., Alba D.F., Marchiori M.S., Marcon H.J., Souza C.F., Baldissera M.D. 2020. Supplementation with a blend based on micro-encapsulated carvacrol, thymol, and cinnamaldehyde in lamb feed inhibits immune cells and improves growth performance. Livest. Sci. 240, 104144. https://doi.org/ 10.1016/j.livsci.2020.104144.
  • Gan S. T., Ng S. H., Lai O. M., Man Y. B. C. & Nazrim Marikkar J. M. 2020. Characterization of a physical blend-based encapsulated fish oil and its application in the enrichment of cookies. Food Hydrocolloids, 106, 105893.
  • Ghorbani B., Bahari A. & Vakili A. R. 2020. Effects of encapsulated live Lactobacillus acidophilus on growth performance, digestibility, and colonic microbial populations in sheep. Animal Feed Science and Technology, 259, 114313.
  • Githiori J. B., Höglund J., Waller P. J. & Baker R. L. 2006. The anthelmintic efficacy of the plant, Albizia anthelmintica, against the nematode parasite, Haemonchus contortus, in artificially infected sheep and goats. Veterinary Parasitology, 139(1-3): 165-171.
  • González-Bernal E., Caja G., Castro-Carrera T., Gasa J. & Losa R. 2019. Evaluation of a bitter taste masking agent in dairy cattle feed supplements. Journal of Dairy Science, 102(9): 8218-8227.
  • Górka P., Winiarska-Mieczan A., Kwiecień M. & Kowalska D. 2021. Effects of encapsulated vitamins and trace minerals on performance and mineral status of dairy cows. Animal Feed Science and Technology, 276, 114932.
  • Gott P.N., Weisbjerg M.R. & Hvelplund T. 2015. Rumen degradability and post-ruminal digestibility of amino acids in dairy cows. Animal, 9(9): 1474-1482.
  • Grilli E., Gallo A., Fustini M., Fantinati P. & Piva A. 2013. Microencapsulated sodium selenite supplementation in dairy cows: effects on selenium status. Animal 7, 1944-1949.
  • Guerin T., Al-Saadi N. & Schock A. 2020. Encapsulation as a strategy for odor masking in sheep medication administration. Veterinary Medicine and Science, 6(4), 950-957.
  • Gupta A., Eral H. B., Hatton T. A. & Doyle P. S. 2021. Controlling surface texture and release from superhydrophobic PDMS/TPX composite surfaces. Soft Matter, 7(6), 6413-6418.
  • Hadjipanayiotou M. 2000. Effect of supplementary polyethylene glycol and/or sodium bicarbonate on intake, digestibility, milk yield and composition in goats fed on lentisk (Pistacia lentiscus var. Chia) and carob (Ceratonia siliqua L.) shrub/grass hay. Small Ruminant Research, 36(2): 169-177.
  • Hegarty R. S., McFarlane J. R. & Godwin I. R. 2017. Use of encapsulated sodium bicarbonate to increase feed intake, fiber digestibility, and growth of weaner sheep. Journal of Animal Science, 95(9): 4121-4129.
  • Hosseini S. F., Khodaiyan F. & Kazemi M. 2016. Improvement of oxidative stability and release behavior of ruminant-derived oil encapsulated by protein nanoparticles. Food Chemistry, 194: 307-314.
  • Hosseini S. F., Rezaei M. & Zandi M. 2020. Preparation and functional properties of protein-based nanoparticles from faba bean protein isolate and its hydrolysate. Food Hydrocolloids, 25(7): 1816-1824.
  • Hristov A. N., Oh J., Giallongo F., Frederick T. W., Harper M. T., Weeks H. L. & Branco A. F. 2015. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences, 112(34): 10663-10668.
  • Hu Z.P., Wang T., Ahmad H., Zhang J.F., Zhang L.L., Zhong X. 2015. Effects of different formulations of α-tocopherol acetate (vitamin E) on growth performance, meat quality and antioxidant capacity in broiler chickens. Br. Poul. Sci. 56 (6), 687–695. https://doi.org/10.1080/00071668.2015.1080814.
  • Jones D. L., Aldridge B. M., Brand M. W. & Doyle R. C. 2018. The effects of encapsulated adaptogens on the physiological and behavioral response to stress in beef steers. Journal of Animal Science, 96(8): 3334-3342. Khezri A., Soltani M. & Rezaei M. 2016. Microencapsulation of feed additives for ruminants. Journal of Applied Animal Research, 44(1), 311-320.
  • Kim T.B., Lee J.S., Cho S.Y., Lee H.G. 2020. In vitro and in vivo studies of rumen-protected microencapsulated supplement comprising linseed oil, vitamin E, Rosemary extract, and hydrogenated palm oil on rumen fermentation, physiological profile, milk yield, and milk composition in dairy cows. Animals, 10 (9), 1631. https://doi.org/10.3390/ani10091631.
  • Konkol D., Wojnarowski K. 2018. The use of nanominerals in animal nutrition as a way to improve the composition and quality of animal products. J. Chem. (2018) https://doi.org/10.1155/2018/5927058.
  • Kumar R., Bera M. B., Tyagi B. & Pujari K. 2018. Encapsulation of quercetin in soy protein isolate/starch matrices by electrospinning. Food Hydrocolloids, 79, 190-200.
  • Kumar S., Ali M., Anjum S. & Tanveer A. 2017. Ruminant livestock production, and socio-economic development of the third world: An overview. Livestock Research for Rural Development, 29(5).
  • Lavilla M. & Calvo M. M. 2017. Encapsulation of antimicrobial agents to extend the shelf-life of dairy products. In Handbook of Encapsulation and Controlled Release (pp. 465-494). CRC Press.
  • Lemos A. R., Castillo J. E., Calado R. & Bettencourt A. F. 2016. Simvastatin lipid nanoparticles for oral delivery: In vitro stability, in vivo safety, and in vivo pharmacokinetics in beagle dogs. International Journal of Pharmaceutics, 506(1-2), 93-101.
  • Li X., Xing J., Guan L. L., Xu Q., Xu X. & Zhou M. 2017. Microencapsulated essential oils and organic acids as modifiers to manipulate in vitro rumen fermentation, reduce methane production and improve feed utilization of a high-concentrate diet. Animal Feed Science and Technology, 234, 96-106.
  • Luo Y., Du Y. & Lou L. 2018. Encapsulation of α-amylase and pullulanase and their applications in retarding retrogradation of rice starch. LWT, 97, 193-198.
  • Mach N., Devant M., Díaz I., Font-Furnols M., Oliver M. A., García J. A. & Bach À. 2017. The use of encapsulated niacin as a feed supplement improves cow performance and health. Journal of Dairy Science, 100(4), 2639-2649.
  • Mavromichalis I., Hancock J. D., Hines R. H. & Senne B. W. 2014. Effects of encapsulated essential oils and organic acids on the performance of broilers and pigs. Journal of Animal Science, 92(6), 2202-2214.
  • Mehdi Y., Létourneau-Montminy M. P., Gaucher M. L., Chorfi Y., Suresh G. & Rouissi T. 2018. Use of feed technology to improve the sustainability of the pork production value chain. Animal Feed Science and Technology, 234, 60-76.
  • Mehrotra M., Bhardwaj N. & Tandon P. 2017. In vitro characterization and dissolution studies of alginate beads encapsulated with Diclofenac sodium. International Journal of Pharmaceutical Sciences and Research, 8(11), 4770.
  • Mehta N., Ahlawat O. P. & Sharma D. P. 2017. Microencapsulation: A promising technique for controlled drug delivery. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 8(1), 1000-1011.
  • Melo M., da Silva A., Silva Filho E., Oliveira R., Silva Junior J., Oliveira JP., Vaz A., Moura J., Pereira Filho J., Bezerra L. 2021. Polymeric Microparticles of Calcium Pectinate Containing Urea for Slow Release in Ruminant Diet. Polymers (Basel). 2021 Oct 31;13(21):3776. doi: 10.3390/polym13213776. PMID: 34771334; PMCID: PMC8588521.
  • Mitra A., Chakrabarti P., Chatterjee J. & Basak B. 2018. Comparative studies of encapsulated and non-encapsulated Clove (Syzygium aromaticum) oil and clove oleoresin in quality preservation of refrigerated stored fish fillets. LWT-Food Science and Technology, 96, 254-262.
  • Natsir M.H., Hartutik O.S. & Widodo E. 2013. Effect of either powder or encapsulated form of garlic and Phyllanthus niruri L. mixture on broiler performances, intestinal characteristics and intestinal microflora. International Journal of Poultry Science 12, 676.
  • Nocek J. E. 2017. Production, absorption and hepatic metabolism of lysine and methionine by dairy cows. Proceedings of the 2017 Cornell Nutrition Conference for Feed Manufacturers. Cornell University.
  • Noval B., Valero N., Serna‐Andrés S., Esteve M. J. & Frígola A. 2018. Microencapsulation of tocopherol using zein as coating material. Journal of Food Process Engineering, 41(3), e12681.
  • Oliveira B. R., Meale S. J. & Chaves A. V. 2019. Encapsulation technology for protection of additives in ruminant diets. Animals, 9(10), 767.
  • Oliveira B. R., Meale S. J., Lima C. S., Chaves A. V., McAllister T. A. & Wang Y. 2020. Effects of encapsulated tannins and dietary protein content on methane emissions, rumen fermentation, and nutrient digestibility in sheep. Journal of Animal Science, 98(7), skaa181.
  • Oliveira B. R., Meale S. J., Silva A. L., Chaves A. V., McAllister T. A. & Wang Y. 2019. Evaluation of oil encapsulation and processing method on rumen-protected lysine products: In vitro characteristics and in situ recovery. Journal of Animal Science, 97(11), 4551-4563.
  • Ozkan A., Erdogan Y. & Alpas H. 2013. The effects of microencapsulated phase change materials in meat products. Food and Bioproducts Processing, 91(3), 215-222.
  • Papadopoulos S., Quevedo F., Regadas Filho J. G. L., Esposito F. & Bevilaqua C. 2019. Encapsulated glycerides and condensed tannins used as modifiers of rumen fermentation in sheep fed high-forage diets. Journal of Animal Science, 97(4), 1660-1670.
  • Pappa E. C., Kalantzopoulos G. & Psimouli V. 2019. Effect of encapsulated Lactobacillus casei on the physicochemical, microbiological and sensory properties of traditional Greek Feta cheese. LWT, 108704.
  • Rajam R., Subramanian P. 2022. Encapsulation of probiotics: past, present and future. Beni-Suef Univ J Basic Appl Sci 11, 46 https://doi.org/10.1186/s43088-022-00228-w
  • Sabry J. H. 2019. Effect of supplementation with microencapsulated vitamins and minerals on growth and reproductive performance of goats. Animal Nutrition, 5(2), 131-136.
  • Santana R. C., da Silva M. C., Fonseca A. J. M., Oliveira A. J., Oliveira R. L., Pereira M. N., ... & Fernandes M. H. M. R. 2015. Microencapsulation of the xylanase produced by Bacillus pumilus CBMAI 0008 and its use in poultry feed. Applied Biochemistry and Biotechnology, 176(3), 808-820.
  • Sensory R., Coli J. G., Gu D. & Starkey J. D. 2018. Encapsulation improves the delivery of odor and flavor enhancers in beef cattle diets and their effects on sensory characteristics of meat. Meat Science, 137, 137-144.
  • Silva S., Veiga M., Costa E.M., Oliveirals M.A.R., Pintado M. 2018. Nano encapsulation of polyphenols towards dairy beverage incorporation. Beverages 4:1–17. https://doi.org/10.3390/beverages4030061
  • Soares M. C., Bridi A. M., Luna A. S., Silva P. C., Sartori M. M. P. & Faigón A. 2020. Effects of encapsulated antioxidants on meat quality of lambs fed diets containing high levels of rancid fat. Meat Science, 160, 107969.
  • Spears J. W. 2017. Bioavailability of dietary trace minerals to ruminants: Advances and challenges. Animal Frontiers, 7(3), 6-12.
  • Stamilla A., Russo N., Messina A., Spadaro C., Natalello A., Caggia C., Randazzo C.L., Lanza M. 2020. Effects of the microencapsulated blend of organic acids and essential oils as a feed additive on quality of chicken breast meat. Animals 10 (4), 1–17. https://doi.org/10.3390/ani10040640.
  • Sun Q., Wang H., Zhang X. & Xiong H. 2014. Enhancing the stability of encapsulated fish oil by granulation with soy protein isolate. Journal of Food Engineering, 126, 87-94.
  • Suttle N.F. 2010. Mineral nutrition of livestock (4th ed.). CABI.
  • Taghvaei M., Jafari S. M., Assadpoor E., Nowrouzieh S. & Alishah O. 2021. Optimization of microencapsulation of fish oil using response surface methodology. Journal of Food Science and Technology, 58(2), 733-743.
  • Tamine L., Caluwaerts J. P. & Goffin D. 2019. Characterization of the polyphenolic and technological properties of grape pomace: Evaluation of its potential for incorporation into ruminant diets. Animal Feed Science and Technology, 248, 164-173.
  • Tao W.J., Liu L.J., Li H., Pei X., Wang G., Xiao Z.P., Xiao Z.P., Yu R., Li Z.F. & Wang M.Q. 2020. Effects of coated cysteamine on growth performance, carcass characteristics, meat quality and lipid metabolism in finishing pigs. Anim. Feed Sci. Technol. 263, 1–5. https://doi.org/10.1016/j.anifeedsci.2020.114480.
  • United States Food and Drug Administration. 2019. Generally Recognized as Safe (GRAS). [https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras].
  • Van Zijderveld S. M., Dijkstra J., Perdok H. B. & Newbold J. R. 2011. Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. Journal of Dairy Science, 94(8), 4028-4038.
  • Vyas D., Martin J. & Teo A. 2020. Microencapsulation and the protection of beneficial probiotic bacteria during the stress of calf weaning. Food and Bioproducts Processing, 124, 103-112.
  • Wang C., Liu Q., Huo W. J., Yang W. Z., Dong K. H., Huang Y. X., ... & Wang F. 2016. Effects of encapsulated nitrate on enteric methane production and nitrogen utilization in beef cattle offered corn stover. Journal of Animal Science, 94(2), 776-787.
  • Wang Y., Zhang Z. & Cui W. 2019. Effects of nanoencapsulated essential oils on in vitro rumen fermentation and growth performance in beef cattle. Journal of Animal Science, 97(4), 1613-1623.
  • Xiong Y. L., & Lee J. H. 2018. Hydrocolloid encapsulation to improve texture of meat products. In Handbook of Hydrocolloids (pp. 345-363). Woodhead Publishing.
  • Yáñez-Ruiz D. R., Bannink A., Dijkstra J., Kebreab E., Morgavi D. P., O'Kiely P., ... & McAllister T. A. 2018. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review. Animal Feed Science and Technology, 245, 62-81.
  • Yazdankhah S., Hatami M. A., Bakhshalinejad R. & Parvar R. 2018. The effects of encapsulated trace elements on growth performance, antioxidant status, and immunity in fattening lambs. Small Ruminant Research, 168, 93-100.
  • Yu X., Liu Z., Ma X., He L., Guo W., Yan X. & Xu Y. 2020. Encapsulation technology in sheep diets to reduce the off-flavor of meat and its impacts on sheep performance, immune function, and ruminal fermentation. Animals, 10(4), 633.
  • Zanello G., Meurens F., Berri M., Salmon H. & Meunier-Salaün M. C. 2016. Encapsulated microorganisms to enhance gut health in dairy cows. Animal, 10(7), 1116-1122.
  • Zhou Y., Zhao Y., Ma M., Li H. & Xu X. 2017. Microencapsulation of flavor compounds via spray drying: A review. Food Research International, 100, 20-42.
  • Zhu L., Xu J., Xia C., Tang Z., Shi X. & Zhao X. 2018. Effects of microencapsulated probiotics and prebiotics on growth performance, antioxidative abilities, immune functions, and caecal microflora in broilers. Food and Agricultural Immunology, 29(1), 256-266.
There are 88 citations in total.

Details

Primary Language English
Subjects Animal Growth and Development
Journal Section Articles
Authors

Abdulhamid Muhammad Garba This is me

Sema Yaman Fırıncıoğlu

Publication Date December 26, 2023
Published in Issue Year 2023 Volume: 7 Issue: 2

Cite

APA Garba, A. M., & Yaman Fırıncıoğlu, S. (2023). Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived – Products. Eurasian Journal of Agricultural Research, 7(2), 109-126.
AMA Garba AM, Yaman Fırıncıoğlu S. Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived – Products. EJAR. December 2023;7(2):109-126.
Chicago Garba, Abdulhamid Muhammad, and Sema Yaman Fırıncıoğlu. “Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived – Products”. Eurasian Journal of Agricultural Research 7, no. 2 (December 2023): 109-26.
EndNote Garba AM, Yaman Fırıncıoğlu S (December 1, 2023) Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived – Products. Eurasian Journal of Agricultural Research 7 2 109–126.
IEEE A. M. Garba and S. Yaman Fırıncıoğlu, “Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived – Products”, EJAR, vol. 7, no. 2, pp. 109–126, 2023.
ISNAD Garba, Abdulhamid Muhammad - Yaman Fırıncıoğlu, Sema. “Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived – Products”. Eurasian Journal of Agricultural Research 7/2 (December 2023), 109-126.
JAMA Garba AM, Yaman Fırıncıoğlu S. Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived – Products. EJAR. 2023;7:109–126.
MLA Garba, Abdulhamid Muhammad and Sema Yaman Fırıncıoğlu. “Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived – Products”. Eurasian Journal of Agricultural Research, vol. 7, no. 2, 2023, pp. 109-26.
Vancouver Garba AM, Yaman Fırıncıoğlu S. Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived – Products. EJAR. 2023;7(2):109-26.
Eurasian Journal of Agricultural Research (EJAR)   ISSN: 2636-8226   Web: https://dergipark.org.tr/en/pub/ejar   e-mail: agriculturalresearchjournal@gmail.com