Research Article
BibTex RIS Cite
Year 2024, Volume: 8 Issue: 2, 192 - 201

Abstract

References

  • Alekseev G.V., Aleksandrov E. I., Glok N. I., Ivanov N. E., Smolyanitsky V. M., Kharlanenkova, N. E. & Yulin, A. V. 2015. Arctic sea ice cover in connection with climate change. Izvestiya, Atmospheric and Oceanic Physics, 51, 889-902.
  • Alekseev G., Glok N. & Smirnov A. 2016. On assessment of the relationship between changes of sea ice extent and climate in the Arctic. International Journal of Climatology, 36(9), 3407-3412. Assessment A. C. I. 2004. Impacts of a warming Arctic-Arctic climate impact assessment (p. 144).
  • Biemans H., Siderius C., Lutz A. F., Nepal S., Ahmad B., Hassan T. & Immerzeel W. W. 2019. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nature Sustainability, 2(7), 594-601.
  • Bogdanova E., Andronov S., Soromotin A., Detter G., Sizov O., Hossain K. & Lobanov A. 2021. The impact of climate change on the food (in) security of the Siberian indigenous peoples in the Arctic: Environmental and health risks. Sustainability, 13(5), 2561.
  • Bogdanova E.N., Andronov S.V., Eds. 2019. Publishing House KIRA: Arkhangelsk, Russia, pp. 74–79.
  • Černý J., Elsterová J. & Culler L. 2021. Melting, melting pot-climate change and its impact on ticks and tick-borne pathogens in the Arctic. In Climate, ticks and disease (pp. 460-468). Wallingford UK: CABI.
  • Datsky A. V., Vedishcheva E. V. & Trofimova A. O. 2022. Features of the biology of mass fish species in Russian waters of the Chukchi Sea. 1. Commercial fish biomass. Family Gadidae. Journal of Ichthyology, 62(4), 560-585.
  • Duryagin P. & Knyazev S. 2022. Prosodic diversity in Standard Russian: pitch alignment in Central and Northern varieties. Russian linguistics, 46(2): 55-75.
  • Fondahl G., Espiritu A. A. & Ivanova A. 2020. Russia’s arctic regions and policies. The Palgrave handbook of Arctic policy and politics, 195-216.
  • Gaudard L., Avanzi F. & De Michele C. 2018. Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant. Applied Energy, 210, 604-612.
  • Howat I. M. & Eddy A. 2011. Multi-decadal retreat of Greenland’s marine-terminating glaciers. Journal of Glaciology, 57(203), 389-396.
  • Ingram J. 2011. A food systems approach to researching food security and its interactions with global environmental change. Food security, 3, 417-431.
  • IPCC, 2013. Summary for Policymakers. In Climate Change; Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., et al., Eds. Cambridge University Press: Cambridge, UK; p.1535
  • Jaakkola J. J., Juntunen S. & Näkkäläjärvi K. 2018. The holistic effects of climate change on the culture, well-being, and health of the Saami, the only indigenous people in the European Union. Current environmental health reports, 5, 401-417.
  • Johnston M. E. 2006. Impacts of global environmental change on tourism in the polar regions. In Tourism and global environmental change, pp. 37-53).
  • Kaltenborn B. P., Nellemann C. & Vistnes I. I. 2010. High mountain glaciers and climate change: challenges to human livelihoods and adaptation. UNEP, GRID-Arendal.
  • Khromova T., Nosenko G., Muraviev A., Nikitin S., Chernova L. & Zverkova N. 2016. Mountain area glaciers of Russia in the 20th and the beginning of the 21st centuries. In Developments in Earth Surface Processes, 21, 47-129
  • Kochtitzky W., Copland L., Van Wychen W., Hugonnet R., Hock R., Dowdeswell J. A. & Navarro F. 2022. The unquantified mass loss of Northern Hemisphere marine- terminating glaciers from 2000–2020. Nature Communications, 13(1), 5835.
  • Lakhtine W. 1930. Rights over the Arctic. American Journal of International Law, 24(4), 703-717.
  • Lebedev S. V. 2022. Features of the event-geographical distribution of folk-art products in Russia
  • Lindsay R. & Schweiger A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9(1), 269-283.
  • Lobanov A.A., Andronov S.V., Bogdanova E.N., Kochkin R.A., Popov A.I., Lobanova L.P., Shaduiko O.M., Kobel’kova I.V., Kambarov A.O. & Soromotin A.V. 2019. Changing diet and traditional lifestyle of the Indigenous Peoples of the Arctic zone of the Russian Federation: Assessment of the impact on health, living standards. In Food Security of the Indigenous Population of the Arctic region’s Climate in the Context of Climate Change, Proceedings of the All-Russian Scientific Conference, Severodvinsk, Arkhangelsk, Russia.
  • Malevsky-Malevich S. P., Molkentin E. K., Nadyozhina E. D. & Shklyarevich O. B. 2008. An assessment of potential change in wildfire activity in the Russian boreal forest zone induced by climate warming during the twenty-first century. Climatic Change, 86, 463-474.
  • Mårell A., Hofgaard A. & Danell K. 2006. Nutrient dynamics of reindeer forage species along snowmelt gradients at different ecological scales. Basic and Applied Ecology, 7(1), 13-30.
  • Mokhov I. I. 2015. Contemporary climate changes in the Arctic. Herald of the Russian Academy of Sciences, 85(3), 265-271.
  • Mokhov I. I. & Krivolutsky A. A. 2019. Russian National Report: Meteorology and Atmospheric.
  • Munir R., Bano T., Adil I. H. & Khayyam U. 2021. Perceptions of Glacier Grafting: An Indigenous Technique of Water Conservation for Food Security in Gilgit-Baltistan, Pakistan. Sustainability, 13(9), 5208. Nakvasina E. N., Volkov A. G. & Prozherina N. A. 2017. Provenance experiment with spruce (Picea abies (L.) Karst. and Picea obovata (Ledeb.)) in the North of Russia (Arkhangelsk region). Folia Forestalia Polonica. Series A. Forestry, 59(3).
  • Nilsen I., Hansen C., Kaplan I., Holmes E. & Langangen Ø. 2022. Exploring the role of Northeast Atlantic cod in the Barents Sea food web using a multi‐model approach. Fish and Fisheries, 23(5), 1083-1098.
  • O'Shea J. & Zvelebil M. 1984. Oleneostrovski mogilnik: Reconstructing the social and economic organization of prehistoric foragers in northern Russia. Journal of Anthropological Archaeology, 3(1), 1-40.
  • Pollack H. 2010. A world without ice. Penguin.
  • Rezaeianzadeh M., Tabari H., Arabi Yazdi A., Isik S. & Kalin L. 2014. Flood flow forecasting using ANN, ANFIS and regression models. Neural Computing and Applications, 25(1), 25-37.
  • Revich B. A. & Podolnaya M. A. 2011. Thawing of permafrost may disturb historic cattle burial grounds in East Siberia. Global health action, 4(1), 8482.
  • Salihi P. B. A. & Üçler N. 2021. The Effect of the Data Type on Anfis Results, Case Study Temperature and Relative Humidity. Journal of Scientific Reports-A, (046), 14-33.
  • Shepherd A., Ivins E., Rignot E., Smith B., Van Den Broeke M., Velicogna I. & WoutersB. E. 2018. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219-222
  • Stibal M., Šabacká M. & Žárský J. 2012. Biological processes on glacier and ice sheet surfaces. Nature Geoscience, 5(11), 771-774.
  • Thompson L. G., Mosley-Thompson E. S., Lin P., Davis M. E., Mashiotta T. A. & Brecher, H. H. 2004. Low-latitude mountain glacier evidence for abrupt climate changes. In AGU Fall Meeting Abstracts, pp. C44A-02).
  • Tveraa T., Stien A., Bårdsen B. J. & Fauchald P. 2013. Population densities, vegetation green-up, and plant productivity: impacts on reproductive success and juvenile body mass in reindeer. PloS one, 8(2), e56450.
  • Vorobyeva S. S., Trunova V. A., Stepanova O. G., Zvereva V. V., Petrovskii S. K., Melgunov M. S. & Fedotov A. P. 2015. Impact of glacier changes on ecosystem of proglacial lakes in high mountain regions of East Siberia (Russia). Environmental Earth Sciences, 74, 2055-2063.
  • Unlukal C. & Erguven G.O. 2024. Smart Agricultural Approach and Good Agricultural Practices in Sustainable Development Goal. Eurasian Journal of Agricultural Research, 8(1), 24-32.
  • Vuille M., Carey M., Huggel C., Buytaert W., Rabatel A., Jacobsen D. & Sicart J. E. 2018. Rapid decline of snow and ice in the tropical Andes–Impacts, uncertainties and challenges ahead. Earth-science reviews, 176, 195-213.
  • Wharton Jr, R. A., McKay C. P., Simmons Jr, G. M. & Parker B. C. 1985. Cryoconite holes on glaciers. Bioscience, 499-503.
  • White D., Hinzman L., Alessa L., Cassano J., Chambers M., Falkner K. & Zhang T. 2007. The arctic freshwater system: Changes and impacts. Journal of geophysical research: Biogeosciences, 112(G4).
  • Zemp M., Huss M., Thibert E., Eckert N., McNabb R., Huber J. & Cogley J. G. 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752), 382-386.

The Impact of Glacier Melts on Food Production in North Zone of Russia

Year 2024, Volume: 8 Issue: 2, 192 - 201

Abstract

Food production has emerged as a critical issue for nations with varying levels of economic development, which is always had to contend with an unfavorable weather.The climatic variability changes including temperature, rainy days, humidity, precipitation and sunny days. Therefore, this have direct and indirect effects on food production (agriculture, aquculture, meat and dairy products). One of the regions where unfavorable climate is causing significant mass loss of glaciers melt in Siberia (the northern part of Russia). As well as, climate change and glaciers melting is projected to positively and negatively effects the availability of foods and food productions in this region. In this research, we tried to draw attention to the effects of ice melt occurring due to global warming in the northern region of Russia on food production. For this purpose, some climate parameters (Temperature, Total Precipitation, Rainy days, Humidity, 1991-2021; Sunshine duration, 1999-2019) observed for many years in the northern regions of Russia were statistically analyzed. As a result of the study, the average Temperature: 5.7 0C ± 10.268; Min temperature: 1.9 0C ± 9.412; Maximum temperature: 9.0 0C ± 11.00; Total Precipitation: 678 mm year-1 ± 14.607; Humidity: 76% ± 8.039; Number of rainy days: 89 days year-1 ± 0.831; Sunshine duration: 6.3 hours day-1 ± 4.345. In other studies conducted on climate change and food production in this region, it can be said that food production is affected by global warming and this situation shows an increasing trend.

References

  • Alekseev G.V., Aleksandrov E. I., Glok N. I., Ivanov N. E., Smolyanitsky V. M., Kharlanenkova, N. E. & Yulin, A. V. 2015. Arctic sea ice cover in connection with climate change. Izvestiya, Atmospheric and Oceanic Physics, 51, 889-902.
  • Alekseev G., Glok N. & Smirnov A. 2016. On assessment of the relationship between changes of sea ice extent and climate in the Arctic. International Journal of Climatology, 36(9), 3407-3412. Assessment A. C. I. 2004. Impacts of a warming Arctic-Arctic climate impact assessment (p. 144).
  • Biemans H., Siderius C., Lutz A. F., Nepal S., Ahmad B., Hassan T. & Immerzeel W. W. 2019. Importance of snow and glacier meltwater for agriculture on the Indo-Gangetic Plain. Nature Sustainability, 2(7), 594-601.
  • Bogdanova E., Andronov S., Soromotin A., Detter G., Sizov O., Hossain K. & Lobanov A. 2021. The impact of climate change on the food (in) security of the Siberian indigenous peoples in the Arctic: Environmental and health risks. Sustainability, 13(5), 2561.
  • Bogdanova E.N., Andronov S.V., Eds. 2019. Publishing House KIRA: Arkhangelsk, Russia, pp. 74–79.
  • Černý J., Elsterová J. & Culler L. 2021. Melting, melting pot-climate change and its impact on ticks and tick-borne pathogens in the Arctic. In Climate, ticks and disease (pp. 460-468). Wallingford UK: CABI.
  • Datsky A. V., Vedishcheva E. V. & Trofimova A. O. 2022. Features of the biology of mass fish species in Russian waters of the Chukchi Sea. 1. Commercial fish biomass. Family Gadidae. Journal of Ichthyology, 62(4), 560-585.
  • Duryagin P. & Knyazev S. 2022. Prosodic diversity in Standard Russian: pitch alignment in Central and Northern varieties. Russian linguistics, 46(2): 55-75.
  • Fondahl G., Espiritu A. A. & Ivanova A. 2020. Russia’s arctic regions and policies. The Palgrave handbook of Arctic policy and politics, 195-216.
  • Gaudard L., Avanzi F. & De Michele C. 2018. Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant. Applied Energy, 210, 604-612.
  • Howat I. M. & Eddy A. 2011. Multi-decadal retreat of Greenland’s marine-terminating glaciers. Journal of Glaciology, 57(203), 389-396.
  • Ingram J. 2011. A food systems approach to researching food security and its interactions with global environmental change. Food security, 3, 417-431.
  • IPCC, 2013. Summary for Policymakers. In Climate Change; Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., et al., Eds. Cambridge University Press: Cambridge, UK; p.1535
  • Jaakkola J. J., Juntunen S. & Näkkäläjärvi K. 2018. The holistic effects of climate change on the culture, well-being, and health of the Saami, the only indigenous people in the European Union. Current environmental health reports, 5, 401-417.
  • Johnston M. E. 2006. Impacts of global environmental change on tourism in the polar regions. In Tourism and global environmental change, pp. 37-53).
  • Kaltenborn B. P., Nellemann C. & Vistnes I. I. 2010. High mountain glaciers and climate change: challenges to human livelihoods and adaptation. UNEP, GRID-Arendal.
  • Khromova T., Nosenko G., Muraviev A., Nikitin S., Chernova L. & Zverkova N. 2016. Mountain area glaciers of Russia in the 20th and the beginning of the 21st centuries. In Developments in Earth Surface Processes, 21, 47-129
  • Kochtitzky W., Copland L., Van Wychen W., Hugonnet R., Hock R., Dowdeswell J. A. & Navarro F. 2022. The unquantified mass loss of Northern Hemisphere marine- terminating glaciers from 2000–2020. Nature Communications, 13(1), 5835.
  • Lakhtine W. 1930. Rights over the Arctic. American Journal of International Law, 24(4), 703-717.
  • Lebedev S. V. 2022. Features of the event-geographical distribution of folk-art products in Russia
  • Lindsay R. & Schweiger A. 2015. Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations. The Cryosphere, 9(1), 269-283.
  • Lobanov A.A., Andronov S.V., Bogdanova E.N., Kochkin R.A., Popov A.I., Lobanova L.P., Shaduiko O.M., Kobel’kova I.V., Kambarov A.O. & Soromotin A.V. 2019. Changing diet and traditional lifestyle of the Indigenous Peoples of the Arctic zone of the Russian Federation: Assessment of the impact on health, living standards. In Food Security of the Indigenous Population of the Arctic region’s Climate in the Context of Climate Change, Proceedings of the All-Russian Scientific Conference, Severodvinsk, Arkhangelsk, Russia.
  • Malevsky-Malevich S. P., Molkentin E. K., Nadyozhina E. D. & Shklyarevich O. B. 2008. An assessment of potential change in wildfire activity in the Russian boreal forest zone induced by climate warming during the twenty-first century. Climatic Change, 86, 463-474.
  • Mårell A., Hofgaard A. & Danell K. 2006. Nutrient dynamics of reindeer forage species along snowmelt gradients at different ecological scales. Basic and Applied Ecology, 7(1), 13-30.
  • Mokhov I. I. 2015. Contemporary climate changes in the Arctic. Herald of the Russian Academy of Sciences, 85(3), 265-271.
  • Mokhov I. I. & Krivolutsky A. A. 2019. Russian National Report: Meteorology and Atmospheric.
  • Munir R., Bano T., Adil I. H. & Khayyam U. 2021. Perceptions of Glacier Grafting: An Indigenous Technique of Water Conservation for Food Security in Gilgit-Baltistan, Pakistan. Sustainability, 13(9), 5208. Nakvasina E. N., Volkov A. G. & Prozherina N. A. 2017. Provenance experiment with spruce (Picea abies (L.) Karst. and Picea obovata (Ledeb.)) in the North of Russia (Arkhangelsk region). Folia Forestalia Polonica. Series A. Forestry, 59(3).
  • Nilsen I., Hansen C., Kaplan I., Holmes E. & Langangen Ø. 2022. Exploring the role of Northeast Atlantic cod in the Barents Sea food web using a multi‐model approach. Fish and Fisheries, 23(5), 1083-1098.
  • O'Shea J. & Zvelebil M. 1984. Oleneostrovski mogilnik: Reconstructing the social and economic organization of prehistoric foragers in northern Russia. Journal of Anthropological Archaeology, 3(1), 1-40.
  • Pollack H. 2010. A world without ice. Penguin.
  • Rezaeianzadeh M., Tabari H., Arabi Yazdi A., Isik S. & Kalin L. 2014. Flood flow forecasting using ANN, ANFIS and regression models. Neural Computing and Applications, 25(1), 25-37.
  • Revich B. A. & Podolnaya M. A. 2011. Thawing of permafrost may disturb historic cattle burial grounds in East Siberia. Global health action, 4(1), 8482.
  • Salihi P. B. A. & Üçler N. 2021. The Effect of the Data Type on Anfis Results, Case Study Temperature and Relative Humidity. Journal of Scientific Reports-A, (046), 14-33.
  • Shepherd A., Ivins E., Rignot E., Smith B., Van Den Broeke M., Velicogna I. & WoutersB. E. 2018. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature, 558, 219-222
  • Stibal M., Šabacká M. & Žárský J. 2012. Biological processes on glacier and ice sheet surfaces. Nature Geoscience, 5(11), 771-774.
  • Thompson L. G., Mosley-Thompson E. S., Lin P., Davis M. E., Mashiotta T. A. & Brecher, H. H. 2004. Low-latitude mountain glacier evidence for abrupt climate changes. In AGU Fall Meeting Abstracts, pp. C44A-02).
  • Tveraa T., Stien A., Bårdsen B. J. & Fauchald P. 2013. Population densities, vegetation green-up, and plant productivity: impacts on reproductive success and juvenile body mass in reindeer. PloS one, 8(2), e56450.
  • Vorobyeva S. S., Trunova V. A., Stepanova O. G., Zvereva V. V., Petrovskii S. K., Melgunov M. S. & Fedotov A. P. 2015. Impact of glacier changes on ecosystem of proglacial lakes in high mountain regions of East Siberia (Russia). Environmental Earth Sciences, 74, 2055-2063.
  • Unlukal C. & Erguven G.O. 2024. Smart Agricultural Approach and Good Agricultural Practices in Sustainable Development Goal. Eurasian Journal of Agricultural Research, 8(1), 24-32.
  • Vuille M., Carey M., Huggel C., Buytaert W., Rabatel A., Jacobsen D. & Sicart J. E. 2018. Rapid decline of snow and ice in the tropical Andes–Impacts, uncertainties and challenges ahead. Earth-science reviews, 176, 195-213.
  • Wharton Jr, R. A., McKay C. P., Simmons Jr, G. M. & Parker B. C. 1985. Cryoconite holes on glaciers. Bioscience, 499-503.
  • White D., Hinzman L., Alessa L., Cassano J., Chambers M., Falkner K. & Zhang T. 2007. The arctic freshwater system: Changes and impacts. Journal of geophysical research: Biogeosciences, 112(G4).
  • Zemp M., Huss M., Thibert E., Eckert N., McNabb R., Huber J. & Cogley J. G. 2019. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568(7752), 382-386.
There are 43 citations in total.

Details

Primary Language English
Subjects Ecological Impacts of Climate Change and Ecological Adaptation
Journal Section Articles
Authors

Farhat Khalily

İlknur Uçak This is me

M. Cüneyt Bağdatlı This is me

Early Pub Date December 29, 2024
Publication Date
Submission Date October 28, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2024 Volume: 8 Issue: 2

Cite

APA Khalily, F., Uçak, İ., & Bağdatlı, M. C. (2024). The Impact of Glacier Melts on Food Production in North Zone of Russia. Eurasian Journal of Agricultural Research, 8(2), 192-201.
AMA Khalily F, Uçak İ, Bağdatlı MC. The Impact of Glacier Melts on Food Production in North Zone of Russia. EJAR. December 2024;8(2):192-201.
Chicago Khalily, Farhat, İlknur Uçak, and M. Cüneyt Bağdatlı. “The Impact of Glacier Melts on Food Production in North Zone of Russia”. Eurasian Journal of Agricultural Research 8, no. 2 (December 2024): 192-201.
EndNote Khalily F, Uçak İ, Bağdatlı MC (December 1, 2024) The Impact of Glacier Melts on Food Production in North Zone of Russia. Eurasian Journal of Agricultural Research 8 2 192–201.
IEEE F. Khalily, İ. Uçak, and M. C. Bağdatlı, “The Impact of Glacier Melts on Food Production in North Zone of Russia”, EJAR, vol. 8, no. 2, pp. 192–201, 2024.
ISNAD Khalily, Farhat et al. “The Impact of Glacier Melts on Food Production in North Zone of Russia”. Eurasian Journal of Agricultural Research 8/2 (December 2024), 192-201.
JAMA Khalily F, Uçak İ, Bağdatlı MC. The Impact of Glacier Melts on Food Production in North Zone of Russia. EJAR. 2024;8:192–201.
MLA Khalily, Farhat et al. “The Impact of Glacier Melts on Food Production in North Zone of Russia”. Eurasian Journal of Agricultural Research, vol. 8, no. 2, 2024, pp. 192-01.
Vancouver Khalily F, Uçak İ, Bağdatlı MC. The Impact of Glacier Melts on Food Production in North Zone of Russia. EJAR. 2024;8(2):192-201.
Eurasian Journal of Agricultural Research (EJAR)   ISSN: 2636-8226   Web: https://dergipark.org.tr/en/pub/ejar   e-mail: agriculturalresearchjournal@gmail.com