Drosophila melanogaster’in somatik hücrelerinde kobalt nanopartiküllerinin indüklediği genotoksisiteye karşı resveratrol’ün antigenotoksik etkisi
Year 2022,
, 50 - 55, 28.12.2022
Ayşen Yağmur Kurşun
,
Burcin Yalcin
,
Merve Güneş
,
Ghada Tagorti
,
Bülent Kaya
Abstract
Son yıllarda gelişen teknoloji ile birlikte yeni teknolojik ürün olarak nanopartikül (NP,<100 nm) üretimi ve farklı alanlardaki kullanımları hemen her alanda giderek yaygınlaşmıştır. NP’lerin çok farklı alanlarda birçok avantajı nedeniyle yaygın olarak kullanılmalarına karşın insan sağlığına ve çevreye etkileri hakkındaki bilgiler hala çok yetersizdir. Bu nedenle son teknoloji ürünü bu maddelerin genotoksik potansiyellerinin tespiti bu maddelerin biyogüvenilirliği bakımından önemlidir. Resveratrol (3, 4', 5-trihidroksi-stilben: RSV) üzüm çekirdeğinde bol miktarda bulunan ve son yıllarda farklı mekanizmalardaki yardımcı etkileri üzerinde yoğun çalışılan doğal bir antioksidandır. Bu çalışmada, Drosophila melanogaster’de somatik mutasyon ve rekombinasyon testi (SMART) ve tek hücre alkali jel elektroforezi testi (KOMET) kullanılarak Kobalt nanopartiküllerinin genotoksisitesine karşı Resveratrol’ün antigenotoksik etkisi araştırılmıştır. SMART genetik değişimleri geniş bir spektrumda hızlı ve ucuz şekilde belirlemeye yarayan güvenilir bir yöntemdir. KOMET ise özgün hücrelerde değişen alkali lezyonları ve DNA’daki tek iplik kırıklarını tespit eden farklı genotoksik ajanlar ile indüklenen genetik hasarın belirlenmesinde güçlü ve duyarlı bir tekniktir. Yapmış olduğumuz çalışma kapsamında SMART ve KOMET yöntemleri ile değerlendirilen ve somatik hücreler olan kanat imajinal disk hücrelerinde ve Drosophila hemositlerinde genotoksik etkiye sahip olduğunu tespit ettiğimiz Kobalt nanopartiküllerinin (Co NP, 10mM) Resveratrol ile hem ön uygulamalı hem de eş zamanlı çalışmalarında Co NP’ün genotoksik etkisine karşı RSV’ün uygulanan tüm dozlarda (0.1, 0.5 ve 2.5 mM) antigenotoksik etkiye sahip olduğu gözlenmiştir.
Supporting Institution
TÜBİTAK
Thanks
Bu çalışma TÜBİTAK tarafından 1002 Hızlı Destek Programı kapsamında (Proje No: 113Z564) desteklenmiştir.
References
- Barker PE, Butler T, Dawley JM, Herran, P, King B, Nathanson KL, Patel K, Wedeking J, Weiss H, Wubinger J, Ziesmann S. 2006.Nanotechnology Briefing Paper: Clean Water Act, in Section of Environment, Energy, and Resources. American Bar Association. Chicago, IL.
- Bernhardt ES, Colman BP, Hochella MF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin Liyan 2010. An Ecological Perspective on Nanomaterial Impacts in the Environment. Journal of Environmental Quality. 39:1-12.
- Carmona ER, Inostroza-Blancheteau C, Obando V, Rubio L, Marcos R. 2015a. Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster. Mutation Research. 791:1-11.
- Carmona ER, Inostroza-Blancheteau Rubio, L, Marcos R. 2015b. Genotoxic and oxidative stres potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicology and Industrial Health. 32:1987-2001.
- Colvin V. 2003.The potential environmental impacts of engineered nanomaterials. Nature Biotechnology, 21, 1166-70.
- Das DK, Maulik N. 2006. Resveratrol in cardioprotection: a therapeutic promise of alternative Medicine. Molecular Interventions. 6:36-47.
- Demir, E, Kocaoğlu S, Kaya B. 2008a. Protective Effects of Chlorophyll Against the Genotoxicity of UVB in Drosophila SMART Assay. Fresenius Environmental Bulletin. 17:2180-6.
- Demir E, Kaya B, Kocaoglu S. 2013a. Antigenotoxic Activities of Ascorbic acid, Chlorophyll a and Chlorophyll b in Acrolein and Malondialdehyde-Induced Genotoxicity in Drosophila melanogaster. Ekoloji. 22:36-42.
- Demir E, Kaya B, Marcos R, Kocaoğlu S, Çetin H. 2013b. Investigation of the genotoxic and antigenotoxic properties of essential oils obtained from two Origanum species by Drosophila wing SMART assay. Turkish Journal of Biology. 37:129-38.
- Demir E, Kocaoğlu S, Cetin H, Kaya B. 2009. Antigenotoxic Effects of Citrus aurentium L. Fruit Peel Oil on Mutagenicity of Two Alkylating Agents and Two Metals in the Drosophila Wing Spot Test. Environmental and Molecular Mutagenesis. 50:483-8.
- Demir E, Kocaoğlu S, Kaya B. 2008b. Protection Against Ultraviolet B-Induced Genotoxicity by the Chlorophyllin in Drosophila melanogaster. Fresenius Environmental Bulletin. 17:2187-92.
- Demir E, Kocaoğlu S, Kaya B. 2010. Antigenotoxic properties of chlorophyllin and chlorophylls in the Drosophila wing spot test. Fresen. Environ. Bull. 19:3131-38.
- Feynman RP 1960. There’s Plenty of Room at the Bottom. Engineering and Science magazine. 23:no.5.
- Frei H, Wurgler FE. 1988. Statistical methods to decide whether mutagenic test data from Drosophila assays indicate a positive, negative or inconclusive results. Mutation Research. 203:297-308.
- Gogotsi Y. 2003. How safe are nanotubes and other nanofilaments. Materials Research Innovations. 7:192-4.
- Gokpinar S, Koray T, Akçiçek E, Göksan T, Durmaz Y. 2006. Algal Antioksidanlar. E.U. Su Ürünleri Dergisi. 23: 85-9.
- Graf U, Wurgler FE, Katz AJ, Frei H, Juan H, Hall CB, Kal, PG. 1984. Somatic Mutation and Recombination Test in Drosophila melanogaster. Environmental and Molecular Mutagenesis. 6:153-188.
- Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M. 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiolgy. 7:335-350.
- Kaya B, Yanikoğlu A, Creus A, Marcos R. 2000. Genotoxicity testing of five herbicides in the Drosophila wing spot test. Mutation Research. 465:77-84.
- Khan I, Saeed K, Khan I. 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 12:908-931.
- Krishn, RN, Gayathri R, Priya VD. 2017. Nanoparticles and Their Applications - A Review. Journal of Pharmaceutical Sciences and Research. 9:24-27.
- Lappas CM. 2015. The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food and Chemical Toxicology, 85:78-83.
- Laurent S, Forge D, Port M, Roch A, Robi, C, Vander Elst L, Muller RN. 2008. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews. 108:2064-2110.
- Lee JG, Yon JM, Lim C, Jung AY, Jun, KY, Nam SY. 2012. Combined treatment with capsaicin and resveratrol anhances neuroprotection against glutamate-induced toxicity in Mouse cerebral cortical neurons. Food and Chemical Toxicology. 50:3877-85.
- Lux Report 2008. Nanomaterials state of the market: stealth success, broad impact. Avaible at: http://portal.luxresearchinc.com/research/document/3735 [16.11.21]
- Mahmoud A, Öztaş E, Arici M, Özhan G. 2016. In Vitro Toxicological Assessment of Magnesium Oxide Nanoparticle Exposure in Several Mammalian Cell Types. International Journal of Toxicology. 35:1-9.
- Mallebrera B, Brandolini V, Font G, Ruiz MJ. 2015. Cytoprotective effect of resveratrol diastereomers in CHO-K1 cells exposed to beauvericin. Food and Chemical Toxicology. 80:319-327.
- Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science. 311:622-7.
- Sayın O, Arslan N, Guner G. 2008. Resveratrol ve kardiyovasküler sistem. Turkish Journal of Biochemistry. 33:117-121.
- Strambeanu N, Demetrovici L, Dragos D, Lungu M. 2015. In: Lung M(ed) Nanoparticles’ Promises and Risks. Chapter 1: Nanoparticles: Definition, Classification and General Physical Properties. Springer International Publisihing, Switzerland.
- Theodore L, Kunz RG. 2005. Nanotechnology: Turning Basic Science into Reality. John Wiley & Sons, Inc.
- Zhang W, Xue J, Ge M, Yu M, Liu L, Zhang Z. 2013. Resveratrol attenuates hepatotoxicity of rats exposed to arsenic trioxide. Food and Chemical Toxicology. 51:87-92.
Antigenotoxic effect of resveratrol against genotoxicity induced by cobalt nanoparticles in somatic cells of Drosophila melanogaster
Year 2022,
, 50 - 55, 28.12.2022
Ayşen Yağmur Kurşun
,
Burcin Yalcin
,
Merve Güneş
,
Ghada Tagorti
,
Bülent Kaya
Abstract
With the developing technology in recent years, the production of nanoparticles (NP, <100 nm) as a new technological product and their use in different fields have become increasingly widespread in almost every field. Although NPs are widely used in many different fields due to their many advantages, the information about their effects on human health and the environment is still very insufficient. Therefore, the determination of the genotoxic potential of these state-of-the-art substances is important for their biosafety. Resveratrol (3, 4', 5-trihydroxy-stilbene: RSV) is a natural antioxidant that is abundant in grape seeds and its auxiliary effects in different mechanisms have been studied intensively in recent years. The antigenotoxic effect of Resveratrol against genotoxicity of Cobalt Nanoparticles was investigated using single cell alkaline gel electrophoresis test (KOMET). SMART is a reliable method for quickly and inexpensively detecting a wide spectrum of genetic changes. KOMET, on the other hand, is a powerful and sensitive technique for the detection of genetic damage induced by different genotoxic agents that detect altered alkaline lesions and single strand breaks in DNA in specific cells. Within the scope of our study, Cobalt Nanoparticles (Co NP, 10mM) which were evaluated by SMART and KOMET methods and we found to have genotoxic effects in wing imaginal disc cells which are somatic cells and Drosophila hemocytes, were able to resist the genotoxic effect of Co NP in both pre-application and simultaneous studies with Resveratrol. It was observed that RSV had an antigenotoxic effect at all doses (0.1, 0.5 and 2.5 mM).
References
- Barker PE, Butler T, Dawley JM, Herran, P, King B, Nathanson KL, Patel K, Wedeking J, Weiss H, Wubinger J, Ziesmann S. 2006.Nanotechnology Briefing Paper: Clean Water Act, in Section of Environment, Energy, and Resources. American Bar Association. Chicago, IL.
- Bernhardt ES, Colman BP, Hochella MF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin Liyan 2010. An Ecological Perspective on Nanomaterial Impacts in the Environment. Journal of Environmental Quality. 39:1-12.
- Carmona ER, Inostroza-Blancheteau C, Obando V, Rubio L, Marcos R. 2015a. Genotoxicity of copper oxide nanoparticles in Drosophila melanogaster. Mutation Research. 791:1-11.
- Carmona ER, Inostroza-Blancheteau Rubio, L, Marcos R. 2015b. Genotoxic and oxidative stres potential of nanosized and bulk zinc oxide particles in Drosophila melanogaster. Toxicology and Industrial Health. 32:1987-2001.
- Colvin V. 2003.The potential environmental impacts of engineered nanomaterials. Nature Biotechnology, 21, 1166-70.
- Das DK, Maulik N. 2006. Resveratrol in cardioprotection: a therapeutic promise of alternative Medicine. Molecular Interventions. 6:36-47.
- Demir, E, Kocaoğlu S, Kaya B. 2008a. Protective Effects of Chlorophyll Against the Genotoxicity of UVB in Drosophila SMART Assay. Fresenius Environmental Bulletin. 17:2180-6.
- Demir E, Kaya B, Kocaoglu S. 2013a. Antigenotoxic Activities of Ascorbic acid, Chlorophyll a and Chlorophyll b in Acrolein and Malondialdehyde-Induced Genotoxicity in Drosophila melanogaster. Ekoloji. 22:36-42.
- Demir E, Kaya B, Marcos R, Kocaoğlu S, Çetin H. 2013b. Investigation of the genotoxic and antigenotoxic properties of essential oils obtained from two Origanum species by Drosophila wing SMART assay. Turkish Journal of Biology. 37:129-38.
- Demir E, Kocaoğlu S, Cetin H, Kaya B. 2009. Antigenotoxic Effects of Citrus aurentium L. Fruit Peel Oil on Mutagenicity of Two Alkylating Agents and Two Metals in the Drosophila Wing Spot Test. Environmental and Molecular Mutagenesis. 50:483-8.
- Demir E, Kocaoğlu S, Kaya B. 2008b. Protection Against Ultraviolet B-Induced Genotoxicity by the Chlorophyllin in Drosophila melanogaster. Fresenius Environmental Bulletin. 17:2187-92.
- Demir E, Kocaoğlu S, Kaya B. 2010. Antigenotoxic properties of chlorophyllin and chlorophylls in the Drosophila wing spot test. Fresen. Environ. Bull. 19:3131-38.
- Feynman RP 1960. There’s Plenty of Room at the Bottom. Engineering and Science magazine. 23:no.5.
- Frei H, Wurgler FE. 1988. Statistical methods to decide whether mutagenic test data from Drosophila assays indicate a positive, negative or inconclusive results. Mutation Research. 203:297-308.
- Gogotsi Y. 2003. How safe are nanotubes and other nanofilaments. Materials Research Innovations. 7:192-4.
- Gokpinar S, Koray T, Akçiçek E, Göksan T, Durmaz Y. 2006. Algal Antioksidanlar. E.U. Su Ürünleri Dergisi. 23: 85-9.
- Graf U, Wurgler FE, Katz AJ, Frei H, Juan H, Hall CB, Kal, PG. 1984. Somatic Mutation and Recombination Test in Drosophila melanogaster. Environmental and Molecular Mutagenesis. 6:153-188.
- Irving P, Ubeda JM, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M. 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiolgy. 7:335-350.
- Kaya B, Yanikoğlu A, Creus A, Marcos R. 2000. Genotoxicity testing of five herbicides in the Drosophila wing spot test. Mutation Research. 465:77-84.
- Khan I, Saeed K, Khan I. 2019. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 12:908-931.
- Krishn, RN, Gayathri R, Priya VD. 2017. Nanoparticles and Their Applications - A Review. Journal of Pharmaceutical Sciences and Research. 9:24-27.
- Lappas CM. 2015. The immunomodulatory effects of titanium dioxide and silver nanoparticles. Food and Chemical Toxicology, 85:78-83.
- Laurent S, Forge D, Port M, Roch A, Robi, C, Vander Elst L, Muller RN. 2008. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews. 108:2064-2110.
- Lee JG, Yon JM, Lim C, Jung AY, Jun, KY, Nam SY. 2012. Combined treatment with capsaicin and resveratrol anhances neuroprotection against glutamate-induced toxicity in Mouse cerebral cortical neurons. Food and Chemical Toxicology. 50:3877-85.
- Lux Report 2008. Nanomaterials state of the market: stealth success, broad impact. Avaible at: http://portal.luxresearchinc.com/research/document/3735 [16.11.21]
- Mahmoud A, Öztaş E, Arici M, Özhan G. 2016. In Vitro Toxicological Assessment of Magnesium Oxide Nanoparticle Exposure in Several Mammalian Cell Types. International Journal of Toxicology. 35:1-9.
- Mallebrera B, Brandolini V, Font G, Ruiz MJ. 2015. Cytoprotective effect of resveratrol diastereomers in CHO-K1 cells exposed to beauvericin. Food and Chemical Toxicology. 80:319-327.
- Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science. 311:622-7.
- Sayın O, Arslan N, Guner G. 2008. Resveratrol ve kardiyovasküler sistem. Turkish Journal of Biochemistry. 33:117-121.
- Strambeanu N, Demetrovici L, Dragos D, Lungu M. 2015. In: Lung M(ed) Nanoparticles’ Promises and Risks. Chapter 1: Nanoparticles: Definition, Classification and General Physical Properties. Springer International Publisihing, Switzerland.
- Theodore L, Kunz RG. 2005. Nanotechnology: Turning Basic Science into Reality. John Wiley & Sons, Inc.
- Zhang W, Xue J, Ge M, Yu M, Liu L, Zhang Z. 2013. Resveratrol attenuates hepatotoxicity of rats exposed to arsenic trioxide. Food and Chemical Toxicology. 51:87-92.