Research Article
BibTex RIS Cite

Photocatalytic hydrogen evolution from ZnO-loaded carbon nanotube

Year 2025, Volume: 8 Issue: 1, 18 - 24, 30.06.2025
https://doi.org/10.46239/ejbcs.1566783

Abstract

Graphene-based materials attract important interest due to their enhanced electron transfer efficiency in photocatalytic hydrogen evolution reactions. In this study, 1D graphene-based nanomaterial combined with ZnO and produced heterostructured CNT/ZnO nanocomposite catalyst enhance the hydrogen evolution. Herein, co-catalysts (MoSx and Pt) were photodeposited onto CNT/ZnO nanocomposite catalyst in water, resulting in the formation of CNT/ZnO/MoSx and CNT/ZnO/Pt through the reduction of (NH4)2MoS4 and H2PtCl6.6H2O, respectively. The photodeposition of co-catalysts on the CNT/ZnO nanocomposite provided enhanced catalytic efficiency and stability due to increased active surface area and enhanced electron transfer capabilities. CNT/ZnO/MoSx photocatalysts are one of the most promising, clean and sustainable energy carrier for photocatalytic hydrogen production.

Ethical Statement

There is no conflict of interest.

Supporting Institution

Selçuk University

Project Number

SUBAP-Grant no: 23211019 and SUBAP-Grant no: 23401013

Thanks

The authors would like to thank the Turkish Academy of Science (TUBA). This study is prepared from a section of Ph.D. thesis by Münevver Tuna Genç, which is also supported by Selçuk University (SUBAP-Grant no: 23211019 and SUBAP-Grant no: 23401013), Türkiye Council of Higher Education YOK-100/2000 scholarship, TUBITAK 1002-B (Grant number:124Z584) and TUBITAK 2211-C Domestic Priority Fields Doctoral Scholarship Program.

References

  • Archana S. 2023. Development of Novel Nanomaterials Based Electrocatalysts for Energy Conversion Devices. Kansas State University.
  • Asma MA, Taha TA, Zayed M, Gamal A, Shaaban M, Ahmed AM, Mohamed F. 2023. Impact of carbon nanotubes concentrations on the performance of carbon nanotubes/zinc oxide nanocomposite for photoelectrochemical water splitting. J Electroanal Chem, 943: 117579.
  • Bakos LP, Justh N, Costa UCMSB, László K, Lábár JL, Igricz T, Varga-Josepovits K, Pasierb P, Färm E, Ritala K. 2020. Photocatalytic and gas sensitive multiwalled carbon nanotube/TiO2-ZnO and ZnO-TiO2 composites prepared by atomic layer deposition. Nanomater, 10: 252.
  • Genc MT, Sarilmaz A, Aslan E, Ozel F, Patir IH. 2024. Biotemplated silicon carbide-loaded ytterbium oxide: Effective catalyst for photocatalytic hydrogen evolution reactions. Mol Catal, 556: 113915
  • Genç MT, Sarilmaz A, Dogan S, Çekceoğlu İA, Ozen A, Aslan E, Okan BS, Jaafar J, Ozel F, Ersoz M, Patir IH. 2023a. Thermally-exfoliated graphene Oxide/ZnO nanocomposite catalysts for photocatalytic hydrogen evolution and antibacterial activities. Int J Hydrog Energy, 48: 30407-19. 2023b. Thermally-exfoliated graphene Oxide/ZnO nanocomposite catalysts for photocatalytic hydrogen evolution and antibacterial activities. Int J Hydrog Energy.
  • Hongwei B, Zan X, Zhang L, Sun DD. 2015. Multi-functional CNT/ZnO/TiO2 nanocomposite membrane for concurrent filtration and photocatalytic degradation. Sep Purif Technol, 156: 922-30
  • Irshad A, Shukrullah S, Naz MY, Rasheed MA, Ahmad M, Ahmed E, Akhtar MS, Khalid NR, Hussain A, Khalid S. 2021. Boosted hydrogen evolution activity from Sr doped ZnO/CNTs nanocomposite as visible light driven photocatalyst. Int J Hydrog Energy, 46: 26711-24
  • Juan W, Wang G, Jiang J, Wan Z, Su Y, Tang H. 2020. Insight into charge carrier separation and solar-light utilization: rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci,564: 322-32
  • Jun YY, Wang F, Hu B, Lu HW, Yu ZT, Zou ZG. 2015. Significant enhancement in photocatalytic hydrogen evolution from water using a MoS 2 nanosheet-coated ZnO heterostructure photocatalyst. Dalton Trans, 44: 10997-1003.
  • Parisa G, Fattahi M, Rasekh B, Yazdian F. 2020. Developing the ternary ZnO doped MoS2 nanostructures grafted on CNT and reduced graphene oxide (RGO) for photocatalyticdegradation of aniline. Sci Rep, 10:
  • Peirong C, Wang L, Wang P, Kostka A, Wark M, Muhler M, Beranek R. 2015. CNT-TiO2− δ composites for improved co-catalyst dispersion and stabilized photocatalytic hydrogen production.Catal, 5: 270-85.
  • Pooja D, Rana G, Kumar A, Sharma G, Vo DVN, Naushad M. 2022. ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review.Environ Chem Lett, 1-35. Preethi V, Kanmani S. 2013. Photocatalytic hydrogen production. Mater Sci Semicond Process, 16: 561-75.
  • Sharma SK, Gupta R, Sharma G, Vemula K, Koirala AR, Kaushik NK, Choi EH, Kim DY, Purohit LP, Singh BP. 2021. Photocatalytic performance of yttrium-doped CNT-ZnO nanoflowers synthesized from hydrothermal method.Mater Today Chem, 20: 100452.
  • Teets TS, Nocera DG. 2011. Photocatalytic hydrogen production. ChemComm, 47: 9268-74.
  • Yuvaraj H, Shim JJ. 2014. Supercritical fluid mediated synthesis of highly exfoliated graphene/ZnO composite for photocatalytic hydrogen production. Mater Lett, 133: 24-27.
  • Wang X, Li Q, Xu H, Gan L, Ji X, Liu H, Zhang R. 2020. CuS-modified ZnO rod/reduced graphene oxide/CdS heterostructure for efficient visible-light photocatalytic hydrogen generation. Int J Hydrog Energy, 45: 28394-403.

Year 2025, Volume: 8 Issue: 1, 18 - 24, 30.06.2025
https://doi.org/10.46239/ejbcs.1566783

Abstract

Project Number

SUBAP-Grant no: 23211019 and SUBAP-Grant no: 23401013

References

  • Archana S. 2023. Development of Novel Nanomaterials Based Electrocatalysts for Energy Conversion Devices. Kansas State University.
  • Asma MA, Taha TA, Zayed M, Gamal A, Shaaban M, Ahmed AM, Mohamed F. 2023. Impact of carbon nanotubes concentrations on the performance of carbon nanotubes/zinc oxide nanocomposite for photoelectrochemical water splitting. J Electroanal Chem, 943: 117579.
  • Bakos LP, Justh N, Costa UCMSB, László K, Lábár JL, Igricz T, Varga-Josepovits K, Pasierb P, Färm E, Ritala K. 2020. Photocatalytic and gas sensitive multiwalled carbon nanotube/TiO2-ZnO and ZnO-TiO2 composites prepared by atomic layer deposition. Nanomater, 10: 252.
  • Genc MT, Sarilmaz A, Aslan E, Ozel F, Patir IH. 2024. Biotemplated silicon carbide-loaded ytterbium oxide: Effective catalyst for photocatalytic hydrogen evolution reactions. Mol Catal, 556: 113915
  • Genç MT, Sarilmaz A, Dogan S, Çekceoğlu İA, Ozen A, Aslan E, Okan BS, Jaafar J, Ozel F, Ersoz M, Patir IH. 2023a. Thermally-exfoliated graphene Oxide/ZnO nanocomposite catalysts for photocatalytic hydrogen evolution and antibacterial activities. Int J Hydrog Energy, 48: 30407-19. 2023b. Thermally-exfoliated graphene Oxide/ZnO nanocomposite catalysts for photocatalytic hydrogen evolution and antibacterial activities. Int J Hydrog Energy.
  • Hongwei B, Zan X, Zhang L, Sun DD. 2015. Multi-functional CNT/ZnO/TiO2 nanocomposite membrane for concurrent filtration and photocatalytic degradation. Sep Purif Technol, 156: 922-30
  • Irshad A, Shukrullah S, Naz MY, Rasheed MA, Ahmad M, Ahmed E, Akhtar MS, Khalid NR, Hussain A, Khalid S. 2021. Boosted hydrogen evolution activity from Sr doped ZnO/CNTs nanocomposite as visible light driven photocatalyst. Int J Hydrog Energy, 46: 26711-24
  • Juan W, Wang G, Jiang J, Wan Z, Su Y, Tang H. 2020. Insight into charge carrier separation and solar-light utilization: rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci,564: 322-32
  • Jun YY, Wang F, Hu B, Lu HW, Yu ZT, Zou ZG. 2015. Significant enhancement in photocatalytic hydrogen evolution from water using a MoS 2 nanosheet-coated ZnO heterostructure photocatalyst. Dalton Trans, 44: 10997-1003.
  • Parisa G, Fattahi M, Rasekh B, Yazdian F. 2020. Developing the ternary ZnO doped MoS2 nanostructures grafted on CNT and reduced graphene oxide (RGO) for photocatalyticdegradation of aniline. Sci Rep, 10:
  • Peirong C, Wang L, Wang P, Kostka A, Wark M, Muhler M, Beranek R. 2015. CNT-TiO2− δ composites for improved co-catalyst dispersion and stabilized photocatalytic hydrogen production.Catal, 5: 270-85.
  • Pooja D, Rana G, Kumar A, Sharma G, Vo DVN, Naushad M. 2022. ZnO-based heterostructures as photocatalysts for hydrogen generation and depollution: a review.Environ Chem Lett, 1-35. Preethi V, Kanmani S. 2013. Photocatalytic hydrogen production. Mater Sci Semicond Process, 16: 561-75.
  • Sharma SK, Gupta R, Sharma G, Vemula K, Koirala AR, Kaushik NK, Choi EH, Kim DY, Purohit LP, Singh BP. 2021. Photocatalytic performance of yttrium-doped CNT-ZnO nanoflowers synthesized from hydrothermal method.Mater Today Chem, 20: 100452.
  • Teets TS, Nocera DG. 2011. Photocatalytic hydrogen production. ChemComm, 47: 9268-74.
  • Yuvaraj H, Shim JJ. 2014. Supercritical fluid mediated synthesis of highly exfoliated graphene/ZnO composite for photocatalytic hydrogen production. Mater Lett, 133: 24-27.
  • Wang X, Li Q, Xu H, Gan L, Ji X, Liu H, Zhang R. 2020. CuS-modified ZnO rod/reduced graphene oxide/CdS heterostructure for efficient visible-light photocatalytic hydrogen generation. Int J Hydrog Energy, 45: 28394-403.
There are 16 citations in total.

Details

Primary Language English
Subjects Chemical and Thermal Processes in Energy and Combustion, Catalytic Activity, Photochemistry, Catalysis and Mechanisms of Reactions, Colloid and Surface Chemistry
Journal Section Research Articles
Authors

Münevver Tuna Genç 0000-0002-2086-9147

Adem Sarılmaz 0000-0003-1463-9764

Emre Aslan 0000-0002-7672-2873

Faruk Özel 0000-0002-3689-0469

İmren Hatay Patır

Project Number SUBAP-Grant no: 23211019 and SUBAP-Grant no: 23401013
Publication Date June 30, 2025
Submission Date October 14, 2024
Acceptance Date March 27, 2025
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Tuna Genç, M., Sarılmaz, A., Aslan, E., … Özel, F. (2025). Photocatalytic hydrogen evolution from ZnO-loaded carbon nanotube. Eurasian Journal of Biological and Chemical Sciences, 8(1), 18-24. https://doi.org/10.46239/ejbcs.1566783
AMA Tuna Genç M, Sarılmaz A, Aslan E, Özel F, Hatay Patır İ. Photocatalytic hydrogen evolution from ZnO-loaded carbon nanotube. Eurasian J. Bio. Chem. Sci. June 2025;8(1):18-24. doi:10.46239/ejbcs.1566783
Chicago Tuna Genç, Münevver, Adem Sarılmaz, Emre Aslan, Faruk Özel, and İmren Hatay Patır. “Photocatalytic Hydrogen Evolution from ZnO-Loaded Carbon Nanotube”. Eurasian Journal of Biological and Chemical Sciences 8, no. 1 (June 2025): 18-24. https://doi.org/10.46239/ejbcs.1566783.
EndNote Tuna Genç M, Sarılmaz A, Aslan E, Özel F, Hatay Patır İ (June 1, 2025) Photocatalytic hydrogen evolution from ZnO-loaded carbon nanotube. Eurasian Journal of Biological and Chemical Sciences 8 1 18–24.
IEEE M. Tuna Genç, A. Sarılmaz, E. Aslan, F. Özel, and İ. Hatay Patır, “Photocatalytic hydrogen evolution from ZnO-loaded carbon nanotube”, Eurasian J. Bio. Chem. Sci., vol. 8, no. 1, pp. 18–24, 2025, doi: 10.46239/ejbcs.1566783.
ISNAD Tuna Genç, Münevver et al. “Photocatalytic Hydrogen Evolution from ZnO-Loaded Carbon Nanotube”. Eurasian Journal of Biological and Chemical Sciences 8/1 (June2025), 18-24. https://doi.org/10.46239/ejbcs.1566783.
JAMA Tuna Genç M, Sarılmaz A, Aslan E, Özel F, Hatay Patır İ. Photocatalytic hydrogen evolution from ZnO-loaded carbon nanotube. Eurasian J. Bio. Chem. Sci. 2025;8:18–24.
MLA Tuna Genç, Münevver et al. “Photocatalytic Hydrogen Evolution from ZnO-Loaded Carbon Nanotube”. Eurasian Journal of Biological and Chemical Sciences, vol. 8, no. 1, 2025, pp. 18-24, doi:10.46239/ejbcs.1566783.
Vancouver Tuna Genç M, Sarılmaz A, Aslan E, Özel F, Hatay Patır İ. Photocatalytic hydrogen evolution from ZnO-loaded carbon nanotube. Eurasian J. Bio. Chem. Sci. 2025;8(1):18-24.