Research Article
BibTex RIS Cite

Tip 2 Diyabet ile İlişkili İnsülin, Glukokortikoid ve GLP-1 Reseptörleri ile Doğal Bileşik Zeaksantinin Etkileşiminin in Silico Değerlendirmesi

Year 2025, Volume: 8 Issue: 2, 40 - 50, 29.12.2025
https://doi.org/10.46239/ejbcs.1792071

Abstract

Tip 2 diabetes mellitus (T2DM), pankreas β-hücre disfonksiyonuna bağlı periferik dokularda insülin direnci nedeniyle gelişen, kalıcı hiperglisemi ile karakterize kronik metabolik bozukluktur. Bu patolojik durum, insülin sinyalleme kaskadlarının bozulması, glukokortikoid ve GLP-1 reseptörlerine uygulanan metabolik stres ve glikoz homeostazının bozulması ile ilişkilidir. Bu çalışmada, mikroalgler gibi doğal kaynaklardan ekstrakte edilen karotenoid pigment zeaksantinin, T2DM ile ilişkili insülin, glukokortikoid ve GLP-1 hedef reseptörleri üzerindeki etkileşim potansiyeli, siliko moleküler modelleme yaklaşımları kullanılarak değerlendirilmiştir. Seçili glukokortikoid, insülin ve GLP-1 reseptörleri için zeaksantin bağlanma afiniteleri, yapısal olarak benzer doğal biyoaktif bileşikler ve sentetik inhibitörlerle karşılaştırmalı olarak moleküler yerleştirme yöntemi kullanılarak hesaplanmıştır. Zaman içinde en iyi konformasyona ulaşan reseptör-ligand komplekslerinin yapısal kararlılığını değerlendirmek için moleküler dinamik simülasyonları gerçekleştirilmiştir. Zeaksantin, INSR, GR ve GLP1'de sırasıyla -9,9, -6.1 ve -8.4 kcal/mol bağlanma enerjileri 30 Å grid size da göstermiştir. Benzer şekilde, zeaksantine yapısal olarak benzeyen diğer ligandların bağlanma afiniteleri sentetik inhibitörlerle karşılaştırılabilir düzeyde olup, daha güçlü bağlanma etkileşimleri sergileyerek zeaksantinin biyolojik potansiyelini desteklemektedir. Bulgularımız, doğal zeaksantinin kronik T2DM'de alternatif tedavi stratejileri için çok yönlü, hedef odaklı doğal bir ajan olarak potansiyelini vurgulamaktadır. Bu çalışma kapsamında zeaksantinin insülin direncini azaltma potansiyelini gösteren bulgularla paralel olarak, ön sonuçlarımız zeaksantini, T2DM'de alternatif tedavi stratejilerinde insülin duyarlılığını artıran ve glikoz homeostazını düzenleyen çok hedefli doğal kökenli umut vadeden öncü bir bileşik olabileceği öngörülmektedir.

References

  • Ali Z, Rafique H, Tahir RA, et al. 2025. Clinical and computational exploration of red date fruit vinegar: synergistic effects on cardiovascular and type 2 diabetes pathways. Front Nutr, 12:1557733. doi:10.3389/fnut.2025.1557733.
  • Aydos D, Aksoy ZB, Unal MA, et al. 2025. The dual GLP-1 and GIP receptor agonist tirzapetide provides an unintended interaction with the β-adrenoceptors and plays a role in glucose metabolism in hyperglycemic or senescent cardiac cells. Cardiovasc Diabetol, 24:338. doi : 10.1186/s12933-025-02828-z.
  • Bayram B, and Samur FG. 2025. Are Carotenoids Like Lutein and Zeaxanthin an Antiglycation Agents? The Potential Cardiometabolic Health Effects and Antiglycation Mechanisms of Action: A Comprehensive Review. Food Rev Int, 1-26. doi: 10.1080/87559129.2025.2482152.
  • Boachie, RT, and Elisa Di Stefano. 2025. "Fundamental Basis of Absorption, Distribution, Metabolism, and Excretion (ADME) of Dietary Compounds." In Bioavailability of Nutraceuticals and Bioactive Compounds, edited by Xiaohong Sun and Chibuike C. Udenigwe, 1–20. Boca Raton: CRC Press. doi:10.1201/978100331274.
  • Butt SS, Badshah Y, Shabbir M, et al. 2020. Molecular Docking Using Chimera and Autodock Vina Software for Nonbioinformaticians. JMIR Bioinform Biotechnol, 1:e14232. doi:10.2196/14232.
  • Chen Y-S, Gleaton J, Yang Y, et al. 2021. Insertion of a synthetic switch into insulin provides metabolite-dependent regulation of hormone-receptor activation. Proc Natl Acad Sci U S A, 118:e2103518118. doi: 10.1073/pnas.2103518118.
  • Elangovan N, Arumugam N, Santhamoorthy M, et al. 2025. Intermolecular Forces in Bioactive Resveratrol Complexes with Alcohols: A Study of Stability and Electronic Structure. J Phys Chem B, 129:1966-1975. doi:10.1021/acs.jpcb.4c08634.
  • Fu L, Shi S, Yi J, et al. 2024. ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res, 52:W422-W431. doi:10.1093/nar/gkae236.
  • Gadaleta D, Serrano-Candelas E, Ortega-Vallbona R, et al. 2024. Comprehensive benchmarking of computational tools for predicting toxicokinetic and physicochemical properties of chemicals. J Cheminform, 16:145. doi:10.1186/s13321-024-00931-z.
  • Gomaa MS, Alturki MS, Tawfeeq N, et al. 2024. Discovery of Non-Peptide GLP-1 Positive Allosteric Modulators from Natural Products: Virtual Screening, Molecular Dynamics, ADMET Profiling, Repurposing, and Chemical Scaffolds Identification. Pharmaceutics, 16:1607. doi: 10.3390/pharmaceutics16121607.
  • Hartati FK, Djauhari AB, and Kharisma VD. 2021. Evaluation of pharmacokinetic properties, toxicity, and bioactive cytotoxic activity of black rice (Oryza sativa l.) as candidates for diabetes mellitus drugs by in silico. Biointerface Res Appl Chem, 11:12301-12311. doi: 10.33263/BRIAC114.1230112311.
  • Hassan AM, Gattan HS, Faizo AA, et al. 2024. Evaluating the Binding Potential and Stability of Drug-like Compounds with the Monkeypox Virus VP39 Protein Using Molecular Dynamics Simulations and Free Energy Analysis. Pharmaceuticals (Basel), 17. doi:10.3390/ph17121617.
  • He LY, Li Y, Niu SQ, et al. 2023. Polysaccharides from natural resource: ameliorate type 2 diabetes mellitus via regulation of oxidative stress network. Front Pharmacol, 14:1184572. doi:10.3389/fphar.2023.1184572.
  • Ibrahim MJ, Nangia A, Das S, et al. 2025. Exploring Holy Basil's bioactive compounds for T2DM treatment: docking and molecular dynamics simulations with human Omentin-1. Cell Biochem Biophys, 83:793-810. doi: : 10.1007/s12013-024-01511-6.
  • Jin Z, Liu M, Zhao H, et al. 2024. Effects of Zeaxanthin on the Insulin Resistance and Gut Microbiota of High-Fat-Diet-Induced Obese Mice. Foods, 13:3388. doi : 10.3390/foods13213388.
  • Kamiloglu S, Günal-Köroğlu D, Ozdal T, et al. 2025. Recent advances on anti-diabetic potential of pigmented phytochemicals in foods and medicinal plants. Phytochem Rev, 24:2203-2233. doi: 10.1007/s11101-024-10014-4.
  • Kumar A, and Ojha KK. 2023. Molecular Dynamics Simulation Methods to Study Structural Dynamics of Proteins. In P. Saudagar and T. Tripathi (Eds.), Protein Folding Dynamics and Stability: Experimental and Computational Methods (pp. 83-106). Singapore: Springer Nature Singapore. doi: 10.1007/978-981-99-2079-2_5.
  • Kumar L, Vizgaudis W, and Klein-Seetharaman J. 2022. Structure-based survey of ligand binding in the human insulin receptor. Br J Pharmacol, 179:3512-3528. doi : 10.1111/bph.15777.
  • Lee J, Cheng X, Jo S, et al. 2016. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput, 110:641a. doi: 10.1021/acs.jctc.5b00935.
  • Lem DW, Gierhart DL, and Davey PG. 2021. A Systematic Review of Carotenoids in the Management of Diabetic Retinopathy. Nutrients, 13. doi:10.3390/nu13072441.
  • Li W, Dao Y, Lin T, et al. 2025. Modulation of insulin receptor activation through controlled folding of peptide ligands. Org Biomol Chem, 23:4776-4781. doi:10.1039/d5ob00363f.
  • Liu L, Chen J, Wang L, et al. 2022. Association between different GLP-1 receptor agonists and gastrointestinal adverse reactions: a real-world disproportionality study based on FDA adverse event reporting system database. Front Endocrinol (Lausanne), 13:1043789. doi : 10.3389/fendo.2022.1043789.
  • Makuch K, Hryc J, Markiewicz M, et al. 2021. Lutein and Zeaxanthin in the Lipid Bilayer-Similarities and Differences Revealed by Computational Studies. Front Mol Biosci, 8:768449. doi:10.3389/fmolb.2021.768449.
  • Martiniakova M, Sarocka A, Penzes N, et al. 2025. Protective Role of Dietary Polyphenols in the Management and Treatment of Type 2 Diabetes Mellitus. Nutrients, 17. doi:10.3390/nu17020275.
  • Medoro A, Scapagnini G, Brogi S, et al. 2024. Carotenoid Interactions with PCSK9: Exploring Novel Cholesterol-Lowering Strategies. Pharmaceuticals (Basel), 17. doi:10.3390/ph17121597.
  • Mohamed S. 2024. Metformin: Diverse molecular mechanisms, gastrointestinal effects and overcoming intolerance in type 2 Diabetes Mellitus: A review. Medicine (Baltimore), 103: e40221 doi : 10.1097/MD.0000000000040221.
  • Morris GM, Huey R, Lindstrom W, et al. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem, 30:2785-2791. doi:10.1002/jcc.21256.
  • Murillo AG, Hu S, and Fernandez ML. 2019. Zeaxanthin: Metabolism, Properties, and Antioxidant Protection of Eyes, Heart, Liver, and Skin. Antioxidants (Basel), 8. doi:10.3390/antiox8090390.
  • Mustafa G, Mahrosh HS, Zafar M, et al. 2022. Exploring the antihyperglycemic potential of tetrapeptides devised from AdMc1 via different receptor proteins inhibition using in silico approaches. 36:03946320221103120.
  • Orjuela AnL, Pecchio Mn, Cruz-Mora J, et al. 2024. The role of carotenoids from red mamey fruit (Pouteria sapota) against amyloid-β monomers in Alzheimer's disease: Computational analysis and ADMET prediction. J Alzheimers Dis, 102:745-762. doi: 10.1177/13872877241291172.
  • Ortega-Regules AE, Martínez-Thomas JA, Schürenkämper-Carrillo K et al. 2024. Recent advances in the therapeutic potential of carotenoids in preventing and managing metabolic disorders. Plants, 13:1584. doi: 10.3390/plants13121584.
  • Patnaik S, Stevens K, Gerding R, et al. 2009. Kinase domain of insulin receptor complexed with a pyrrolo pyridine inhibitor. pdb doi:10.2210/pdb3eta/pdb.
  • Pavan M, Menin S, Bassani D, et al. 2022. Qualitative estimation of protein-ligand complex stability through thermal titration molecular dynamics simulations. J Chem Inf Model, 62:5715-5728. doi: 10.1021/acs.jcim.2c00995.
  • Pettersen EF, Goddard TD, Huang CC, et al. 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 25:1605-1612. doi:10.1002/jcc.20084.
  • Rabbani N, Thornalley PJ. 2024. Unraveling the impaired incretin effect in obesity and type 2 diabetes: Key role of hyperglycemia-induced unscheduled glycolysis and glycolytic overload. Diabetes Res Clin Pract, 217:111905. doi: 10.1016/j.diabres.2024.111905.
  • Ravindranath PA, Forli S, Goodsell DS, et al. 2015. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLoS Comput Biol, 11:e1004586. doi:10.1371/journal.pcbi.1004586.
  • Roohbakhsh A, Karimi G, and Iranshahi M. 2017. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed Pharmacother, 91:31-42. doi:10.1016/j.biopha.2017.04.057.
  • Rroji M, Spahia N, Figurek A, et al. 2025. Targeting diabetic atherosclerosis: the role of GLP-1 receptor agonists, SGLT2 inhibitors, and nonsteroidal mineralocorticoid receptor antagonists in vascular protection and disease modulation. Biomedicines, 13:728. doi: 10.3390/biomedicines13030728.
  • Sabiu S, Balogun FO, and Amoo SO. 2021. Phenolics profiling of Carpobrotus edulis (L.) NE Br. and insights into molecular dynamics of their significance in type 2 diabetes therapy and its retinopathy complication. Molecules, 26:4867. doi: 10.3390/molecules26164867.
  • Sanlier N, Yildiz E, and Ozler E. 2024. An overview on the effects of some carotenoids on health: lutein and Zeaxanthin. Curr Nutr Rep, 13:828-844. doi: 10.1007/s13668-024-00579-z.
  • Scarpa E-S, Antonelli A, Balercia G, et al. 2024. Antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic activities of polyphenols for the treatment of two different chronic diseases: type 2 diabetes mellitus and osteoporosis. Biomolecules, 14:836. doi: 10.3390/biom14070836
  • Song Z, Toy JYH, and Huang D. 2025. Absorption, Distribution, Metabolism, and Excretion (ADME) of Bioactive Food Constituents. In D. Huang and L. Yu (Eds.), Evidence-based Nutraceuticals and Functional Foods (pp. 72-90): Royal Society of Chemistry. doi: 10.1039/9781837674046
  • Svane MS, Hindsø¸ M, Martinussen C, et al. 2025. β-Cell Function and Sensitivity to Incretins Before and After Roux-en-Y Gastric Bypass in Individuals With Type 2 Diabetes. Diabetes, 74:1652–1663. doi: 10.2337/db24-1054
  • Taghvaei S, and Saremi L. 2022. Molecular Dynamics Simulation and Essential Dynamics of Deleterious Proline 12 Alanine Single-Nucleotide Polymorphism in PPARγ2 Associated with Type 2 Diabetes, Cardiovascular Disease, and Nonalcoholic Fatty Liver Disease. PPAR Res, 2022:3833668. doi: 10.1155/2022/3833668.
  • Tamel Selvan K, Goon JA, Makpol S, et al. 2023. Therapeutic potentials of microalgae and their bioactive compounds on diabetes mellitus. Marine Drugs, 21:462. doi: 10.3390/md21090462.
  • Trott O, and Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31:455-461. doi:10.1002/jcc.21334.
  • Tundo GR, Grasso G, Persico M, et al. 2023. The insulin-degrading enzyme from structure to allosteric modulation: new perspectives for drug design. Biomolecules, 13:1492. doi: 10.3390/biom13101492.
  • Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, et al. 2021. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J Chem Theory Comput, 17:6281-6291. doi: 10.1021/acs.jctc.1c00645.
  • Vennelakanti V, Qi HW, Mehmood R, et al. 2021. When are two hydrogen bonds better than one? Accurate first-principles models explain the balance of hydrogen bond donors and acceptors found in proteins. Chem Sci, 12:1147-1162. doi:10.1039/d0sc05084a.
  • Wang M, Fu X, Du L, et al. 2024. The Inferential Binding Sites of GCGR for Small Molecules Using Protein Dynamic Conformations and Crystal Structures. Int J Mol Sci, 25. doi:10.3390/ijms25158389.
  • Waterhouse AM, Studer G, Robin X, et al. 2024. The structure assessment web server: for proteins, complexes and more. Nucleic Acids Res, 52:W318-W323. doi: 10.1093/nar/gkae270.
  • Yamagata K, Tsuyama T, and Sato Y. 2024. Roles of β-cell hypoxia in the progression of type 2 diabetes. Int J Mol Sci, 25:4186. doi: 10.3390/ijms25084186.
  • Yang Z, Lasker K, Schneidman-Duhovny D, et al. 2012. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol, 179:269-278. doi:10.1016/j.jsb.2011.09.006.
  • Yin Y, Zhou XE, Hou L, et al. 2016. An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain. Cell Discov, 2:16042. doi:10.1038/celldisc.2016.42.
  • Zheng YF, Bae SH, Kwon MJ, et al. 2013. Inhibitory effects of astaxanthin, beta-cryptoxanthin, canthaxanthin, lutein, and zeaxanthin on cytochrome P450 enzyme activities. Food Chem Toxicol, 59:78-85. doi:10.1016/j.fct.2013.04.053.

In silico Assessment of the Interaction of the Natural Compound Zeaxanthin with Insulin, Glucocorticoid, and GLP-1 Receptors Associated with Type 2 Diabetes

Year 2025, Volume: 8 Issue: 2, 40 - 50, 29.12.2025
https://doi.org/10.46239/ejbcs.1792071

Abstract

Type 2 diabetes mellitus (T2DM), developing because of insulin resistance in peripheral tissues due to pancreatic β-cell dysfunction, chronic metabolic disorder characterized by persistent hyperglycaemia. This pathological state is associated with the impairment of insulin signalling cascades, along with metabolic stress imposed on glucocorticoid and GLP-1 receptors and the perturbation of glucose homeostasis. In this study, interaction potential of the carotenoid pigment zeaxanthin, extracted from natural origins such as microalgae, on insulin, glucocorticoid, and GLP-1 target receptors associated with T2DM was evaluated by employing in silico molecular modelling approaches. Zeaxanthin binding affinities for selected glucocorticoid, insulin, and GLP-1 receptors were computed using the molecular docking method, in comparison with structurally similar natural bioactive compounds and synthetic inhibitors. Molecular dynamics simulations were performed to assess the structural stability of the receptor–ligand complexes that achieved the best conformation over time. Zeaxanthin demonstrated binding energies of -9.9, -6.1 and -8.4 kcal/mol in the INSR, GR, and GLP1, respectively, at a grid size of 30 Å. Similarly, the binding affinities of other ligands structurally analogous to zeaxanthin were comparable to synthetic inhibitors and exhibited stronger binding interactions, supporting zeaxanthin's biological potential. Our findings highlight the potential of natural zeaxanthin as a versatile, targeted natural agent for alternative therapeutic strategies in chronic T2DM. In line with the findings demonstrating zeaxanthin’s potential to reduce insulin resistance within the scope of this study, our preliminary results suggest that zeaxanthin represents a promising lead compound of natural origin with multi-target activity, capable of enhancing insulin sensitivity and regulating glucose homeostasis as part of alternative treatment strategies for T2DM.

References

  • Ali Z, Rafique H, Tahir RA, et al. 2025. Clinical and computational exploration of red date fruit vinegar: synergistic effects on cardiovascular and type 2 diabetes pathways. Front Nutr, 12:1557733. doi:10.3389/fnut.2025.1557733.
  • Aydos D, Aksoy ZB, Unal MA, et al. 2025. The dual GLP-1 and GIP receptor agonist tirzapetide provides an unintended interaction with the β-adrenoceptors and plays a role in glucose metabolism in hyperglycemic or senescent cardiac cells. Cardiovasc Diabetol, 24:338. doi : 10.1186/s12933-025-02828-z.
  • Bayram B, and Samur FG. 2025. Are Carotenoids Like Lutein and Zeaxanthin an Antiglycation Agents? The Potential Cardiometabolic Health Effects and Antiglycation Mechanisms of Action: A Comprehensive Review. Food Rev Int, 1-26. doi: 10.1080/87559129.2025.2482152.
  • Boachie, RT, and Elisa Di Stefano. 2025. "Fundamental Basis of Absorption, Distribution, Metabolism, and Excretion (ADME) of Dietary Compounds." In Bioavailability of Nutraceuticals and Bioactive Compounds, edited by Xiaohong Sun and Chibuike C. Udenigwe, 1–20. Boca Raton: CRC Press. doi:10.1201/978100331274.
  • Butt SS, Badshah Y, Shabbir M, et al. 2020. Molecular Docking Using Chimera and Autodock Vina Software for Nonbioinformaticians. JMIR Bioinform Biotechnol, 1:e14232. doi:10.2196/14232.
  • Chen Y-S, Gleaton J, Yang Y, et al. 2021. Insertion of a synthetic switch into insulin provides metabolite-dependent regulation of hormone-receptor activation. Proc Natl Acad Sci U S A, 118:e2103518118. doi: 10.1073/pnas.2103518118.
  • Elangovan N, Arumugam N, Santhamoorthy M, et al. 2025. Intermolecular Forces in Bioactive Resveratrol Complexes with Alcohols: A Study of Stability and Electronic Structure. J Phys Chem B, 129:1966-1975. doi:10.1021/acs.jpcb.4c08634.
  • Fu L, Shi S, Yi J, et al. 2024. ADMETlab 3.0: an updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res, 52:W422-W431. doi:10.1093/nar/gkae236.
  • Gadaleta D, Serrano-Candelas E, Ortega-Vallbona R, et al. 2024. Comprehensive benchmarking of computational tools for predicting toxicokinetic and physicochemical properties of chemicals. J Cheminform, 16:145. doi:10.1186/s13321-024-00931-z.
  • Gomaa MS, Alturki MS, Tawfeeq N, et al. 2024. Discovery of Non-Peptide GLP-1 Positive Allosteric Modulators from Natural Products: Virtual Screening, Molecular Dynamics, ADMET Profiling, Repurposing, and Chemical Scaffolds Identification. Pharmaceutics, 16:1607. doi: 10.3390/pharmaceutics16121607.
  • Hartati FK, Djauhari AB, and Kharisma VD. 2021. Evaluation of pharmacokinetic properties, toxicity, and bioactive cytotoxic activity of black rice (Oryza sativa l.) as candidates for diabetes mellitus drugs by in silico. Biointerface Res Appl Chem, 11:12301-12311. doi: 10.33263/BRIAC114.1230112311.
  • Hassan AM, Gattan HS, Faizo AA, et al. 2024. Evaluating the Binding Potential and Stability of Drug-like Compounds with the Monkeypox Virus VP39 Protein Using Molecular Dynamics Simulations and Free Energy Analysis. Pharmaceuticals (Basel), 17. doi:10.3390/ph17121617.
  • He LY, Li Y, Niu SQ, et al. 2023. Polysaccharides from natural resource: ameliorate type 2 diabetes mellitus via regulation of oxidative stress network. Front Pharmacol, 14:1184572. doi:10.3389/fphar.2023.1184572.
  • Ibrahim MJ, Nangia A, Das S, et al. 2025. Exploring Holy Basil's bioactive compounds for T2DM treatment: docking and molecular dynamics simulations with human Omentin-1. Cell Biochem Biophys, 83:793-810. doi: : 10.1007/s12013-024-01511-6.
  • Jin Z, Liu M, Zhao H, et al. 2024. Effects of Zeaxanthin on the Insulin Resistance and Gut Microbiota of High-Fat-Diet-Induced Obese Mice. Foods, 13:3388. doi : 10.3390/foods13213388.
  • Kamiloglu S, Günal-Köroğlu D, Ozdal T, et al. 2025. Recent advances on anti-diabetic potential of pigmented phytochemicals in foods and medicinal plants. Phytochem Rev, 24:2203-2233. doi: 10.1007/s11101-024-10014-4.
  • Kumar A, and Ojha KK. 2023. Molecular Dynamics Simulation Methods to Study Structural Dynamics of Proteins. In P. Saudagar and T. Tripathi (Eds.), Protein Folding Dynamics and Stability: Experimental and Computational Methods (pp. 83-106). Singapore: Springer Nature Singapore. doi: 10.1007/978-981-99-2079-2_5.
  • Kumar L, Vizgaudis W, and Klein-Seetharaman J. 2022. Structure-based survey of ligand binding in the human insulin receptor. Br J Pharmacol, 179:3512-3528. doi : 10.1111/bph.15777.
  • Lee J, Cheng X, Jo S, et al. 2016. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J Chem Theory Comput, 110:641a. doi: 10.1021/acs.jctc.5b00935.
  • Lem DW, Gierhart DL, and Davey PG. 2021. A Systematic Review of Carotenoids in the Management of Diabetic Retinopathy. Nutrients, 13. doi:10.3390/nu13072441.
  • Li W, Dao Y, Lin T, et al. 2025. Modulation of insulin receptor activation through controlled folding of peptide ligands. Org Biomol Chem, 23:4776-4781. doi:10.1039/d5ob00363f.
  • Liu L, Chen J, Wang L, et al. 2022. Association between different GLP-1 receptor agonists and gastrointestinal adverse reactions: a real-world disproportionality study based on FDA adverse event reporting system database. Front Endocrinol (Lausanne), 13:1043789. doi : 10.3389/fendo.2022.1043789.
  • Makuch K, Hryc J, Markiewicz M, et al. 2021. Lutein and Zeaxanthin in the Lipid Bilayer-Similarities and Differences Revealed by Computational Studies. Front Mol Biosci, 8:768449. doi:10.3389/fmolb.2021.768449.
  • Martiniakova M, Sarocka A, Penzes N, et al. 2025. Protective Role of Dietary Polyphenols in the Management and Treatment of Type 2 Diabetes Mellitus. Nutrients, 17. doi:10.3390/nu17020275.
  • Medoro A, Scapagnini G, Brogi S, et al. 2024. Carotenoid Interactions with PCSK9: Exploring Novel Cholesterol-Lowering Strategies. Pharmaceuticals (Basel), 17. doi:10.3390/ph17121597.
  • Mohamed S. 2024. Metformin: Diverse molecular mechanisms, gastrointestinal effects and overcoming intolerance in type 2 Diabetes Mellitus: A review. Medicine (Baltimore), 103: e40221 doi : 10.1097/MD.0000000000040221.
  • Morris GM, Huey R, Lindstrom W, et al. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem, 30:2785-2791. doi:10.1002/jcc.21256.
  • Murillo AG, Hu S, and Fernandez ML. 2019. Zeaxanthin: Metabolism, Properties, and Antioxidant Protection of Eyes, Heart, Liver, and Skin. Antioxidants (Basel), 8. doi:10.3390/antiox8090390.
  • Mustafa G, Mahrosh HS, Zafar M, et al. 2022. Exploring the antihyperglycemic potential of tetrapeptides devised from AdMc1 via different receptor proteins inhibition using in silico approaches. 36:03946320221103120.
  • Orjuela AnL, Pecchio Mn, Cruz-Mora J, et al. 2024. The role of carotenoids from red mamey fruit (Pouteria sapota) against amyloid-β monomers in Alzheimer's disease: Computational analysis and ADMET prediction. J Alzheimers Dis, 102:745-762. doi: 10.1177/13872877241291172.
  • Ortega-Regules AE, Martínez-Thomas JA, Schürenkämper-Carrillo K et al. 2024. Recent advances in the therapeutic potential of carotenoids in preventing and managing metabolic disorders. Plants, 13:1584. doi: 10.3390/plants13121584.
  • Patnaik S, Stevens K, Gerding R, et al. 2009. Kinase domain of insulin receptor complexed with a pyrrolo pyridine inhibitor. pdb doi:10.2210/pdb3eta/pdb.
  • Pavan M, Menin S, Bassani D, et al. 2022. Qualitative estimation of protein-ligand complex stability through thermal titration molecular dynamics simulations. J Chem Inf Model, 62:5715-5728. doi: 10.1021/acs.jcim.2c00995.
  • Pettersen EF, Goddard TD, Huang CC, et al. 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem, 25:1605-1612. doi:10.1002/jcc.20084.
  • Rabbani N, Thornalley PJ. 2024. Unraveling the impaired incretin effect in obesity and type 2 diabetes: Key role of hyperglycemia-induced unscheduled glycolysis and glycolytic overload. Diabetes Res Clin Pract, 217:111905. doi: 10.1016/j.diabres.2024.111905.
  • Ravindranath PA, Forli S, Goodsell DS, et al. 2015. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility. PLoS Comput Biol, 11:e1004586. doi:10.1371/journal.pcbi.1004586.
  • Roohbakhsh A, Karimi G, and Iranshahi M. 2017. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed Pharmacother, 91:31-42. doi:10.1016/j.biopha.2017.04.057.
  • Rroji M, Spahia N, Figurek A, et al. 2025. Targeting diabetic atherosclerosis: the role of GLP-1 receptor agonists, SGLT2 inhibitors, and nonsteroidal mineralocorticoid receptor antagonists in vascular protection and disease modulation. Biomedicines, 13:728. doi: 10.3390/biomedicines13030728.
  • Sabiu S, Balogun FO, and Amoo SO. 2021. Phenolics profiling of Carpobrotus edulis (L.) NE Br. and insights into molecular dynamics of their significance in type 2 diabetes therapy and its retinopathy complication. Molecules, 26:4867. doi: 10.3390/molecules26164867.
  • Sanlier N, Yildiz E, and Ozler E. 2024. An overview on the effects of some carotenoids on health: lutein and Zeaxanthin. Curr Nutr Rep, 13:828-844. doi: 10.1007/s13668-024-00579-z.
  • Scarpa E-S, Antonelli A, Balercia G, et al. 2024. Antioxidant, anti-inflammatory, anti-diabetic, and pro-osteogenic activities of polyphenols for the treatment of two different chronic diseases: type 2 diabetes mellitus and osteoporosis. Biomolecules, 14:836. doi: 10.3390/biom14070836
  • Song Z, Toy JYH, and Huang D. 2025. Absorption, Distribution, Metabolism, and Excretion (ADME) of Bioactive Food Constituents. In D. Huang and L. Yu (Eds.), Evidence-based Nutraceuticals and Functional Foods (pp. 72-90): Royal Society of Chemistry. doi: 10.1039/9781837674046
  • Svane MS, Hindsø¸ M, Martinussen C, et al. 2025. β-Cell Function and Sensitivity to Incretins Before and After Roux-en-Y Gastric Bypass in Individuals With Type 2 Diabetes. Diabetes, 74:1652–1663. doi: 10.2337/db24-1054
  • Taghvaei S, and Saremi L. 2022. Molecular Dynamics Simulation and Essential Dynamics of Deleterious Proline 12 Alanine Single-Nucleotide Polymorphism in PPARγ2 Associated with Type 2 Diabetes, Cardiovascular Disease, and Nonalcoholic Fatty Liver Disease. PPAR Res, 2022:3833668. doi: 10.1155/2022/3833668.
  • Tamel Selvan K, Goon JA, Makpol S, et al. 2023. Therapeutic potentials of microalgae and their bioactive compounds on diabetes mellitus. Marine Drugs, 21:462. doi: 10.3390/md21090462.
  • Trott O, and Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem, 31:455-461. doi:10.1002/jcc.21334.
  • Tundo GR, Grasso G, Persico M, et al. 2023. The insulin-degrading enzyme from structure to allosteric modulation: new perspectives for drug design. Biomolecules, 13:1492. doi: 10.3390/biom13101492.
  • Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, et al. 2021. gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. J Chem Theory Comput, 17:6281-6291. doi: 10.1021/acs.jctc.1c00645.
  • Vennelakanti V, Qi HW, Mehmood R, et al. 2021. When are two hydrogen bonds better than one? Accurate first-principles models explain the balance of hydrogen bond donors and acceptors found in proteins. Chem Sci, 12:1147-1162. doi:10.1039/d0sc05084a.
  • Wang M, Fu X, Du L, et al. 2024. The Inferential Binding Sites of GCGR for Small Molecules Using Protein Dynamic Conformations and Crystal Structures. Int J Mol Sci, 25. doi:10.3390/ijms25158389.
  • Waterhouse AM, Studer G, Robin X, et al. 2024. The structure assessment web server: for proteins, complexes and more. Nucleic Acids Res, 52:W318-W323. doi: 10.1093/nar/gkae270.
  • Yamagata K, Tsuyama T, and Sato Y. 2024. Roles of β-cell hypoxia in the progression of type 2 diabetes. Int J Mol Sci, 25:4186. doi: 10.3390/ijms25084186.
  • Yang Z, Lasker K, Schneidman-Duhovny D, et al. 2012. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J Struct Biol, 179:269-278. doi:10.1016/j.jsb.2011.09.006.
  • Yin Y, Zhou XE, Hou L, et al. 2016. An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain. Cell Discov, 2:16042. doi:10.1038/celldisc.2016.42.
  • Zheng YF, Bae SH, Kwon MJ, et al. 2013. Inhibitory effects of astaxanthin, beta-cryptoxanthin, canthaxanthin, lutein, and zeaxanthin on cytochrome P450 enzyme activities. Food Chem Toxicol, 59:78-85. doi:10.1016/j.fct.2013.04.053.
There are 55 citations in total.

Details

Primary Language English
Subjects Bioinformatics and Computational Biology (Other)
Journal Section Research Article
Authors

Nil Sazlı 0009-0006-6740-1169

Deniz Karataş 0000-0002-8176-4883

Submission Date September 27, 2025
Acceptance Date October 20, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Volume: 8 Issue: 2

Cite

APA Sazlı, N., & Karataş, D. (2025). In silico Assessment of the Interaction of the Natural Compound Zeaxanthin with Insulin, Glucocorticoid, and GLP-1 Receptors Associated with Type 2 Diabetes. Eurasian Journal of Biological and Chemical Sciences, 8(2), 40-50. https://doi.org/10.46239/ejbcs.1792071
AMA Sazlı N, Karataş D. In silico Assessment of the Interaction of the Natural Compound Zeaxanthin with Insulin, Glucocorticoid, and GLP-1 Receptors Associated with Type 2 Diabetes. Eurasian J. Bio. Chem. Sci. December 2025;8(2):40-50. doi:10.46239/ejbcs.1792071
Chicago Sazlı, Nil, and Deniz Karataş. “In Silico Assessment of the Interaction of the Natural Compound Zeaxanthin With Insulin, Glucocorticoid, and GLP-1 Receptors Associated With Type 2 Diabetes”. Eurasian Journal of Biological and Chemical Sciences 8, no. 2 (December 2025): 40-50. https://doi.org/10.46239/ejbcs.1792071.
EndNote Sazlı N, Karataş D (December 1, 2025) In silico Assessment of the Interaction of the Natural Compound Zeaxanthin with Insulin, Glucocorticoid, and GLP-1 Receptors Associated with Type 2 Diabetes. Eurasian Journal of Biological and Chemical Sciences 8 2 40–50.
IEEE N. Sazlı and D. Karataş, “In silico Assessment of the Interaction of the Natural Compound Zeaxanthin with Insulin, Glucocorticoid, and GLP-1 Receptors Associated with Type 2 Diabetes”, Eurasian J. Bio. Chem. Sci., vol. 8, no. 2, pp. 40–50, 2025, doi: 10.46239/ejbcs.1792071.
ISNAD Sazlı, Nil - Karataş, Deniz. “In Silico Assessment of the Interaction of the Natural Compound Zeaxanthin With Insulin, Glucocorticoid, and GLP-1 Receptors Associated With Type 2 Diabetes”. Eurasian Journal of Biological and Chemical Sciences 8/2 (December2025), 40-50. https://doi.org/10.46239/ejbcs.1792071.
JAMA Sazlı N, Karataş D. In silico Assessment of the Interaction of the Natural Compound Zeaxanthin with Insulin, Glucocorticoid, and GLP-1 Receptors Associated with Type 2 Diabetes. Eurasian J. Bio. Chem. Sci. 2025;8:40–50.
MLA Sazlı, Nil and Deniz Karataş. “In Silico Assessment of the Interaction of the Natural Compound Zeaxanthin With Insulin, Glucocorticoid, and GLP-1 Receptors Associated With Type 2 Diabetes”. Eurasian Journal of Biological and Chemical Sciences, vol. 8, no. 2, 2025, pp. 40-50, doi:10.46239/ejbcs.1792071.
Vancouver Sazlı N, Karataş D. In silico Assessment of the Interaction of the Natural Compound Zeaxanthin with Insulin, Glucocorticoid, and GLP-1 Receptors Associated with Type 2 Diabetes. Eurasian J. Bio. Chem. Sci. 2025;8(2):40-5.