Research Article
BibTex RIS Cite

Evaluation of the morphological and ultrastructural effects of on liver tissues of scopolamine use in old rats

Year 2020, Volume: 3 Issue: 2, 148 - 153, 29.12.2020

Abstract

Evaluation of the morphological and ultrastructural effects of on liver tissues of scopolamine use in old rats
Abstract: Scopolamine is a natural plant alkaloid with strong anticholinergic effects. It competitively inhibits muscarinic receptors and produces both peripheral antimuscarinic effects and central sedative, antiemetic and amnesic effects. It has been used as an antiemetic, antisecretory and antispasmodic agent in the treatment of nausea, motion sickness, allergic rhinitis, duodenal ulcer disease, gastrointestinal discomfort and spasm, functional bowel syndrome and hyperactive bladder for many years. Scopolamine is metabolized by the liver, but is usually given in low doses (<1 mg) only for short periods of time. Patients with liver or kidney disease cannot metabolize scopolamine or excrete it in the urine. In such cases, it should be accepted that side effects will increase when considering the use of scopolamine. Although widely used for many years, scopolamine has not been associated with elevated liver enzyme or clinically apparent liver damage. However, there is limited study on its effects on liver tissues if used. Transmission electron microscopy (TEM) is considered to be an important component in liver pathology studies.
Our aim in this study is to evaluate whether scopolamine use causes any changes in the liver with the help of light and electron microscopy. For this purpose, 20 Wistar Albino male old rats were used. Rats were randomly divided into two groups and Scopolamine HBr (Sigma) was prepared by dissolving in 0.9% saline. The control groups were given saline with 0.1 ml / kg oral gavage for 3 weeks, and 0.1 ml / kg saline intraperitoneally 30 minutes before the experiments. In the experimental groups, 0.1 ml / kg saline was administered with oral gavage for 3 weeks and 1 mg / kg scopolamine intraperitoneally was administered 30 minutes before the experiments. At the end of the period, 1mm3 sized liver samples were taken from animals under anesthesia and decapitation was performed. After the fixation procedure light and electronmicroscopic preparartion procedures were performed. Semi-thin sections taken by ultramicrotome from the obtained blocks were examined by light microscopy, and after the thin sections were stained with TEM (Hitachi HT 7800). Our findings show that the use of scopolamine does not cause a significant difference in light and electron microscopic levels in the liver, but the vacuol formation increase was detected in some samples of the scopolamine group. However, hepatocyte integrity, shape and general tissue morphology were well preserved. However, our data should be supported by detailed studies.

References

  • Antor MA, Uribe AA, Erminy-Falcon N, Werner JG, Candiotti KA, Pergolizzi JV, Bergese SD 2014. The effect of transdermal scopolamine for the prevention of postoperative nausea and vomiting. Frontiers in pharmacology, 5: 55.
  • Apfel CC, Zhang K, George E, Shi S, Jalota L, Hornuss C, Fero KE, et al. Transdermal scopolamine for the prevention of postoperative nausea and vomiting: a systematic review and meta-analysis. Clin Ther 2010; 32: 1987-2002.
  • Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer's disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol. 2002;68(3):209–245. doi:10.1016/s0301-0082(02)00079-5
  • Bajo R, Pusil S, López ME, Canuet L, Pereda E, Osipova D, Maeustú F, Pekkonen E 2015. Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer’s disease. Scientific reports, 5(1): 1-6.
  • Chan TY, Tang CH, Critchley JA. Poisoning due to an over-the-counter hypnotic, Sleep-Qik (hyoscine, cyproheptadine, valerian). Postgrad Med J 1995; 71: 227-8.
  • Chen C, Li XH, Zhang S, Tu Y, Wang YM, Sun HT 2014. 7, 8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction. Rejuvenation research, 17(3): 249-254.
  • El-Marasy SA, Abd-Elsalam RM, Ahmed-Farid OA 2018. Ameliorative effect of silymarin on scopolamine-induced dementia in rats. Open access Macedonian journal of medical sciences, 6(7): 1215.
  • Jeong EJ, Lee KY, Kim SH, Sung SH, Kim YC 2008. Cognitive-enhancing and antioxidant activities of iridoid glycosides from Scrophularia buergeriana in scopolamine-treated mice. European journal of pharmacology, 588(1): 78-84.
  • Khosravi-Farsani N, Mashhadi Akbar Boojar M, Amini-Farsani Z, Heydari S, Teimori H 2016. Antioxidant and antiglycation effects of scopolamine in rat liver cells. Der Pharmacia Lettre, 8(1): 169-174.
  • Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev. 2010;34(8):1307–1350. doi:10.1016/j.neubiorev.2010.04.001
  • Kranke P, Morin AM, Roewer N, Wulf H, Eberhart LH. The efficacy and safety of transdermal scopolamine for the prevention of postoperative nausea and vomiting: a quantitative systematic review. Anesth Analg 2002; 95: 133-43.
  • LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet].Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. 2017 Jul 7. URL: https://www.ncbi.nlm.nih.gov/books/NBK548835/#_ncbi_dlg_citbx_NBK548835
  • Luetje CM, Wooten J 1996. Clinical manifestations of transdermal scopolamine addiction. Ear, nose & throat journal, 75(4): 210-214.
  • Nafady AM, Ahmed OB, Ghafeer HH 2017. Scanning and transmission electron microscopy of the cells forming the hepatic sinusoidal wall of rat in acetaminophen-and Escherichia coli endotoxin-induced hepatotoxicity. Journal of microscopy and ultrastructure, 5(1): 21-27.
  • Palle S, Neerati P 2017. Quercetin nanoparticles attenuates scopolamine induced spatial memory deficits and pathological damages in rats. Bulletin of Faculty of Pharmacy, Cairo University, 55(1): 101-106.
  • Renner UD, Oertel R, Kirch W 2005. Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Therapeutic drug monitoring, 27(5): 655-665.
  • Sabullah MK, Shukor MY, Sulaiman MR, Shamaan NA, Syed MA, Khalid A, Ahmad SA 2014. The effect of copper on the ultrastructure of Puntius javanicus hepatocyte. Australian Journal of Basic and Applied Sciences, 8(15): 245-51.
  • Sanchez CK, Lusk KA 2015. The Pharmacologic Management of Motion Sickness. US Pharmacist, 40(12): 34-38.
  • Sandlin D 2002. Transderm scopolamine: A painless, noninvasive option for control of postoperative nausea and vomiting. Journal of Peri Anesthesia Nursing, 17(6): 427-429.
  • Wei Y, Ying M, Xu S, Wang F, Zou A, Cao S, Jiang X, Wang Y 2016. Microdialysis pharmacokinetic study of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration. Drug delivery, 23(1), 263-268.
  • Wisse E, Braet F, Duimel H, Vreuls C, Koek G, Damink SWO, Broek MAJ, Geest BD, Dejong CHC, Tateno C, Frederik P 2010. Fixation methods for electron microscopy of human and other liver. World Journal of Gastroenterology: WJG, 16(23): 2851.
  • Wisse E, Braet F, Luo D, De Zanger R, Jans D, Crabbe E, Vermoesen AN 1996. Structure and function of sinusoidal lining cells in the liver. Toxicologic pathology, 24(1): 100-111.
  • Yeh S, Song XJ, Farley W, Li DQ, Stern ME, Pflugfelder SC 2003. Apoptosis of ocular surface cells in experimentally induced dry eye. Investigative ophthalmology & visual science, 44(1): 124-129.
  • Zaki HF, Abd-El-Fattah MA, Attia AS 2014. Naringenin protects against scopolamine-induced dementia in rats. Bulletin of Faculty of Pharmacy, Cairo University, 52(1): 15-25.

Yaşlı sıçanlarda skopolamin kullanımının karaciğer dokuları üzerine morfolojik ve ultrayapısal etkilerinin değerlendirilmesi

Year 2020, Volume: 3 Issue: 2, 148 - 153, 29.12.2020

Abstract

Özet: Skopolamin güçlü antikolinerjik etkileri olan doğal bir bitki alkaloididir. Muskarinik reseptörleri rekabetçi bir şekilde inhibe eder ve hem periferik antimuskarinik etkiler, hem de merkezi sedatif, antiemetik ve amnezik etkiler üretir. Uzun yıllardır bulantı, hareket hastalığı, alerjik rinit, duodenal ülser hastalığı, gastrointestinal rahatsızlık ve spazm, fonksiyonel bağırsak sendromu ve hiperaktif mesane tedavisinde antiemetik, antisekretuar ve antispazmotik ajan olarak kullanılmaktadır. Skopolamin, karaciğer tarafından metabolize edilir, ancak genellikle sadece kısa süreler için düşük dozlarda (<1 mg) verilir. Karaciğer veya böbrek hastalığı olan hastalar skopolamini metabolize edemez veya idrarla atamazlar. Böyle durumlarda skopolamin kullanımı düşünülürken yan etkilerin artacağı kabul edilmelidir. Uzun yıllar boyunca yaygın olarak kullanılmasına rağmen, skopolamin karaciğer enzimi yükselmesi veya klinik olarak görünen karaciğer hasarı ile ilişkilendirilmemiştir. Bununla beraber kullanımı durumunda karaciğer dokularındaki etkilerine dair kısıtlı çalışma bulunmaktadır. Karaciğer patolojisi çalışmalarında özellikle geçirimli elektron mikroskopisinin (TEM) önemli bir bileşen olduğu düşünülmektedir.
Bu çalışmadaki amacımız skopolamin kullanımının karaciğerde herhangi bir değişime neden olup olmadığını ışık ve elektron mikroskopisi yardımı ile değerlendirebilmektir. Bu amaçla, 20 Wistar Albino erkek yaşlı sıçan kullanılmıştır. Sıçanlar randomize olarak iki gruba ayrılmış ve Skopolamin HBr (Sigma), %0,9 salinde çözülerek hazırlanmıştır. Kontrol gruplarına 3 hafta süreyle 0.1 ml/kg oral gavajla serum fizyolojik, deneylerden 30 dk önce intraperitoneal olarak 0.1 ml/kg serum fizyolojik verilmiştir. Deney gruplarına ise 3 hafta süreyle oral gavajla 0.1 ml/kg serum fizyolojik, deneylerden 30 dk önce intraperitoneal olarak 1mg/kg skopolamin uygulanmıştır. Süre bitiminde hayvanlardan anestezi altında 1mm3 boyutlarında karaciğer örnekleri alınmış ve dekapitasyon uygulanmıştır. Fiksasyon prosedürünün ardından örneklere ışık ve elektron mikroskobik takip işlemleri yapılmıştır. Elde edilen bloklardan ultramikrotomla alınan yarı ince kesitler ışık mikroskopisi ile, tam ince kesitler ise boyandıktan sonra TEM (Hitachi HT 7800) ile incelenmiştir. Bulgularımız skopolamin kullanımının karaciğerde ışık ve elektron mikroskobik düzeyde önemli bir farklılığa neden olmadığını, ancak skopolamin kullanılan grubun bazı örneklerinde koful artışının tespit edildiğini göstermektedir. Ancak hepatosit bütünlüğü, şekli ve genel doku morfolojisinin iyi korunduğu gözlenmiştir. Bununla beraber verilerimizin ayrıntılı çalışmalarla desteklenmesi gerekmektedir.

References

  • Antor MA, Uribe AA, Erminy-Falcon N, Werner JG, Candiotti KA, Pergolizzi JV, Bergese SD 2014. The effect of transdermal scopolamine for the prevention of postoperative nausea and vomiting. Frontiers in pharmacology, 5: 55.
  • Apfel CC, Zhang K, George E, Shi S, Jalota L, Hornuss C, Fero KE, et al. Transdermal scopolamine for the prevention of postoperative nausea and vomiting: a systematic review and meta-analysis. Clin Ther 2010; 32: 1987-2002.
  • Auld DS, Kornecook TJ, Bastianetto S, Quirion R. Alzheimer's disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol. 2002;68(3):209–245. doi:10.1016/s0301-0082(02)00079-5
  • Bajo R, Pusil S, López ME, Canuet L, Pereda E, Osipova D, Maeustú F, Pekkonen E 2015. Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer’s disease. Scientific reports, 5(1): 1-6.
  • Chan TY, Tang CH, Critchley JA. Poisoning due to an over-the-counter hypnotic, Sleep-Qik (hyoscine, cyproheptadine, valerian). Postgrad Med J 1995; 71: 227-8.
  • Chen C, Li XH, Zhang S, Tu Y, Wang YM, Sun HT 2014. 7, 8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction. Rejuvenation research, 17(3): 249-254.
  • El-Marasy SA, Abd-Elsalam RM, Ahmed-Farid OA 2018. Ameliorative effect of silymarin on scopolamine-induced dementia in rats. Open access Macedonian journal of medical sciences, 6(7): 1215.
  • Jeong EJ, Lee KY, Kim SH, Sung SH, Kim YC 2008. Cognitive-enhancing and antioxidant activities of iridoid glycosides from Scrophularia buergeriana in scopolamine-treated mice. European journal of pharmacology, 588(1): 78-84.
  • Khosravi-Farsani N, Mashhadi Akbar Boojar M, Amini-Farsani Z, Heydari S, Teimori H 2016. Antioxidant and antiglycation effects of scopolamine in rat liver cells. Der Pharmacia Lettre, 8(1): 169-174.
  • Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: a review of animal behavioral studies. Neurosci Biobehav Rev. 2010;34(8):1307–1350. doi:10.1016/j.neubiorev.2010.04.001
  • Kranke P, Morin AM, Roewer N, Wulf H, Eberhart LH. The efficacy and safety of transdermal scopolamine for the prevention of postoperative nausea and vomiting: a quantitative systematic review. Anesth Analg 2002; 95: 133-43.
  • LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet].Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. 2017 Jul 7. URL: https://www.ncbi.nlm.nih.gov/books/NBK548835/#_ncbi_dlg_citbx_NBK548835
  • Luetje CM, Wooten J 1996. Clinical manifestations of transdermal scopolamine addiction. Ear, nose & throat journal, 75(4): 210-214.
  • Nafady AM, Ahmed OB, Ghafeer HH 2017. Scanning and transmission electron microscopy of the cells forming the hepatic sinusoidal wall of rat in acetaminophen-and Escherichia coli endotoxin-induced hepatotoxicity. Journal of microscopy and ultrastructure, 5(1): 21-27.
  • Palle S, Neerati P 2017. Quercetin nanoparticles attenuates scopolamine induced spatial memory deficits and pathological damages in rats. Bulletin of Faculty of Pharmacy, Cairo University, 55(1): 101-106.
  • Renner UD, Oertel R, Kirch W 2005. Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Therapeutic drug monitoring, 27(5): 655-665.
  • Sabullah MK, Shukor MY, Sulaiman MR, Shamaan NA, Syed MA, Khalid A, Ahmad SA 2014. The effect of copper on the ultrastructure of Puntius javanicus hepatocyte. Australian Journal of Basic and Applied Sciences, 8(15): 245-51.
  • Sanchez CK, Lusk KA 2015. The Pharmacologic Management of Motion Sickness. US Pharmacist, 40(12): 34-38.
  • Sandlin D 2002. Transderm scopolamine: A painless, noninvasive option for control of postoperative nausea and vomiting. Journal of Peri Anesthesia Nursing, 17(6): 427-429.
  • Wei Y, Ying M, Xu S, Wang F, Zou A, Cao S, Jiang X, Wang Y 2016. Microdialysis pharmacokinetic study of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration. Drug delivery, 23(1), 263-268.
  • Wisse E, Braet F, Duimel H, Vreuls C, Koek G, Damink SWO, Broek MAJ, Geest BD, Dejong CHC, Tateno C, Frederik P 2010. Fixation methods for electron microscopy of human and other liver. World Journal of Gastroenterology: WJG, 16(23): 2851.
  • Wisse E, Braet F, Luo D, De Zanger R, Jans D, Crabbe E, Vermoesen AN 1996. Structure and function of sinusoidal lining cells in the liver. Toxicologic pathology, 24(1): 100-111.
  • Yeh S, Song XJ, Farley W, Li DQ, Stern ME, Pflugfelder SC 2003. Apoptosis of ocular surface cells in experimentally induced dry eye. Investigative ophthalmology & visual science, 44(1): 124-129.
  • Zaki HF, Abd-El-Fattah MA, Attia AS 2014. Naringenin protects against scopolamine-induced dementia in rats. Bulletin of Faculty of Pharmacy, Cairo University, 52(1): 15-25.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section Research Articles
Authors

Bükay Yenice Gürsu 0000-0002-6822-3484

Elif Aksöz This is me

Büşra Aslan This is me

Betül Yılmaz Öztürk 0000-0002-1817-8240

İlknur Dağ

Publication Date December 29, 2020
Acceptance Date December 6, 2020
Published in Issue Year 2020 Volume: 3 Issue: 2

Cite

APA Yenice Gürsu, B., Aksöz, E., Aslan, B., Yılmaz Öztürk, B., et al. (2020). Yaşlı sıçanlarda skopolamin kullanımının karaciğer dokuları üzerine morfolojik ve ultrayapısal etkilerinin değerlendirilmesi. Eurasian Journal of Biological and Chemical Sciences, 3(2), 148-153.
AMA Yenice Gürsu B, Aksöz E, Aslan B, Yılmaz Öztürk B, Dağ İ. Yaşlı sıçanlarda skopolamin kullanımının karaciğer dokuları üzerine morfolojik ve ultrayapısal etkilerinin değerlendirilmesi. Eurasian J. Bio. Chem. Sci. December 2020;3(2):148-153.
Chicago Yenice Gürsu, Bükay, Elif Aksöz, Büşra Aslan, Betül Yılmaz Öztürk, and İlknur Dağ. “Yaşlı sıçanlarda Skopolamin kullanımının karaciğer Dokuları üzerine Morfolojik Ve ultrayapısal Etkilerinin değerlendirilmesi”. Eurasian Journal of Biological and Chemical Sciences 3, no. 2 (December 2020): 148-53.
EndNote Yenice Gürsu B, Aksöz E, Aslan B, Yılmaz Öztürk B, Dağ İ (December 1, 2020) Yaşlı sıçanlarda skopolamin kullanımının karaciğer dokuları üzerine morfolojik ve ultrayapısal etkilerinin değerlendirilmesi. Eurasian Journal of Biological and Chemical Sciences 3 2 148–153.
IEEE B. Yenice Gürsu, E. Aksöz, B. Aslan, B. Yılmaz Öztürk, and İ. Dağ, “Yaşlı sıçanlarda skopolamin kullanımının karaciğer dokuları üzerine morfolojik ve ultrayapısal etkilerinin değerlendirilmesi”, Eurasian J. Bio. Chem. Sci., vol. 3, no. 2, pp. 148–153, 2020.
ISNAD Yenice Gürsu, Bükay et al. “Yaşlı sıçanlarda Skopolamin kullanımının karaciğer Dokuları üzerine Morfolojik Ve ultrayapısal Etkilerinin değerlendirilmesi”. Eurasian Journal of Biological and Chemical Sciences 3/2 (December 2020), 148-153.
JAMA Yenice Gürsu B, Aksöz E, Aslan B, Yılmaz Öztürk B, Dağ İ. Yaşlı sıçanlarda skopolamin kullanımının karaciğer dokuları üzerine morfolojik ve ultrayapısal etkilerinin değerlendirilmesi. Eurasian J. Bio. Chem. Sci. 2020;3:148–153.
MLA Yenice Gürsu, Bükay et al. “Yaşlı sıçanlarda Skopolamin kullanımının karaciğer Dokuları üzerine Morfolojik Ve ultrayapısal Etkilerinin değerlendirilmesi”. Eurasian Journal of Biological and Chemical Sciences, vol. 3, no. 2, 2020, pp. 148-53.
Vancouver Yenice Gürsu B, Aksöz E, Aslan B, Yılmaz Öztürk B, Dağ İ. Yaşlı sıçanlarda skopolamin kullanımının karaciğer dokuları üzerine morfolojik ve ultrayapısal etkilerinin değerlendirilmesi. Eurasian J. Bio. Chem. Sci. 2020;3(2):148-53.