Real-Time Monitoring the Indoor Air Quality Parameters of Intensive Care Unit During the Pandemic Period
Year 2022,
Volume: 5 Issue: 1, 22 - 28, 08.06.2022
Sanaz Lakestanı
,
Mehmet Milli
,
İsa Yıldız
,
Abdullah Demirhan
Abstract
People spend most of their time in enclosed spaces (e.g., hospital, houses, office buildings, public transportation, and schools). The coronavirus in late 2019 has rapidly spread throughout the world. After the pandemic, people started to spend more time in indoor environments, especially in hospitals. In this study, air quality monitoring was carried out in the Intensive Care Unit of a hospital in Bolu - Turkey. This is the first comprehensive study done in Turkey. In this study, PM2.5, PM10, temperature, and relative humidity parameters affecting indoor air quality were monitored instantly for one month with a Wireless Sensors Network-based system. By the results of the study, the maximum concentration of these parameters except relative humidity was higher than the limited by accepted values parameters by the United States Environmental Protection Agency (EPA), The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and the World Health Organization (WHO).
Supporting Institution
Bolu Abant İzzet Baysal Üniversitesi
Project Number
2019.31.01.1421
Thanks
This study was supported by the Scientific Research Projects Department of Bolu Abant Izzet Baysal University (Grant NO: 2019.31.01.1421). The authors would like to thank the hospital management, and staff for the utilization of the Intensive Care Unit (ICU) which is a real-world use-case in the proposed real-time indoor air quality management system. Also, the authors are grateful to healthcare professionals for their contribution to the pandemic process that has been going on around the world since December 2019.
References
- Against F, Turan A. 2020. Türkiye ’ de KOVİD - 19 ile Mücadele : Politikalar ve Aktörler 1–25.
- Aktaş Ö, Milli Mehmet, Lakestani S, Milli Musa. 2020. Modelling sensor ontology with the SOSA/SSN frameworks: a case study for laboratory parameters. TURKISH J. Electr. Eng. Comput. Sci. 28, 2566–2585. https://doi.org/10.3906/elk-1912-160.
- Baurès E, Blanchard O, Mercier F, Surget E, le Cann P, Rivier A, Gangneux JP, Florentin A.2018. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Sci. Total Environ. 642, 168–179. https://doi.org/10.1016/j.scitotenv.2018.06.047.
- Chen J, Hoek G. 2020. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 143, 105974. https://doi.org/10.1016/j.envint.2020.105974.
- Fernández E, Martínez C, Fu M, Martínez-Sánchez JM, López MJ, Invernizzie G, Ouranou A, Dautzenberg B, Nebot M. 2009. Second-hand smoke exposure in a sample of European hospitals. Eur. Respir. J. 34, 111–116. https://doi.org/10.1183/09031936.00180708.
- Guidelines on energy efficiency of cultural heritage - ScienceDirect, 1998.
- Heibati B, Rivas I, Veysi R, Hoek G, Perez-Martinez PJ, Karimi A. 2021a. Evaluating size-fractioned indoor particulate matter in an urban hospital in Iran. Environ. Monit. Assess. 193, 1–10. https://doi.org/10.1007/s10661-021-09327-0.
- Heibati B, Rivas I, Veysi R, Hoek G, Perez-Martinez PJ, Karimi A. 2021b. Evaluating size-fractioned indoor particulate matter in an urban hospital in Iran. Environ. Monit. Assess. 193, 1–10. https://doi.org/10.1007/s10661-021-09327-0.
- Hwang SH, Roh J, Park WM. 2018. Evaluation of PM10, CO2, airborne bacteria, TVOCs, and formaldehyde in facilities for susceptible populations in South Korea. Environ. Pollut. 242, 700–708. https://doi.org/10.1016/j.envpol.2018.07.013.
- Interior Republic of Turkey Ministry of, 2020. Additional Circular on Markets in the Scope of Combating the Coronavirus Outbreak [WWW Document].
- Jeong JY, 2012. Recently issues on Indoor air quality in Korea.
- Karakas B, Lakestani S, Guler C, Dogan BG, Vaizoglu SA, Taner A, Sekerel B, Tıpırdamaz R, Gullu G. 2013. Indoor and Outdoor Concentration of Particulate Matter at Domestic Homes. World Acad. Sci. Eng. Technol. 7, 222–229.
- Kim KH, Kabir E, Kabir S. 2015. A review on the human health impact of airborne particulate matter. Environ. Int. 74, 136–143. https://doi.org/10.1016/j.envint.2014.10.005.
- Lakestani S, Karakas B, Acar Vaizoglu S, Dgan GB, Cagatay G, Sekerel B, Taner A, Gullu G. 2013. Comparison of Indoor and Outdoor Air Quality in Children Homes at Prenatal Period and One Year Old. J. Civil, Environ. Struct. Constr. Archit. Eng. 7.
- Loupa G, Zarogianni AM, Karali D, Kosmadakis I, Rapsomanikis S. 2016. Indoor/outdoor PM2.5 elemental composition and organic fraction medications, in a Greek hospital. Sci. Total Environ. 550, 727–735. https://doi.org/10.1016/j.scitotenv.2016.01.070.
- Pickett AR, Bell ML. 2011. Assessment of indoor air pollution in homes with infants. Int. J. Environ. Res. Public Health 8, 4502–4520. https://doi.org/10.3390/ijerph8124502.
Stern RA, Al-Hemoud A, Alahmad B, Koutrakis P. 2021. Levels and particle size distribution of airborne SARS-CoV-2 at a healthcare facility in Kuwait. Sci. Total Environ. 782, 146799. https://doi.org/10.1016/j.scitotenv.2021.146799.
- Tucker WG. 2002. ASHRAE® Standard: Ventilation for Acceptable Indoor Air Quality, ASHRAE Standard.
- Wang X, Bi X, Sheng G, Fu J. 2006. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. Sci. Total Environ. 366, 124–135. https://doi.org/10.1016/j.scitotenv.2005.09.004.
- Wingate, n.d. Title: Importance of Monitoring and Controlling Temperature and Humidity in Hospitals [WWW Document]. URL https://blog.rotronic.com/2014/09/15/importance-of-monitoring-and-controlling-temperature-and-humidity-in-hospitals/
Year 2022,
Volume: 5 Issue: 1, 22 - 28, 08.06.2022
Sanaz Lakestanı
,
Mehmet Milli
,
İsa Yıldız
,
Abdullah Demirhan
Project Number
2019.31.01.1421
References
- Against F, Turan A. 2020. Türkiye ’ de KOVİD - 19 ile Mücadele : Politikalar ve Aktörler 1–25.
- Aktaş Ö, Milli Mehmet, Lakestani S, Milli Musa. 2020. Modelling sensor ontology with the SOSA/SSN frameworks: a case study for laboratory parameters. TURKISH J. Electr. Eng. Comput. Sci. 28, 2566–2585. https://doi.org/10.3906/elk-1912-160.
- Baurès E, Blanchard O, Mercier F, Surget E, le Cann P, Rivier A, Gangneux JP, Florentin A.2018. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Sci. Total Environ. 642, 168–179. https://doi.org/10.1016/j.scitotenv.2018.06.047.
- Chen J, Hoek G. 2020. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 143, 105974. https://doi.org/10.1016/j.envint.2020.105974.
- Fernández E, Martínez C, Fu M, Martínez-Sánchez JM, López MJ, Invernizzie G, Ouranou A, Dautzenberg B, Nebot M. 2009. Second-hand smoke exposure in a sample of European hospitals. Eur. Respir. J. 34, 111–116. https://doi.org/10.1183/09031936.00180708.
- Guidelines on energy efficiency of cultural heritage - ScienceDirect, 1998.
- Heibati B, Rivas I, Veysi R, Hoek G, Perez-Martinez PJ, Karimi A. 2021a. Evaluating size-fractioned indoor particulate matter in an urban hospital in Iran. Environ. Monit. Assess. 193, 1–10. https://doi.org/10.1007/s10661-021-09327-0.
- Heibati B, Rivas I, Veysi R, Hoek G, Perez-Martinez PJ, Karimi A. 2021b. Evaluating size-fractioned indoor particulate matter in an urban hospital in Iran. Environ. Monit. Assess. 193, 1–10. https://doi.org/10.1007/s10661-021-09327-0.
- Hwang SH, Roh J, Park WM. 2018. Evaluation of PM10, CO2, airborne bacteria, TVOCs, and formaldehyde in facilities for susceptible populations in South Korea. Environ. Pollut. 242, 700–708. https://doi.org/10.1016/j.envpol.2018.07.013.
- Interior Republic of Turkey Ministry of, 2020. Additional Circular on Markets in the Scope of Combating the Coronavirus Outbreak [WWW Document].
- Jeong JY, 2012. Recently issues on Indoor air quality in Korea.
- Karakas B, Lakestani S, Guler C, Dogan BG, Vaizoglu SA, Taner A, Sekerel B, Tıpırdamaz R, Gullu G. 2013. Indoor and Outdoor Concentration of Particulate Matter at Domestic Homes. World Acad. Sci. Eng. Technol. 7, 222–229.
- Kim KH, Kabir E, Kabir S. 2015. A review on the human health impact of airborne particulate matter. Environ. Int. 74, 136–143. https://doi.org/10.1016/j.envint.2014.10.005.
- Lakestani S, Karakas B, Acar Vaizoglu S, Dgan GB, Cagatay G, Sekerel B, Taner A, Gullu G. 2013. Comparison of Indoor and Outdoor Air Quality in Children Homes at Prenatal Period and One Year Old. J. Civil, Environ. Struct. Constr. Archit. Eng. 7.
- Loupa G, Zarogianni AM, Karali D, Kosmadakis I, Rapsomanikis S. 2016. Indoor/outdoor PM2.5 elemental composition and organic fraction medications, in a Greek hospital. Sci. Total Environ. 550, 727–735. https://doi.org/10.1016/j.scitotenv.2016.01.070.
- Pickett AR, Bell ML. 2011. Assessment of indoor air pollution in homes with infants. Int. J. Environ. Res. Public Health 8, 4502–4520. https://doi.org/10.3390/ijerph8124502.
Stern RA, Al-Hemoud A, Alahmad B, Koutrakis P. 2021. Levels and particle size distribution of airborne SARS-CoV-2 at a healthcare facility in Kuwait. Sci. Total Environ. 782, 146799. https://doi.org/10.1016/j.scitotenv.2021.146799.
- Tucker WG. 2002. ASHRAE® Standard: Ventilation for Acceptable Indoor Air Quality, ASHRAE Standard.
- Wang X, Bi X, Sheng G, Fu J. 2006. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China. Sci. Total Environ. 366, 124–135. https://doi.org/10.1016/j.scitotenv.2005.09.004.
- Wingate, n.d. Title: Importance of Monitoring and Controlling Temperature and Humidity in Hospitals [WWW Document]. URL https://blog.rotronic.com/2014/09/15/importance-of-monitoring-and-controlling-temperature-and-humidity-in-hospitals/