Research Article
BibTex RIS Cite

Fe3O4@-KRG-aşı-PDMAEMA manyetik nanopartiküllerden pH kontrollü doksorubisin salımı

Year 2022, Volume: 5 Issue: 1, 9 - 14, 08.06.2022
https://doi.org/10.46239/ejbcs.1038373

Abstract

Son yıllarda manyetik yapılı biyouyumlu nanoparçacıkların kanser tedavisinde etkinliği artmaktadır. Hedefli ilaç salım sistemi, geleneksel kanser tedavi yöntemlerinin yan etkilerini azaltmakta ve tedavi etkinliğini artırması sebebiyle yakın zamanda umut verici kanser tedavisi olarak ortaya çıkmaktadır. Çalışmamızda hibrit yapılı manyetik nanopartiküller sentezlenmiştir. Nanopartiküller anorganik yapılı demir oksit çekirdeği (Fe3O4) ve organik yapılı kopolimerden (-KRG-aşı-PDMAEMA) oluşmaktadır. Manyetik nanopartiküllerin yapısı UV ve Zeta-sizer ile karakterize edilmiştir. Sentezlenen Fe3O4@-KRG-aşı-PDMAEMA nanopartiküllerine anti-tümör etkiye sahip kanser ilacı doksorubisin (DOX) yüklenerek Fe3O4@-KRG-aşı-PDMAEMA@DOX manyetik nanopartikülleri elde edilmiştir. İlaç yüklü manyetik nanopartiküllerin fosfat tamponunda (pH 7,4), asetat tamponunda (pH 5,5) ve asidik ortamda (pH 1,2) 37 oC’de in vitro salımı incelenmiştir. Sentezlenen Fe3O4@-KRG-aşı-PDMAEMA@DOX manyetik nanopartiküllerin pH’ya duyarlı olduğu ve yüksek salım performansına sahip olduğu gösterildi. Fe3O4@-KRG-aşı-PDMAEMA@DOX nanopartiküllerin DOX salımı pH 7,4, pH 5,5 ve pH 1,2 ortamlarında sırası ile %66,53, %70,08 ve %90,47 bulunmuştur. Manyetik nanopartiküllerin kinetik hesaplamaları yapılmıştır. Manyetik nanopartiküllerin demir içeriği %66,77 bulunmuştur.

Supporting Institution

Kırıkkale Üniversitesi

Project Number

2018/057

Thanks

Çalışmamıza maddi destek sağlayan Kırıkkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimine (Proje No: 2018/057) teşekkürlerimizi sunuyorum.

References

  • Akbarzadeh A, Samiei M, Davaran S 2012. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 7: 1-13.
  • Alexis F, Rhee J, Richie JP, Radovic-moreno AF 2008. New frontiers in nanotechnology for cancer treatment. Urologic Oncology: Seminars and Original Investigations, 26: 74-85.
  • Bae K.H, Chung HJ, Park TG 2011. Nanomaterials for Cancer Therapy and Imaging. Molecules and Cells, 31: 295-302. Danckwerts M, Fassihi A 1991. Implantable controlled release drug delivery systems: a review. Drug Development and Industrial Pharmacy, 17(11): 1465-1502.
  • Huang YS, Lu YJ, Chen JP 2017. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy. Journal of Magnetism and Magnetic Materials, 427: 34-40.
  • Indira, T, Lakshmi P 2010. Magnetic nanoparticles–a review. International Journal of Pharmaceutical Sciences and Nanotechnology, 3(3): 1035-1042.
  • Jabir NR, Tabrez S, Ashraf, GM, Shakil S, Damanhouri GA, Kamal MA 2012. Nanotechnology-based approaches in anticancer research. International Journal of Nanomedicine, 7: 4391-4408.
  • Luo H, Ao H, Li G, Li W, Xiong G, Zhu Y, Wan Y 2017. Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Current Applied Physics, 17(2): 249-254.
  • Ma HL, Zhang YW, Zhang L, Wang LC, Sun C, Liu PG, Zhai ML 2016. Radiation-induced graft copolymerization of dimethylaminoethyl methacrylate onto graphene oxide for Cr(VI) removal. Radiation Physics and Chemistry, 124:159-163.
  • Nene AG, Takahashi M, Wakita K, Umeno M 2016. Size controlled synthesis of Fe3O4 nanoparticles by ascorbic acid mediated reduction of Fe(acac)(3) without using capping agent. Journal of Nano Research, 40: 8-19.
  • Özkahraman B, Işıl A, Gök MK, Güçlü G 2014. Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 14(1): 13-21.
  • Patil R, Portilla-Arias J, Ding H, Konda B, Rekechenetskiy A, Inoue S, Ljubimova JY 2012. Cellular Delivery of Doxorubicin via pH-Controlled Hydrazone Linkage Using Multifunctional Nano Vehicle Based on Poly(beta-L-Malic Acid). International Journal of Molecular Sciences, 13(9): 11681-11693.
  • Ruuge E, Rusetski A 1993. Magnetic fluids as drug carriers: targeted transport of drugs by a magnetic field. Journal of Magnetism and Magnetic Materials, 122(1-3): 335-339.
  • Saha P, Rakshit R, Mandal K 2019. Enhanced magnetic properties of Zn doped Fe3O4 nano hollow spheres for better bio-medical applications. Journal of Magnetism and Magnetic Materials, 445: 130-136.
  • Shete P, Patil R, Ningthoujam R, Ghosh S, Pawar S 2013. Magnetic core–shell structures for magnetic fluid hyperthermia therapy application. New Journal of Chemistry. 37(11): 3784-3792.
  • Siepmann J, Peppas NA 2012. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose. Advanced Drug Delivery Reviews, 64: 163-174.
  • Silva J, Fernandes AR, Baptista PV 2014. Application of Nanotechnology in Drug Delivery. Application of Nanotechnology in Drug Delivery, 127-154. Singamaneni S, Bliznyuk VN, Binek C, Tsymbal EY 2011. Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. Journal of Materials Chemistry, 21(42): 16819-16845.
  • Tüylek Z 2017. İlaç Taşıyıcı Sistemler ve Nanoteknolojik Etkileşim. (Drug Delivery Systems and Nanotechnological Interaction). Bozok Tıp Dergisi. 7(3): 89-98.
  • Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y 2008. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. The Journal of Physical Chemistry C, 112(45): 17554-17558.
  • Yang JH, Ramaraj B, Yoon KR 2014. Preparation and characterization of superparamagnetic graphene oxide nanohybrids anchored with Fe3O4 nanoparticles. Journal of Alloys and Compounds, 583: 128-133.
  • Zhang BM, Yang XY, Wang Y, Zhai GX 2017. Heparin modified graphene oxide for pH-sensitive sustained release of doxorubicin hydrochloride. Materials Science & Engineering C-Materials for Biological Applications, 75:198-206.

pH controlled release of doxorubicin from Fe3O4@-CRG-graft-PDMAEMA magnetic nanoparticles

Year 2022, Volume: 5 Issue: 1, 9 - 14, 08.06.2022
https://doi.org/10.46239/ejbcs.1038373

Abstract

In recent years, the effectiveness of magnetically biocompatible nanoparticles in cancer treatment has been increased. Targeted drug delivery system has recently emerged as a promising cancer treatment because it reduces the side effects of traditional cancer treatment methods and increases the effectiveness of treatment. In our study, hybrid magnetic nanoparticles were synthesized. Nanoparticles consist of an inorganic iron oxide core (Fe3O4) and an organic copolymer (-CRG-graft-PDMAEMA). The magnetic nanoparticles’ structure was characterized by UV and Zeta-sizer techniques. Fe3O4@-CRG-graft-PDMAEMA@DOX magnetic nanoparticles were obtained by loading the anti-tumor cancer drug doxorubicin (DOX) on the synthesized Fe3O4@-CRG-graft-PDMAEMA nanoparticles. The in vitro release of drug-loaded magnetic nanoparticles in phosphate buffer (pH 7.4), acetate buffer (pH 5.5) and acidic medium (pH 1.2) at 37 °C was investigated. It has been shown that the synthesized Fe3O4@-CRG-graft-PDMAEMA@DOX magnetic nanoparticles are pH sensitive and have high release performance. The DOX release of Fe3O4@-CRG-graft-PDMAEMA@DOX nanoparticles in pH 7.4, pH 5.5 and pH 1.2 mediums was found to be 66.53%, 70.08% and 90.47% s, respectively. Kinetic calculations of magnetic nanoparticles were made. The iron content of magnetic nanoparticles was found to be 66.77%.

Project Number

2018/057

References

  • Akbarzadeh A, Samiei M, Davaran S 2012. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Research Letters, 7: 1-13.
  • Alexis F, Rhee J, Richie JP, Radovic-moreno AF 2008. New frontiers in nanotechnology for cancer treatment. Urologic Oncology: Seminars and Original Investigations, 26: 74-85.
  • Bae K.H, Chung HJ, Park TG 2011. Nanomaterials for Cancer Therapy and Imaging. Molecules and Cells, 31: 295-302. Danckwerts M, Fassihi A 1991. Implantable controlled release drug delivery systems: a review. Drug Development and Industrial Pharmacy, 17(11): 1465-1502.
  • Huang YS, Lu YJ, Chen JP 2017. Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy. Journal of Magnetism and Magnetic Materials, 427: 34-40.
  • Indira, T, Lakshmi P 2010. Magnetic nanoparticles–a review. International Journal of Pharmaceutical Sciences and Nanotechnology, 3(3): 1035-1042.
  • Jabir NR, Tabrez S, Ashraf, GM, Shakil S, Damanhouri GA, Kamal MA 2012. Nanotechnology-based approaches in anticancer research. International Journal of Nanomedicine, 7: 4391-4408.
  • Luo H, Ao H, Li G, Li W, Xiong G, Zhu Y, Wan Y 2017. Bacterial cellulose/graphene oxide nanocomposite as a novel drug delivery system. Current Applied Physics, 17(2): 249-254.
  • Ma HL, Zhang YW, Zhang L, Wang LC, Sun C, Liu PG, Zhai ML 2016. Radiation-induced graft copolymerization of dimethylaminoethyl methacrylate onto graphene oxide for Cr(VI) removal. Radiation Physics and Chemistry, 124:159-163.
  • Nene AG, Takahashi M, Wakita K, Umeno M 2016. Size controlled synthesis of Fe3O4 nanoparticles by ascorbic acid mediated reduction of Fe(acac)(3) without using capping agent. Journal of Nano Research, 40: 8-19.
  • Özkahraman B, Işıl A, Gök MK, Güçlü G 2014. Poli (N-Vinilkaprolaktam) Mikrojellerinin Sentez Şartlarının Optimizasyonu. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 14(1): 13-21.
  • Patil R, Portilla-Arias J, Ding H, Konda B, Rekechenetskiy A, Inoue S, Ljubimova JY 2012. Cellular Delivery of Doxorubicin via pH-Controlled Hydrazone Linkage Using Multifunctional Nano Vehicle Based on Poly(beta-L-Malic Acid). International Journal of Molecular Sciences, 13(9): 11681-11693.
  • Ruuge E, Rusetski A 1993. Magnetic fluids as drug carriers: targeted transport of drugs by a magnetic field. Journal of Magnetism and Magnetic Materials, 122(1-3): 335-339.
  • Saha P, Rakshit R, Mandal K 2019. Enhanced magnetic properties of Zn doped Fe3O4 nano hollow spheres for better bio-medical applications. Journal of Magnetism and Magnetic Materials, 445: 130-136.
  • Shete P, Patil R, Ningthoujam R, Ghosh S, Pawar S 2013. Magnetic core–shell structures for magnetic fluid hyperthermia therapy application. New Journal of Chemistry. 37(11): 3784-3792.
  • Siepmann J, Peppas NA 2012. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose. Advanced Drug Delivery Reviews, 64: 163-174.
  • Silva J, Fernandes AR, Baptista PV 2014. Application of Nanotechnology in Drug Delivery. Application of Nanotechnology in Drug Delivery, 127-154. Singamaneni S, Bliznyuk VN, Binek C, Tsymbal EY 2011. Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. Journal of Materials Chemistry, 21(42): 16819-16845.
  • Tüylek Z 2017. İlaç Taşıyıcı Sistemler ve Nanoteknolojik Etkileşim. (Drug Delivery Systems and Nanotechnological Interaction). Bozok Tıp Dergisi. 7(3): 89-98.
  • Yang X, Zhang X, Liu Z, Ma Y, Huang Y, Chen Y 2008. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. The Journal of Physical Chemistry C, 112(45): 17554-17558.
  • Yang JH, Ramaraj B, Yoon KR 2014. Preparation and characterization of superparamagnetic graphene oxide nanohybrids anchored with Fe3O4 nanoparticles. Journal of Alloys and Compounds, 583: 128-133.
  • Zhang BM, Yang XY, Wang Y, Zhai GX 2017. Heparin modified graphene oxide for pH-sensitive sustained release of doxorubicin hydrochloride. Materials Science & Engineering C-Materials for Biological Applications, 75:198-206.
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Chemical Engineering
Journal Section Research Articles
Authors

Gülcan Geyik

Nuran Işıklan 0000-0002-4051-6533

Project Number 2018/057
Publication Date June 8, 2022
Acceptance Date April 14, 2022
Published in Issue Year 2022 Volume: 5 Issue: 1

Cite

APA Geyik, G., & Işıklan, N. (2022). Fe3O4@-KRG-aşı-PDMAEMA manyetik nanopartiküllerden pH kontrollü doksorubisin salımı. Eurasian Journal of Biological and Chemical Sciences, 5(1), 9-14. https://doi.org/10.46239/ejbcs.1038373
AMA Geyik G, Işıklan N. Fe3O4@-KRG-aşı-PDMAEMA manyetik nanopartiküllerden pH kontrollü doksorubisin salımı. Eurasian J. Bio. Chem. Sci. June 2022;5(1):9-14. doi:10.46239/ejbcs.1038373
Chicago Geyik, Gülcan, and Nuran Işıklan. “Fe3O4@-KRG-aşı-PDMAEMA Manyetik nanopartiküllerden PH Kontrollü Doksorubisin salımı”. Eurasian Journal of Biological and Chemical Sciences 5, no. 1 (June 2022): 9-14. https://doi.org/10.46239/ejbcs.1038373.
EndNote Geyik G, Işıklan N (June 1, 2022) Fe3O4@-KRG-aşı-PDMAEMA manyetik nanopartiküllerden pH kontrollü doksorubisin salımı. Eurasian Journal of Biological and Chemical Sciences 5 1 9–14.
IEEE G. Geyik and N. Işıklan, “Fe3O4@-KRG-aşı-PDMAEMA manyetik nanopartiküllerden pH kontrollü doksorubisin salımı”, Eurasian J. Bio. Chem. Sci., vol. 5, no. 1, pp. 9–14, 2022, doi: 10.46239/ejbcs.1038373.
ISNAD Geyik, Gülcan - Işıklan, Nuran. “Fe3O4@-KRG-aşı-PDMAEMA Manyetik nanopartiküllerden PH Kontrollü Doksorubisin salımı”. Eurasian Journal of Biological and Chemical Sciences 5/1 (June 2022), 9-14. https://doi.org/10.46239/ejbcs.1038373.
JAMA Geyik G, Işıklan N. Fe3O4@-KRG-aşı-PDMAEMA manyetik nanopartiküllerden pH kontrollü doksorubisin salımı. Eurasian J. Bio. Chem. Sci. 2022;5:9–14.
MLA Geyik, Gülcan and Nuran Işıklan. “Fe3O4@-KRG-aşı-PDMAEMA Manyetik nanopartiküllerden PH Kontrollü Doksorubisin salımı”. Eurasian Journal of Biological and Chemical Sciences, vol. 5, no. 1, 2022, pp. 9-14, doi:10.46239/ejbcs.1038373.
Vancouver Geyik G, Işıklan N. Fe3O4@-KRG-aşı-PDMAEMA manyetik nanopartiküllerden pH kontrollü doksorubisin salımı. Eurasian J. Bio. Chem. Sci. 2022;5(1):9-14.