Research Article
BibTex RIS Cite

Investigation of the effects of copper hydroxide (Cu(OH)2) nanopesticide on female and male populations of a wild-type and non-target model organism, Drosophila melanogaster Oregon-R, by in vivo longevity test

Year 2024, Volume: 7 Issue: 2, 96 - 101, 31.12.2024
https://doi.org/10.46239/ejbcs.1473449

Abstract

Copper hydroxide (a type of fungicide) is an innovative nanopesticide used in vineyard, olive and citrus cultivated copper-containing soils. However, nanopesticides, which replace traditional pesticides, can affect non-target organisms (vertebrates or invertebrates) as well as target organisms. This situation is an important risk factor, especially in terms of biodiversity. In this study, in vivo longevity testing was applied to male and female populations of Drosophila melanogaster Oregon-R to investigate whether there is such a risk. With the chronic application of Cu(OH)2 nanopesticide at different doses (10, 20, 40 and 80 ppm), it was observed that both maximum and average lifespan decreased in both populations compared to the control group (p<0.05).

References

  • Amorim MJB, Fernandez-Cruz ML, Hund-Rinke K, Scott-Fordsmand JJ. 2020. Environmental hazard testing of nanobiomaterials. Environ Sci Eur. 32: 101.
  • Buseck PR, Pósfai M. 1999. Airborne minerals and related aerosol particles: effects on climate and the environment. Proc Natl Acad Sci. 96(7): 3372-3379.
  • Buzea C, Blandino IIP, Robbie K. 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2(4): 17-71.
  • Chowdappa P, Shivakumar G, 2013. Nanotechnology in crop protection: Status and scope. Pest Manag Hortic Ecosyst. 19(2): 131-151.
  • Das SK. 2018. Nanoscience in agriculture for agrochemicals. Acta Sci Agric. 2:1.
  • FAO (Food and Agriculture Organization of the United Nations). 2018. The importance of bees and other pollinators for food and agriculture: Slovenia, Balkans.
  • Fojtova D, Vasickova J, Grillo R, Bilkova Z, Simek Z, Neuwirthova N, Kah M, Hofman J. 2019. Nanoformulations can significantly affect pesticide degradation and uptake by earthworms and plants. Environ Chem. 16: 470-481.
  • Gomes SIL, Scott-Fordsmand JJ, Campos EVR, Grillo R, Fraceto LF, Amorim MJB. 2019. On the safety of nanoformulations to non-target soil invertebrates. An atrazine case study. Environ Sci Nano. 6: 1950-1958.
  • Hanks NA, Caruso JA, Zhang P. 2015. Assesing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters. J Environ Manag. 164: 41-45.
  • Jacques MT, Oliveira JL, Campos EVR, Fraceto LF, Avila DS. 2017. Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicol Environ Saf. 139: 245–253.
  • Kah M, Beulke S, Tiede K, Hofmann T. 2013. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol. 43: 1823-1867.
  • Kamel A, Mousa A. 2015. Nanobiofungicides: are they the next-generation of fungicides? J Nanotechnol Mater Sci. 2(1): 1-3.
  • Khan MR, Rizvi TF. 2014. Nanotechnology: scope and application in plant disease management. Plant Pathol J. 13(3): 214-231.
  • Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. 2019. Nano-based smart pesticide formulations emerging opportunities for agriculture. J Control Release. 294: 131-153.
  • Lemire JA, Harrison JJ, Turner RJ. 2013. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 11(6): 371-384.
  • Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. 2007. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol. 150: 552-560.
  • Özyurt E, Kızılet H, Uysal H. 2018. Bio-interaction of chlordane on non-target organisms. Commagene J Biol. 2 (1): 48-54.
  • Patra P, Goswami A. 2012. Zinc nitrate derived nano ZnO: Fungicide for diseas e management of horticultural crops. Int J Innov Hortic. 1(1):28-33.
  • Pfuhler S, Elespuru R, Aardema MJ, Doak SH, Donner EM, Honma M. 2013. Genotoxicity of nanomaterials: refining strategies and tests for hazard identification. Environ Mol Mutagen. 54 (4): 229-268.
  • Raghvendra PS, Rahul H, Geetanjali M. 2021. Nanoparticles in sustainable agriculture: An emerging opportunity. Environ Sci Process Impacts. 329:1234-1248.
  • Ram P, Atanu B, Quang DN. 2017. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol. 8: 1-13.
  • Revell PA. 2006. The biological effects of nanoparticles. Nanotechnol Percept. 2: 283-381.
  • Seaton A, Donaldson K. 2005. Nanoscience, nanotoxicology, and the need to think small. Lancet. 365: 923-927.
  • Sharon M, Choudhary AK, Kumar R. 2010. Nanotechnology in agricultural diseases and food safety. J Phytol 2(4): 83-92.
  • Uysal H, Şişman T, Aşkın H. 2006. Drosophila biyolojisi ve çaprazlama yöntemleri. Erzurum, Türkiye, Atatürk Üniversitesi Yayınları, 53 pp. ISBN:975-442-111-0.
  • Xu ZP, Zeng QP, Lu GQ, Yu AB. 2006. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Engrg Sci. 61: 1027-1040.
  • Vijayalakshmi C, Chellaram C, Kumar SL. 2015. Modern approaches of nanotechnology in agriculture-A review. Biosci Biotechnol Res Asia. 12(1): 327-331.
  • Zeng F, Hou C, Wu SZ, Liu XX, Tong Z, Yu SN. 2007. Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnol. 18:1-8.
  • Zhao X, Cui H, Wang Y, Sun C, Cui B, Zeng Z. 2018. Development strategies and prospects of nano-based smart pesticide formulation. J Agric Food Chem. 66: 6504-6512.

Yabanıl tip ve hedef olmayan model bir organizmanın, Drosophila melanogaster Oregon-R, dişi ve erkek popülasyonlarında bakır hidroksit (Cu(OH)2) nanopestisitine ait etkilerin in vivo ömür uzunluğu testi ile araştırılması

Year 2024, Volume: 7 Issue: 2, 96 - 101, 31.12.2024
https://doi.org/10.46239/ejbcs.1473449

Abstract

Bağ, zeytin ve turunçgil ekili bakır içeren topraklarda kullanılan bakır hidroksit (bir çeşit fungusit) inovatif bir nanopestisittir. Ancak geleneksel pestisitlerin yerini alan nanopestisitler, hedef organizmalar kadar hedef olmayan organizmaları da (omurgalı ya da omurgasız) etkileyebilmektedirler. Bu durum özellikle biyoçeşitlilik bakımından önemli bir risk faktörüdür. Bu çalışmada böyle bir riskin olup olmadığını araştırabilmek için Drosophila melanogaster Oregon-R’nin dişi ve erkek popülasyonlarına in vivo ömür uzunluğu testi uygulanmıştır. Farklı dozlarda (10, 20, 40 ve 80 ppm) Cu(OH)2 nanopestisitinin kronik olarak uygulanması ile her iki popülasyonda hem maksimum hem de ortalama ömür uzunluğunun kontrol grubuna göre azaldığı görülmüştür (p<0,05).

References

  • Amorim MJB, Fernandez-Cruz ML, Hund-Rinke K, Scott-Fordsmand JJ. 2020. Environmental hazard testing of nanobiomaterials. Environ Sci Eur. 32: 101.
  • Buseck PR, Pósfai M. 1999. Airborne minerals and related aerosol particles: effects on climate and the environment. Proc Natl Acad Sci. 96(7): 3372-3379.
  • Buzea C, Blandino IIP, Robbie K. 2007. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2(4): 17-71.
  • Chowdappa P, Shivakumar G, 2013. Nanotechnology in crop protection: Status and scope. Pest Manag Hortic Ecosyst. 19(2): 131-151.
  • Das SK. 2018. Nanoscience in agriculture for agrochemicals. Acta Sci Agric. 2:1.
  • FAO (Food and Agriculture Organization of the United Nations). 2018. The importance of bees and other pollinators for food and agriculture: Slovenia, Balkans.
  • Fojtova D, Vasickova J, Grillo R, Bilkova Z, Simek Z, Neuwirthova N, Kah M, Hofman J. 2019. Nanoformulations can significantly affect pesticide degradation and uptake by earthworms and plants. Environ Chem. 16: 470-481.
  • Gomes SIL, Scott-Fordsmand JJ, Campos EVR, Grillo R, Fraceto LF, Amorim MJB. 2019. On the safety of nanoformulations to non-target soil invertebrates. An atrazine case study. Environ Sci Nano. 6: 1950-1958.
  • Hanks NA, Caruso JA, Zhang P. 2015. Assesing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag(I) contaminated waters. J Environ Manag. 164: 41-45.
  • Jacques MT, Oliveira JL, Campos EVR, Fraceto LF, Avila DS. 2017. Safety assessment of nanopesticides using the roundworm Caenorhabditis elegans. Ecotoxicol Environ Saf. 139: 245–253.
  • Kah M, Beulke S, Tiede K, Hofmann T. 2013. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol. 43: 1823-1867.
  • Kamel A, Mousa A. 2015. Nanobiofungicides: are they the next-generation of fungicides? J Nanotechnol Mater Sci. 2(1): 1-3.
  • Khan MR, Rizvi TF. 2014. Nanotechnology: scope and application in plant disease management. Plant Pathol J. 13(3): 214-231.
  • Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. 2019. Nano-based smart pesticide formulations emerging opportunities for agriculture. J Control Release. 294: 131-153.
  • Lemire JA, Harrison JJ, Turner RJ. 2013. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 11(6): 371-384.
  • Medina C, Santos-Martinez MJ, Radomski A, Corrigan OI, Radomski MW. 2007. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol. 150: 552-560.
  • Özyurt E, Kızılet H, Uysal H. 2018. Bio-interaction of chlordane on non-target organisms. Commagene J Biol. 2 (1): 48-54.
  • Patra P, Goswami A. 2012. Zinc nitrate derived nano ZnO: Fungicide for diseas e management of horticultural crops. Int J Innov Hortic. 1(1):28-33.
  • Pfuhler S, Elespuru R, Aardema MJ, Doak SH, Donner EM, Honma M. 2013. Genotoxicity of nanomaterials: refining strategies and tests for hazard identification. Environ Mol Mutagen. 54 (4): 229-268.
  • Raghvendra PS, Rahul H, Geetanjali M. 2021. Nanoparticles in sustainable agriculture: An emerging opportunity. Environ Sci Process Impacts. 329:1234-1248.
  • Ram P, Atanu B, Quang DN. 2017. Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol. 8: 1-13.
  • Revell PA. 2006. The biological effects of nanoparticles. Nanotechnol Percept. 2: 283-381.
  • Seaton A, Donaldson K. 2005. Nanoscience, nanotoxicology, and the need to think small. Lancet. 365: 923-927.
  • Sharon M, Choudhary AK, Kumar R. 2010. Nanotechnology in agricultural diseases and food safety. J Phytol 2(4): 83-92.
  • Uysal H, Şişman T, Aşkın H. 2006. Drosophila biyolojisi ve çaprazlama yöntemleri. Erzurum, Türkiye, Atatürk Üniversitesi Yayınları, 53 pp. ISBN:975-442-111-0.
  • Xu ZP, Zeng QP, Lu GQ, Yu AB. 2006. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Engrg Sci. 61: 1027-1040.
  • Vijayalakshmi C, Chellaram C, Kumar SL. 2015. Modern approaches of nanotechnology in agriculture-A review. Biosci Biotechnol Res Asia. 12(1): 327-331.
  • Zeng F, Hou C, Wu SZ, Liu XX, Tong Z, Yu SN. 2007. Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnol. 18:1-8.
  • Zhao X, Cui H, Wang Y, Sun C, Cui B, Zeng Z. 2018. Development strategies and prospects of nano-based smart pesticide formulation. J Agric Food Chem. 66: 6504-6512.
There are 29 citations in total.

Details

Primary Language English
Subjects Developmental Genetics
Journal Section Research Articles
Authors

Handan Uysal

Early Pub Date December 27, 2024
Publication Date December 31, 2024
Submission Date April 25, 2024
Acceptance Date August 10, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Uysal, H. (2024). Investigation of the effects of copper hydroxide (Cu(OH)2) nanopesticide on female and male populations of a wild-type and non-target model organism, Drosophila melanogaster Oregon-R, by in vivo longevity test. Eurasian Journal of Biological and Chemical Sciences, 7(2), 96-101. https://doi.org/10.46239/ejbcs.1473449
AMA Uysal H. Investigation of the effects of copper hydroxide (Cu(OH)2) nanopesticide on female and male populations of a wild-type and non-target model organism, Drosophila melanogaster Oregon-R, by in vivo longevity test. Eurasian J. Bio. Chem. Sci. December 2024;7(2):96-101. doi:10.46239/ejbcs.1473449
Chicago Uysal, Handan. “Investigation of the Effects of Copper Hydroxide (Cu(OH)2) Nanopesticide on Female and Male Populations of a Wild-Type and Non-Target Model Organism, Drosophila Melanogaster Oregon-R, by in Vivo Longevity Test”. Eurasian Journal of Biological and Chemical Sciences 7, no. 2 (December 2024): 96-101. https://doi.org/10.46239/ejbcs.1473449.
EndNote Uysal H (December 1, 2024) Investigation of the effects of copper hydroxide (Cu(OH)2) nanopesticide on female and male populations of a wild-type and non-target model organism, Drosophila melanogaster Oregon-R, by in vivo longevity test. Eurasian Journal of Biological and Chemical Sciences 7 2 96–101.
IEEE H. Uysal, “Investigation of the effects of copper hydroxide (Cu(OH)2) nanopesticide on female and male populations of a wild-type and non-target model organism, Drosophila melanogaster Oregon-R, by in vivo longevity test”, Eurasian J. Bio. Chem. Sci., vol. 7, no. 2, pp. 96–101, 2024, doi: 10.46239/ejbcs.1473449.
ISNAD Uysal, Handan. “Investigation of the Effects of Copper Hydroxide (Cu(OH)2) Nanopesticide on Female and Male Populations of a Wild-Type and Non-Target Model Organism, Drosophila Melanogaster Oregon-R, by in Vivo Longevity Test”. Eurasian Journal of Biological and Chemical Sciences 7/2 (December 2024), 96-101. https://doi.org/10.46239/ejbcs.1473449.
JAMA Uysal H. Investigation of the effects of copper hydroxide (Cu(OH)2) nanopesticide on female and male populations of a wild-type and non-target model organism, Drosophila melanogaster Oregon-R, by in vivo longevity test. Eurasian J. Bio. Chem. Sci. 2024;7:96–101.
MLA Uysal, Handan. “Investigation of the Effects of Copper Hydroxide (Cu(OH)2) Nanopesticide on Female and Male Populations of a Wild-Type and Non-Target Model Organism, Drosophila Melanogaster Oregon-R, by in Vivo Longevity Test”. Eurasian Journal of Biological and Chemical Sciences, vol. 7, no. 2, 2024, pp. 96-101, doi:10.46239/ejbcs.1473449.
Vancouver Uysal H. Investigation of the effects of copper hydroxide (Cu(OH)2) nanopesticide on female and male populations of a wild-type and non-target model organism, Drosophila melanogaster Oregon-R, by in vivo longevity test. Eurasian J. Bio. Chem. Sci. 2024;7(2):96-101.