Research Article
BibTex RIS Cite

Impact of growth medium components on absorbance-viable cell count correlation and cell surface area of Cereibacter sphaeroides O.U.001

Year 2024, Volume: 7 Issue: 2, 132 - 138, 31.12.2024
https://doi.org/10.46239/ejbcs.1516661

Abstract

Today different methods are used in microbiology laboratories to monitor the growth and development of bacteria. Optical density measurement is one of the most preferred methods as being fast, practical and low cost. On the other hand, it cannot differentiate between living and non-living cells in the culture. Moreover, alteration in cell size may lead to the variations in the measurements. As a result, optical density measurements alone may cause wrong experimental results. Therefore, it is necessary to determine the absorbance-living cell number relationship for each specific culture condition. In this study, Cereibacter sphaeroides O.U.001 was cultured under four different culture conditions regarding the type of carbon and nitrogen sources (Malate/Glutamate, Molasses/Glutamate, Malate/N2 and Acetate/Glutamate) and the effect of medium composition on cell size and absorbance-viable cell count relationship was investigated. Equations were obtained from curves drawn as optical density (x-axis) against CFU/mL (y-axis). Field emission scanning electron microscope was used to observe the effects of medium compositions on the size of Cereibacter sphaeroides O.U.001. It was revealed that the composition of the medium affected the absorbance-number of living cells relationship. Furthermore, it was evidenced that the size of the cells was changed significantly upon changing the medium composition. To conclude, it is advised that before performing experiments in which the cell numbers are significative, a comparative calibration curve for optical density measurement-the living cell number relationship should be established for more accurate results.

Supporting Institution

This study was supported by TÜBİTAK 2209-A research project support program.

Project Number

TÜBİTAK 2209-A

References

  • Akköse S, Gündüz U, Yücel M, Eroğlu I. 2009. Effects of ammonium ion, acetate and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy. 34:8818-8827.
  • Akpınar BN. 2023. Asetat ortamında büyütülen Cereibacter sphaeroides O.U. 001, Rhodopseudomonas palustris 7850 ve Cupriavidus necator H16 ile polihidroksibütirat (PHB) üretimi ve üretilen polimerlerin karakterizasyonu. N. E. Ü. Fen Bilimleri Enstitüsü, MSc Thesis.
  • Bae S, Shoda M. 2004. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog. 20:1366-1371.
  • Basak N, Das D. 2007. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art. World J Microbiol Biotechnol. 23:31-42.
  • Beal J, Farny NG, Haddock-Angelli T, Selvarajah V, Baldwin GS, Buckley-Taylor R, Gershater M, Kiga D, Marken J, Sanchania V, Sison A, Workman CT. 2020. Robust estimation of bacterial cell count from optical density. Commun Biol. 3:512.
  • Biebl H, Pfennig N. 1981. Isolation of Members of the Family Rhodospirillaceae. In: Starr MP et al (eds.) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria, Springer Berlin Heidelberg, Berlin.
  • Danış K, Bingöl BN, Kars G. 2022. Production of biological hydrogen and bacterial carotenoids with Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Eurasian J Bio Chem Sci. 5:56-61.
  • Francois K, Devlighere F, Standaert AR, Greeraerd AH, Cools I, Van Impe JF, Debevere J. 2005. Environmental factors influencing the relationship between optical density and cell count for Listeria monocytogenes. J Appl Microbiol. 99:1503-1515.
  • Gabrielson J, Hart M, Jarelöv A, Kühn I, McKenzie D, Möllby R. 2002. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J Microbiol Methods. 50:63-73.
  • Jorgensen F, Stephens PJ, Knochel S. 1995. The effect of osmotic shock and subsequent adaptation on the thermotolerance and cell morphology of Listeria monocytogenes. J Appl Bacteriol. 79:274-281.
  • Joshi HM, Tabıta FR. 1996. A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci. 93:14515-14520.
  • Kars G, Alparslan Ü. 2013. Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int J Hydrogen Energy. 38:14488-14494.
  • Kars G, Alparslan Ü. 2020. Evaluation of high concentrations of sugar beet molasses as substrate for hydrogen and 5-aminolevulinic acid productions. Int J Adv Eng Pure Sci. 32:398-404.
  • Kars G, Ceylan A. 2019. Hydrogen generation by Rhodobacter sphaeroides O.U.001 using pretreated waste barley. Cumhur Sci J. 40:414-423.
  • Kars G, Gündüz U. 2010. Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations. Int J Hydrogen Energy. 35:6646-6656.
  • Kars G, Gündüz U, Rakhely G, Yücel M, Eroğlu I, Kovacs KL. 2008. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy. 33:3056-3060.
  • Koch AL. 2006. Growth. In: Reddy CA et al. (eds.) Methods for General and Molecular Microbiology. American Society for Microbiology.
  • Lee YR, Nur Fitriana H, Lee SY, Kim MS, Moon M, Lee WH, Lee JS, Lee S. 2020. Molecular profiling and optimization studies for growth and PHB production conditions in Rhodobacter sphaeroides. Energies. 13:6471.
  • Madigan MT, Jung DO. 2009. An overview of purple bacteria: systematics, physiology, and habitats. In: Hunter et al (eds.) The purple phototrophic bacteria, Springer, Dordrecht.
  • McEwan AG. 1994. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. A Van Leeuw J Microb. 66:151-164.
  • Myung KK, Choi KM, Yin CR, Lee KY, Im WT, Ju HL, Lee ST. 2004. Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol Lett. 26:819-822.
  • Nkuipou-Kenfack E, Engel H, Fakih S, Nocker A. 2013. Improving efficiency of viability-PCR for selective detection of live cells. J Microbiol Methods. 93:20-24.
  • Palmonari A. Cavallini D, Sniffen CJ, Fernandes L, Holder P, Fagioli L, Fusaro I, Biagi G, Formigon A, Mammi L. 2020. Characterization of molasses chemical composition. J Dairy Sci. 103:6244-6249.
  • Sasaki K, Tanaka T, Nishizawa Y, Hayashi M. 1990. Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent of swine waste from an anaerobic digestor. Appl Microbiol Biotechnol. 32:727-731.
  • Sasaki K, Watanabe M, Suda Y, Ishizuka A, Noparatnaraporn N. 2005. Applications of photosynthetic bacteria for medical fields. J Biosci Bioeng. 100:481-488.
  • Schneider C, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9:671-675.
  • Sert M. 2022. Diazotrofik koşullarda çoğaltılan Rhodobacter sphaeroides O.U 001 ile hidrojen üretimi ve Nifh gen ifade analizi. N.E.Ü. Fen Bilimleri Enstitüsü, MSc Thesis.
  • Shimizu T, Teramoto H, Inui M. 2019. Introduction of glyoxylate bypass increases hydrogen gas yield from acetate and l-glutamate in Rhodobacter sphaeroides. Appl Environ Microbiol. 85:1-17.
  • Stevenson K, McVey AF, Clark IBN, Swain PS, Pilizota T. 2016. General calibration of microbial growth in microplate readers. BioRxiv. 6:32888.
  • Sutton S. 2011. Microbiology Topics. Measurement of microbial cells by optical density. J Valid Technol. 17:46-49.
  • Vermeglio A, Joliot P. 1999. The photosynthetic apparatus of Rhodobacter sphaeroides. Trends Microbiol. 7:435-440.
  • Zheng Y, Cosgrove DJ, Ning G. 2017. High-resolution field emission scanning electron microscopy (FESEM) imaging of cellulose microfibril organization in plant primary cell walls. Microsc Microanal. 23:1048-1054.
Year 2024, Volume: 7 Issue: 2, 132 - 138, 31.12.2024
https://doi.org/10.46239/ejbcs.1516661

Abstract

Project Number

TÜBİTAK 2209-A

References

  • Akköse S, Gündüz U, Yücel M, Eroğlu I. 2009. Effects of ammonium ion, acetate and aerobic conditions on hydrogen production and expression levels of nitrogenase genes in Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy. 34:8818-8827.
  • Akpınar BN. 2023. Asetat ortamında büyütülen Cereibacter sphaeroides O.U. 001, Rhodopseudomonas palustris 7850 ve Cupriavidus necator H16 ile polihidroksibütirat (PHB) üretimi ve üretilen polimerlerin karakterizasyonu. N. E. Ü. Fen Bilimleri Enstitüsü, MSc Thesis.
  • Bae S, Shoda M. 2004. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog. 20:1366-1371.
  • Basak N, Das D. 2007. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art. World J Microbiol Biotechnol. 23:31-42.
  • Beal J, Farny NG, Haddock-Angelli T, Selvarajah V, Baldwin GS, Buckley-Taylor R, Gershater M, Kiga D, Marken J, Sanchania V, Sison A, Workman CT. 2020. Robust estimation of bacterial cell count from optical density. Commun Biol. 3:512.
  • Biebl H, Pfennig N. 1981. Isolation of Members of the Family Rhodospirillaceae. In: Starr MP et al (eds.) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria, Springer Berlin Heidelberg, Berlin.
  • Danış K, Bingöl BN, Kars G. 2022. Production of biological hydrogen and bacterial carotenoids with Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Eurasian J Bio Chem Sci. 5:56-61.
  • Francois K, Devlighere F, Standaert AR, Greeraerd AH, Cools I, Van Impe JF, Debevere J. 2005. Environmental factors influencing the relationship between optical density and cell count for Listeria monocytogenes. J Appl Microbiol. 99:1503-1515.
  • Gabrielson J, Hart M, Jarelöv A, Kühn I, McKenzie D, Möllby R. 2002. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J Microbiol Methods. 50:63-73.
  • Jorgensen F, Stephens PJ, Knochel S. 1995. The effect of osmotic shock and subsequent adaptation on the thermotolerance and cell morphology of Listeria monocytogenes. J Appl Bacteriol. 79:274-281.
  • Joshi HM, Tabıta FR. 1996. A global two component signal transduction system that integrates the control of photosynthesis, carbon dioxide assimilation, and nitrogen fixation. Proc Natl Acad Sci. 93:14515-14520.
  • Kars G, Alparslan Ü. 2013. Valorization of sugar beet molasses for the production of biohydrogen and 5-aminolevulinic acid by Rhodobacter sphaeroides O.U.001 in a biorefinery concept. Int J Hydrogen Energy. 38:14488-14494.
  • Kars G, Alparslan Ü. 2020. Evaluation of high concentrations of sugar beet molasses as substrate for hydrogen and 5-aminolevulinic acid productions. Int J Adv Eng Pure Sci. 32:398-404.
  • Kars G, Ceylan A. 2019. Hydrogen generation by Rhodobacter sphaeroides O.U.001 using pretreated waste barley. Cumhur Sci J. 40:414-423.
  • Kars G, Gündüz U. 2010. Towards a super H2 producer: Improvements in photofermentative biohydrogen production by genetic manipulations. Int J Hydrogen Energy. 35:6646-6656.
  • Kars G, Gündüz U, Rakhely G, Yücel M, Eroğlu I, Kovacs KL. 2008. Improved hydrogen production by uptake hydrogenase deficient mutant strain of Rhodobacter sphaeroides O.U.001. Int J Hydrogen Energy. 33:3056-3060.
  • Koch AL. 2006. Growth. In: Reddy CA et al. (eds.) Methods for General and Molecular Microbiology. American Society for Microbiology.
  • Lee YR, Nur Fitriana H, Lee SY, Kim MS, Moon M, Lee WH, Lee JS, Lee S. 2020. Molecular profiling and optimization studies for growth and PHB production conditions in Rhodobacter sphaeroides. Energies. 13:6471.
  • Madigan MT, Jung DO. 2009. An overview of purple bacteria: systematics, physiology, and habitats. In: Hunter et al (eds.) The purple phototrophic bacteria, Springer, Dordrecht.
  • McEwan AG. 1994. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. A Van Leeuw J Microb. 66:151-164.
  • Myung KK, Choi KM, Yin CR, Lee KY, Im WT, Ju HL, Lee ST. 2004. Odorous swine wastewater treatment by purple non-sulfur bacteria, Rhodopseudomonas palustris, isolated from eutrophicated ponds. Biotechnol Lett. 26:819-822.
  • Nkuipou-Kenfack E, Engel H, Fakih S, Nocker A. 2013. Improving efficiency of viability-PCR for selective detection of live cells. J Microbiol Methods. 93:20-24.
  • Palmonari A. Cavallini D, Sniffen CJ, Fernandes L, Holder P, Fagioli L, Fusaro I, Biagi G, Formigon A, Mammi L. 2020. Characterization of molasses chemical composition. J Dairy Sci. 103:6244-6249.
  • Sasaki K, Tanaka T, Nishizawa Y, Hayashi M. 1990. Production of a herbicide, 5-aminolevulinic acid, by Rhodobacter sphaeroides using the effluent of swine waste from an anaerobic digestor. Appl Microbiol Biotechnol. 32:727-731.
  • Sasaki K, Watanabe M, Suda Y, Ishizuka A, Noparatnaraporn N. 2005. Applications of photosynthetic bacteria for medical fields. J Biosci Bioeng. 100:481-488.
  • Schneider C, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9:671-675.
  • Sert M. 2022. Diazotrofik koşullarda çoğaltılan Rhodobacter sphaeroides O.U 001 ile hidrojen üretimi ve Nifh gen ifade analizi. N.E.Ü. Fen Bilimleri Enstitüsü, MSc Thesis.
  • Shimizu T, Teramoto H, Inui M. 2019. Introduction of glyoxylate bypass increases hydrogen gas yield from acetate and l-glutamate in Rhodobacter sphaeroides. Appl Environ Microbiol. 85:1-17.
  • Stevenson K, McVey AF, Clark IBN, Swain PS, Pilizota T. 2016. General calibration of microbial growth in microplate readers. BioRxiv. 6:32888.
  • Sutton S. 2011. Microbiology Topics. Measurement of microbial cells by optical density. J Valid Technol. 17:46-49.
  • Vermeglio A, Joliot P. 1999. The photosynthetic apparatus of Rhodobacter sphaeroides. Trends Microbiol. 7:435-440.
  • Zheng Y, Cosgrove DJ, Ning G. 2017. High-resolution field emission scanning electron microscopy (FESEM) imaging of cellulose microfibril organization in plant primary cell walls. Microsc Microanal. 23:1048-1054.
There are 32 citations in total.

Details

Primary Language English
Subjects Bacteriology
Journal Section Research Articles
Authors

Kader Çakır 0000-0002-2383-0037

Gökhan Kars 0000-0002-2507-2305

Project Number TÜBİTAK 2209-A
Early Pub Date December 27, 2024
Publication Date December 31, 2024
Submission Date July 15, 2024
Acceptance Date November 7, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Çakır, K., & Kars, G. (2024). Impact of growth medium components on absorbance-viable cell count correlation and cell surface area of Cereibacter sphaeroides O.U.001. Eurasian Journal of Biological and Chemical Sciences, 7(2), 132-138. https://doi.org/10.46239/ejbcs.1516661
AMA Çakır K, Kars G. Impact of growth medium components on absorbance-viable cell count correlation and cell surface area of Cereibacter sphaeroides O.U.001. Eurasian J. Bio. Chem. Sci. December 2024;7(2):132-138. doi:10.46239/ejbcs.1516661
Chicago Çakır, Kader, and Gökhan Kars. “Impact of Growth Medium Components on Absorbance-Viable Cell Count Correlation and Cell Surface Area of Cereibacter Sphaeroides O.U.001”. Eurasian Journal of Biological and Chemical Sciences 7, no. 2 (December 2024): 132-38. https://doi.org/10.46239/ejbcs.1516661.
EndNote Çakır K, Kars G (December 1, 2024) Impact of growth medium components on absorbance-viable cell count correlation and cell surface area of Cereibacter sphaeroides O.U.001. Eurasian Journal of Biological and Chemical Sciences 7 2 132–138.
IEEE K. Çakır and G. Kars, “Impact of growth medium components on absorbance-viable cell count correlation and cell surface area of Cereibacter sphaeroides O.U.001”, Eurasian J. Bio. Chem. Sci., vol. 7, no. 2, pp. 132–138, 2024, doi: 10.46239/ejbcs.1516661.
ISNAD Çakır, Kader - Kars, Gökhan. “Impact of Growth Medium Components on Absorbance-Viable Cell Count Correlation and Cell Surface Area of Cereibacter Sphaeroides O.U.001”. Eurasian Journal of Biological and Chemical Sciences 7/2 (December 2024), 132-138. https://doi.org/10.46239/ejbcs.1516661.
JAMA Çakır K, Kars G. Impact of growth medium components on absorbance-viable cell count correlation and cell surface area of Cereibacter sphaeroides O.U.001. Eurasian J. Bio. Chem. Sci. 2024;7:132–138.
MLA Çakır, Kader and Gökhan Kars. “Impact of Growth Medium Components on Absorbance-Viable Cell Count Correlation and Cell Surface Area of Cereibacter Sphaeroides O.U.001”. Eurasian Journal of Biological and Chemical Sciences, vol. 7, no. 2, 2024, pp. 132-8, doi:10.46239/ejbcs.1516661.
Vancouver Çakır K, Kars G. Impact of growth medium components on absorbance-viable cell count correlation and cell surface area of Cereibacter sphaeroides O.U.001. Eurasian J. Bio. Chem. Sci. 2024;7(2):132-8.