Research Article
BibTex RIS Cite

The potential use of Epilobium hirsutum L. in phytoremediation of zinc and an efficient method for in vitro propagation

Year 2024, Volume: 7 Issue: 2, 102 - 110, 31.12.2024
https://doi.org/10.46239/ejbcs.1548937

Abstract

This study aimed to evaluate the capacity of Epilobium hirsutum L. (Onagraceae), a wetland plant, to accumulate and tolerate zinc (Zn) and its in vitro propagation potential. Root-shoot length, fresh weight, pigment, and protein content were analyzed in the plants grown in different Zn concentrations, including 0, 10, 20, 30, 40, 50, 75, 100,150, and 200 mg Zn/L. In the seedlings grown at 50 and 75 mg Zn/L concentrations, a reduction in the relative root length, shoot length, and fresh weight was detected. It was found that there was a negative correlation between pigment and protein contents of E. hirsutum and increased Zn concentrations of solutions. On the other hand, it was determined that a considerable amount of Zn was accumulated by E. hirsutum in its roots (10 598 mg Zn/kg DW). In tissue culture experiments, it was found that MS medium was effective for the germination of the plant (97%). When the growth parameters of plants grown in different concentrations of Gibberellic acid were evaluated, the highest growth parameters were obtained at 50 mg/L. It has been concluded that the most successful mediums on shoot development were 1.0BAP/1.0NAA and 1.0BAP/1.0IBA. The highest number of shoots per explant was 1.0BAP/1.0NAA (3.96). The longest root length was also determined on medium with 1.0BAP/1.0IBA (0.28 cm). Regenerated shoots were transferred to different concentrations of root mediums. It was concluded that MS medium with 1.0IBA has been superior for root formation compared to other hormone concentrations.

Ethical Statement

-

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Ackova DG. 2018. Heavy metals and their general toxicity on plants. Plant Sci. Today 5(1):14-18. doi.org/10.14719/pst.2018.5.1.355
  • Adki VS, Jadhav JP, Bapat VA. (2014). At the cross roads of environmental pollutants and phytoremediation: A promising bio remedial approach. J Plant Biochem Biotechnol. 23(2):125-140. doi.org/10.1007/s13562-013-0250-6
  • Akbudak MA, Babaoglu M. 2005. Callus induction in small flowered willow herb (Epilobium parviflorum Schreb). J Plant Biochem Biotechnol. 14(2):189-191. doi.org/10.1007/BF03355957
  • Akın B. 2020. Tissue culture techniques of medicinal and aromatic plants: History, cultivation and micropropagation. JSR-A 45:253-266
  • Akin B, Kocaçalişkan I. 2011. In vitro propagation of Arabis drabiformis Boiss. (Brassiaceae) an endemic rare species of Uludaǧ mountain (Bursa-Turkey). AJB 10(80):18356-1836. doi.org/10.5897/AJB11.2831
  • Akin B, Bingol NA, Kocacaliskan I. 2022. Zinc stress alleviation by salicylic acid in hairy willowherb (Epilobium hirsutum L.) under in vitro conditions. Fresenius Environ Bull. 31(03A):3735-3745
  • Akın B, Çetin B, Akanıl Bingöl N. 2018. In Vitro Propagation of Wetland Medicinal Plant Lythrum salicaria L. CBU Journal of Science 14(4):369-372. doi.org/10.18466/cbayarfbe.393626
  • Akin B, Kocaçalişkan I, Güleryüz G. 2014. Micropropagation of Erodium sibthorpianum subsp. sibthorpianum, an endemic threatened species of Uludaǧ mountain (Bursa-Turkey). Turk J Botany 38(1):148-155. doi.org/10.3906/bot-1304-24
  • Akpor OB, Ohiobor GO, Olaolu TD. 2014. Heavy metal pollutants in wastewater effluents: Sources, effects, and remediation. Adv Biosci Bioeng. 2(4):37-43. doi.org/10.11648/j.abb.20140204.11
  • Al Chami Z, Amer N, Al Bitar L, Cavoski I. 2015. Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int J Environ Sci Technol. 2(12):3957-3970. doi.org/10.1007/s13762-015-0823-0
  • Ali H, Khan E. 2018. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicol Environ Chem. 100(1):6-19. doi.org/10.1080/02772248.2017.1413652
  • Anish NP, Dan M, Bejoy M. 2008. Conservation using in vitro progenies of the threatened ginger-Boesenbergia pulcherrima (Wall.) Kuntze. Int J Botany 4(1):93-98. doi.org/10.3923/ijb.2008.93.98
  • Arab MM, Yadollahi A, Shojaeiyan A, Shokri S, Ghojah SM. 2014. Effects of nutrient media, different cytokinin types and their concentrations on in vitro multiplication of G × N15 (hybrid of almond × peach) vegetative rootstock. JGEB. 12(2):81-87. doi.org/10.1016/j.jgeb.2014.10.001.
  • Arán DS, Harguinteguy CA, Fernandez-Cirelli A, Pignata, ML. 2017. Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater. Environ Sci Pollut Res . 24(22):8295-18308. doi.org/10.1007/s11356-017-9464-9
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol. 24(1):1-15. doi.org/10.1104/pp.24.1.1
  • Azubuike CC, Chikere CB, Okpokwasili GC. 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 32(11):1-18. doi.org/10.1007/s11274-016-2137-x
  • Badkhane Govt Motilal Vigyan Mahavidyalayan Y, Bajaj Govt Motilal Vigyan Mahavidyalaya A. 2016. Effect of explant sources and different concentrations of plant growth regulators on in vitro micropropagation of Glycyrrhiza glabra L. Indo Am J Pharm Res. 6:5830-5840
  • Balafrej H, Bogusz D, Abidine Triqui Z el, Guedira A, Bendaou N, Smouni A, Fahr M. 2020. Zinc hyperaccumulation in plants: A review. Plants 9(5):562. doi.org/10.3390/plants9050562
  • Bingöl NA, Akin B, Kocaçalişkan İ, Nalbantoğlu B, Meşeli O. 2021. Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L. Turk J Botany 45(6):553-562. doi.org/10.3906/bot-2107-52
  • Bolat İ, Kara Ö. 2017. Bitki besin elementleri: Kaynakları, işlevleri, eksik ve fazlalıkları. BAROFD 19(1):218-228 (In Turkish).
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248-254. doi.org/10.1016/0003-2697(76)90527-3
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. 2007. Zinc in plants: Tansley review. New Phytol. 173(4):677–702. doi.org/10.1111/j.1469-8137.2007.01996.x
  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F. 2012. Function of nutrients: micronutrients. In: Marschner P (ed) Marschner's mineral nutrition of higher plants, 3rd edn. Academic Press, London.
  • Cakmak I. 2000. Tansley review no. 111: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist 146(2):185-205. doi.org/10.1046/j.1469-8137.2000.00630.x
  • Chandra R, Kang H. 2016. Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Sci Technol. 12(2):55-61. doi.org/10.1080/21580103.2015.1044024
  • Chaudhary M, Varshney R, Shahnawaz M, Pandey RP. 2019. Various responses of plant proteins to heavy metal stress tolerance. Suresh Gyan Vihar University International Journal of Environment, Science and Technology 5(1):19-29
  • Davis PH. 1965. Flora of Turkey and the East Aegean Islands, Vol. 1-9. University Press, Edinburgh. Edinburgh Univ. Press., Edinburgh.
  • Doğan M. 2011. Akuatik makrofitlerde ağır metal akümülasyonu. Türk Bilimsel Derlemeler Dergisi 4:33-36 (In Turkish)
  • Doran PM. 2009. Application of plant tissue cultures in phytoremediation research: Incentives and limitations. Biotechnol Bioeng. 103(1):60-76. doi.org/10.1002/bit.22280
  • Dreger M, Wegenke J, Makowiecka J, Michalik T, Wielgus K. 2016. Application of multi-shoots cultures in micropropagation of willow herb (Chamaenerion angustifolium (L.) Scop.). Herba Polonica. 62(3):28-39. doi.org/10.1515/hepo-2016-0015
  • Ehsan M, Lara Viveros FM, Hernández VE, Barakat MA, Ortega AR, Maza Av, Monter Jv. 2015. Zinc and cadmium accumulation by Lupinus uncinatus Schldl. grown in nutrient solution. Int J Environ Sci Technol. 12(1):307-316. doi.org/10.1007/s13762-013-0456-0
  • Eid EM, Shaltout KH, Almuqrin AH, Aloraini DA, Khedher KM, Taher MA, Alfarhan AH, Picó Y, Barcelo D. 2021. Uptake prediction of nine heavy metals by Eichhornia crassipes grown in irrigation canals: A biomonitoring approach. Sci. Total Environ. 782:146887. doi.org/10.1016/j.scitotenv.2021.146887
  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. Article ID 756120:1-18. doi.org/10.1155/2015/756120
  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S. 2018. In vitro plant tissue culture: means for production of biological active compounds. Planta. 248(1):1-18. doi.org/10.1007/s00425-018-2910-1
  • Frick EM, Strader LC. 2018. Roles for IBA-derived auxin in plant development. J Exp Bot. 69(2):169-177. doi.org/10.1093/jxb/erx298
  • Fu F, Wang Q. 2011. Removal of heavy metal ions from wastewaters: A review. J Environ Manage. 92(3):407-418. doi.org/10.1016/j.jenvman.2010.11.011
  • García-Gonzáles R, Quiroz K, Carrasco B, Caligari P. 2010. Plant tissue culture: Current status, opportunities and challenges. Cienc Investig Agrar. 37(3):5-30. doi.org/10.4067/s0718-16202010000300001
  • Ghaderian SM, Ghotbi Ravandi AA. 2012. Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran.
  • J Geochem Explor. 123:25-32. doi.org/10.1016/j.gexplo.2012.06.022
  • Granica S, Piwowarski JP, Czerwińska ME, Kiss AK. 2014. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. J Ethnopharmacol. 156:316-346. doi.org/10.1016/j.jep.2014.08.036
  • Guangwu Z, Xuwen J. 2014. Roles of gibberellin and Auxin in promoting seed germination and seedling Vigor in Pinus massoniana. For Sci. 60(2):367-373. doi.org/10.5849/forsci.12-143
  • Guittonny-Philippe A, Masotti V, Rabier J, Petit ME, Malleret L, Coulomb B, Laffont-Schwob I. 2015. Biomonitoring of epilobium hirsutum L. health status to assess water ecotoxicity in constructed wetlands treating mixtures of contaminants. Water (Switzerland) 7(2):697-715. doi.org/10.3390/w7020697
  • Gümüşçü A, Çöçü S, Uranbey S, Ipek A, Çalişkan M, Arslan N. 2008. In vitro micro-propagation of endangered ornamental plant-Neotchihatchewia isatidea (Boiss.) Rauschert. Afr J Biotechnol. 7(3):234-238
  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA. 2011. Phytoremediation of industrial wastewater potentiality by Typha domingensis., Int J Environ Sci Technol. 8(3):1019-1027. doi.org/10.1007/BF03326249
  • Hesami R, Salimi A, Ghaderian SM. 2018. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran. Environ Sci Pollut Res. 25(9):8701-8714. doi.org/10.1007/s11356-017-1156-y
  • Hilhorst HWM, Karssen CM. 1992. Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regul. 11(3):225-238. doi.org/10.1007/BF00024561
  • Jayasri MA, Suthindhiran K. 2017. Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Appl Water Sci. 7(3):247-1253. doi.org/10.1007/s13201-015-0376-x
  • JMP. 2005. JMP SAS statistical analysis system. Cary, North Carolina, USA.
  • Kaçar B, İnal A. 2008. Bitki analizleri. Nobel Yayın Dağıtım Ltd Şti, Ankara.
  • Khan N, Ahmed M, Hafiz I, Abbasi N, Ejaz S, Anjum M. 2015. Optimizing the concentrations of plant growth regulators for in vitro shoot cultures, callus induction and shoot regeneration from calluses of grapes. Int Sci Vigne Vin. 49(1):37-45. doi.org/10.20870/oeno-one.2015.49.1.95
  • Kocaçalışkan İ, Bingöl AN. 2017. Biyoistatistik. Nobel Akademik Yayıncılık Eğitim danışmanlık Tic Ltd Şti, Ankara. Kurt S, Erdağ B. 2009. In vitro germination and axillary shoot propagation of Centaurea zeybekii. Biol. 64(1):97-101. doi.org/10.2478/s11756-009-0003-0
  • Mahdavian K, Ghaderian SM, Torkzadeh-Mahani M. 2017. Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. J Soils Sediments 17(5):1310-1320. doi.org/10.1007/s11368-015-1260-x
  • Malik N, Chamon A, Mondol M, Elahi S, Faiz S. 1970. Effects of different levels of zinc on growth and yield of red amaranth (Amaranthus sp.) and rice (Oryza sativa, Variety-BR49). J Bangladesh Assoc Young Res. 1(1):79-91. doi.org/10.3329/jbayr.v1i1.6836.
  • Maret W. 2013. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv Nutr. 4(1):2-91. doi.org/10.3945/an.112.003038.
  • Matthews DJ, Moran BM, Otte ML. 2004. Zinc tolerance, uptake, and accumulation in the wetland plants Eriophorum angustifolium, Juncus effusus, and Juncus articulatus. Wetlands 24(4):859-869
  • Mazumdar K, Das S. 2015. Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in North East India. Environ Sci Pollut Res. 22(1): 701-710. doi.org/10.1007/s11356-014-3377-7
  • Mirshekali H, Hadi H, Amirnia R, Khodaverdiloo H, Ali H M, Hadi H, Amirnia R, Verdiloo HK. 2012. Effect of zinc toxicity on plant productivity, chlorophyll and Zn contents of sorghum (Sorghum bicolor) and common lambsquarter (Chenopodium album). IJRR. 2(3):247-254
  • Murashige T, Skoog F. 1962. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol Plant. 15(3):473-497. doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Noulas C, Tziouvalekas M, Karyotis T. 2018. Zinc in Soils, Water and Food crops. J Trace Elem Med Biol. 49:252–260. doi.org/10.1016/j.jtemb.2018.02.009
  • Nardis BO, Silva EB, Grazziotti PH, Alleoni LRF, Melo L CA, Farnezi MMM 2018. Availability and zinc accumulation in forage grasses grown in contaminated soil. Int J Phytoremediation. 20(3):205-213. doi.org/10.1080/15226514.2017.1365347
  • Nasution NH, Nasution IW. 2019. The Effect of Plant Growth Regulators on Callus Induction of Mangosteen (Garcinia mangostana L.). IOP Conf Ser Earth Environ Sci. 305(1):012049. doi.org/10.1088/1755-1315/305/1/012049
  • Phillips DP, Human LRD, Adams JB. 2015. Wetland plants as indicators of heavy metal contamination. Mar Pollut Bull. 92, 227-232. doi.org/10.1016/j.marpolbul.2014.12.038
  • Prasad PJN, Chakradhar T, Pullaiah T. 2004. Micropropagation of Cryptolepis buchanani Roem. & Schult. Taiwania. 49:57-65. doi.org/10.6165/tai.2004.49(1).57
  • Reichman SM. 2002. The Responses of Plants to Metal Toxicity: A review focusing on Copper, Manganese and Zinc. Australian Minerals and Energy Environment Foundation, Melbourne, Australia.
  • Rodrigues ACD, Rocha MV de C, Lima ESA, Pinho CF de, Santos AM dos, Santos FS dos, Amaral Sobrinho NM B do. 2020. Potential of water lettuce (Pistia stratiotes L.) for phytoremediation: physiological responses and kinetics of zinc uptake. Int J Phytoremediation. 22(10):1019-1027. doi.org/10.1080/15226514.2020.1725868
  • Rogers SMD. 2003. Tissue culture and wetland establishment of the freshwater monocots Carex, Juncus, Scirpus, and Typha. In Vitro Cell Dev Biol Plant. 39(1):1-15. doi.org/10.1079/IVP2002358
  • Rout GR, Das P. 2003. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie. 23(1):3-11. doi.org/10.1051/agro:2002073
  • Sabreena Hassan S, Bhat SA, Kumar V, Ganai BA, Ameen F. 2022. Phytoremediation of heavy metals: An indispensable contrivance in green remediation technology. Plants. 11(9):1255. doi.org/10.3390/plants11091255.
  • Sarasan V, Cripps R, Ramsay MM, Atherton C, McMichen M, Prendergast G, Rowntree JK. 2006. Conservation in vitro of threatened plants - Progress in the past decade. In Vitro Cell Dev Biol Plant. 42(3):206-214. doi.org/10.1079/IVP2006769
  • Sauer M, Robert S, Kleine-Vehn J. 2013. Auxin: Simply complicated. J Exp Bot. 64(9):2565-2577. doi.org/10.1093/jxb/ert139.
  • Schück M, Greger M. 2020. Screening the capacity of 34 wetland plant species to remove heavy metals from water. Int J Environ Res Public Health. 17(13):4623. doi.org/10.3390/ijerph17134623.
  • Shakya K, Chettri MK, Sawidis T. 2008. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Arch Environ Contam Toxicol. 54(3):412-421. doi.org/10.1007/s00244-007-9060-y
  • Sharma A, Patni B, Shankhdhar D, Shankhdhar SC. 2013. Zinc - An Indispensable Micronutrient. Physiol Mol Biol Plants. 19(1):11-20. doi.org/10.1007/s12298-012-0139-1
  • Tămaş M, Toiu I, Oniga I, Deliu C, Oltean B, Coldea G. 2009. Quantitative determination of total polyphenols and flavonoids from indigenous species of Epilobium of wild origin and ‘in vitro’ regenerated plantlets. Contrib Bot. 44:119-123
  • Tiwari AK, de Maio M, Singh PK, Mahato MK. 2015. Evaluation of surface water quality by using GIS and a heavy metal pollution index (HPI) model in a coal mining area, India. Bull Environ Contam Toxicol. 95(3):304–310. doi.org/10.1007/s00128-015-1558-9
  • Tsonev T, Lidon FJC. 2012. Zinc in plants - An overview. Emir J Food Agric. 24(4):322-333
  • Turker AU, Mutlu EC, Yidirim AB. 2008. Efficient in vitro regeneration of fireweed, a medicinal plant. Acta Physiol Plant. 30(4):421-426. doi.org/10.1007/s11738-008-0136-8.
  • Vassilev A, Nikolova A, Koleva L, Lidon F. 2011. Effects of Excess Zn on Growth and Photosynthetic Performance of Young Bean Plants. J Phytol. 3(6):58-62
  • Vishal B, Kumar PP. 2018. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Front Plant Sci. 9:1-15. doi.org/10.3389/fpls.2018.00838
  • Waoo AA, Khare S, Ganguli S. 2013. In-vitro Propagation of Datura innoxia from nodal and shoot tip explants. World J Environ Eng. 1(1):1-4. doi.org/10.12691/wjee-1-1-1
Year 2024, Volume: 7 Issue: 2, 102 - 110, 31.12.2024
https://doi.org/10.46239/ejbcs.1548937

Abstract

Project Number

-

References

  • Ackova DG. 2018. Heavy metals and their general toxicity on plants. Plant Sci. Today 5(1):14-18. doi.org/10.14719/pst.2018.5.1.355
  • Adki VS, Jadhav JP, Bapat VA. (2014). At the cross roads of environmental pollutants and phytoremediation: A promising bio remedial approach. J Plant Biochem Biotechnol. 23(2):125-140. doi.org/10.1007/s13562-013-0250-6
  • Akbudak MA, Babaoglu M. 2005. Callus induction in small flowered willow herb (Epilobium parviflorum Schreb). J Plant Biochem Biotechnol. 14(2):189-191. doi.org/10.1007/BF03355957
  • Akın B. 2020. Tissue culture techniques of medicinal and aromatic plants: History, cultivation and micropropagation. JSR-A 45:253-266
  • Akin B, Kocaçalişkan I. 2011. In vitro propagation of Arabis drabiformis Boiss. (Brassiaceae) an endemic rare species of Uludaǧ mountain (Bursa-Turkey). AJB 10(80):18356-1836. doi.org/10.5897/AJB11.2831
  • Akin B, Bingol NA, Kocacaliskan I. 2022. Zinc stress alleviation by salicylic acid in hairy willowherb (Epilobium hirsutum L.) under in vitro conditions. Fresenius Environ Bull. 31(03A):3735-3745
  • Akın B, Çetin B, Akanıl Bingöl N. 2018. In Vitro Propagation of Wetland Medicinal Plant Lythrum salicaria L. CBU Journal of Science 14(4):369-372. doi.org/10.18466/cbayarfbe.393626
  • Akin B, Kocaçalişkan I, Güleryüz G. 2014. Micropropagation of Erodium sibthorpianum subsp. sibthorpianum, an endemic threatened species of Uludaǧ mountain (Bursa-Turkey). Turk J Botany 38(1):148-155. doi.org/10.3906/bot-1304-24
  • Akpor OB, Ohiobor GO, Olaolu TD. 2014. Heavy metal pollutants in wastewater effluents: Sources, effects, and remediation. Adv Biosci Bioeng. 2(4):37-43. doi.org/10.11648/j.abb.20140204.11
  • Al Chami Z, Amer N, Al Bitar L, Cavoski I. 2015. Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int J Environ Sci Technol. 2(12):3957-3970. doi.org/10.1007/s13762-015-0823-0
  • Ali H, Khan E. 2018. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicol Environ Chem. 100(1):6-19. doi.org/10.1080/02772248.2017.1413652
  • Anish NP, Dan M, Bejoy M. 2008. Conservation using in vitro progenies of the threatened ginger-Boesenbergia pulcherrima (Wall.) Kuntze. Int J Botany 4(1):93-98. doi.org/10.3923/ijb.2008.93.98
  • Arab MM, Yadollahi A, Shojaeiyan A, Shokri S, Ghojah SM. 2014. Effects of nutrient media, different cytokinin types and their concentrations on in vitro multiplication of G × N15 (hybrid of almond × peach) vegetative rootstock. JGEB. 12(2):81-87. doi.org/10.1016/j.jgeb.2014.10.001.
  • Arán DS, Harguinteguy CA, Fernandez-Cirelli A, Pignata, ML. 2017. Phytoextraction of Pb, Cr, Ni, and Zn using the aquatic plant Limnobium laevigatum and its potential use in the treatment of wastewater. Environ Sci Pollut Res . 24(22):8295-18308. doi.org/10.1007/s11356-017-9464-9
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol. 24(1):1-15. doi.org/10.1104/pp.24.1.1
  • Azubuike CC, Chikere CB, Okpokwasili GC. 2016. Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol. 32(11):1-18. doi.org/10.1007/s11274-016-2137-x
  • Badkhane Govt Motilal Vigyan Mahavidyalayan Y, Bajaj Govt Motilal Vigyan Mahavidyalaya A. 2016. Effect of explant sources and different concentrations of plant growth regulators on in vitro micropropagation of Glycyrrhiza glabra L. Indo Am J Pharm Res. 6:5830-5840
  • Balafrej H, Bogusz D, Abidine Triqui Z el, Guedira A, Bendaou N, Smouni A, Fahr M. 2020. Zinc hyperaccumulation in plants: A review. Plants 9(5):562. doi.org/10.3390/plants9050562
  • Bingöl NA, Akin B, Kocaçalişkan İ, Nalbantoğlu B, Meşeli O. 2021. Effect of zinc on phytoremediation potential and carbonic anhydrase and polyphenol oxidase activities of Lythrum salicaria L. Turk J Botany 45(6):553-562. doi.org/10.3906/bot-2107-52
  • Bolat İ, Kara Ö. 2017. Bitki besin elementleri: Kaynakları, işlevleri, eksik ve fazlalıkları. BAROFD 19(1):218-228 (In Turkish).
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248-254. doi.org/10.1016/0003-2697(76)90527-3
  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. 2007. Zinc in plants: Tansley review. New Phytol. 173(4):677–702. doi.org/10.1111/j.1469-8137.2007.01996.x
  • Broadley M, Brown P, Cakmak I, Rengel Z, Zhao F. 2012. Function of nutrients: micronutrients. In: Marschner P (ed) Marschner's mineral nutrition of higher plants, 3rd edn. Academic Press, London.
  • Cakmak I. 2000. Tansley review no. 111: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist 146(2):185-205. doi.org/10.1046/j.1469-8137.2000.00630.x
  • Chandra R, Kang H. 2016. Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Sci Technol. 12(2):55-61. doi.org/10.1080/21580103.2015.1044024
  • Chaudhary M, Varshney R, Shahnawaz M, Pandey RP. 2019. Various responses of plant proteins to heavy metal stress tolerance. Suresh Gyan Vihar University International Journal of Environment, Science and Technology 5(1):19-29
  • Davis PH. 1965. Flora of Turkey and the East Aegean Islands, Vol. 1-9. University Press, Edinburgh. Edinburgh Univ. Press., Edinburgh.
  • Doğan M. 2011. Akuatik makrofitlerde ağır metal akümülasyonu. Türk Bilimsel Derlemeler Dergisi 4:33-36 (In Turkish)
  • Doran PM. 2009. Application of plant tissue cultures in phytoremediation research: Incentives and limitations. Biotechnol Bioeng. 103(1):60-76. doi.org/10.1002/bit.22280
  • Dreger M, Wegenke J, Makowiecka J, Michalik T, Wielgus K. 2016. Application of multi-shoots cultures in micropropagation of willow herb (Chamaenerion angustifolium (L.) Scop.). Herba Polonica. 62(3):28-39. doi.org/10.1515/hepo-2016-0015
  • Ehsan M, Lara Viveros FM, Hernández VE, Barakat MA, Ortega AR, Maza Av, Monter Jv. 2015. Zinc and cadmium accumulation by Lupinus uncinatus Schldl. grown in nutrient solution. Int J Environ Sci Technol. 12(1):307-316. doi.org/10.1007/s13762-013-0456-0
  • Eid EM, Shaltout KH, Almuqrin AH, Aloraini DA, Khedher KM, Taher MA, Alfarhan AH, Picó Y, Barcelo D. 2021. Uptake prediction of nine heavy metals by Eichhornia crassipes grown in irrigation canals: A biomonitoring approach. Sci. Total Environ. 782:146887. doi.org/10.1016/j.scitotenv.2021.146887
  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. 2015. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. Article ID 756120:1-18. doi.org/10.1155/2015/756120
  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S. 2018. In vitro plant tissue culture: means for production of biological active compounds. Planta. 248(1):1-18. doi.org/10.1007/s00425-018-2910-1
  • Frick EM, Strader LC. 2018. Roles for IBA-derived auxin in plant development. J Exp Bot. 69(2):169-177. doi.org/10.1093/jxb/erx298
  • Fu F, Wang Q. 2011. Removal of heavy metal ions from wastewaters: A review. J Environ Manage. 92(3):407-418. doi.org/10.1016/j.jenvman.2010.11.011
  • García-Gonzáles R, Quiroz K, Carrasco B, Caligari P. 2010. Plant tissue culture: Current status, opportunities and challenges. Cienc Investig Agrar. 37(3):5-30. doi.org/10.4067/s0718-16202010000300001
  • Ghaderian SM, Ghotbi Ravandi AA. 2012. Accumulation of copper and other heavy metals by plants growing on Sarcheshmeh copper mining area, Iran.
  • J Geochem Explor. 123:25-32. doi.org/10.1016/j.gexplo.2012.06.022
  • Granica S, Piwowarski JP, Czerwińska ME, Kiss AK. 2014. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. J Ethnopharmacol. 156:316-346. doi.org/10.1016/j.jep.2014.08.036
  • Guangwu Z, Xuwen J. 2014. Roles of gibberellin and Auxin in promoting seed germination and seedling Vigor in Pinus massoniana. For Sci. 60(2):367-373. doi.org/10.5849/forsci.12-143
  • Guittonny-Philippe A, Masotti V, Rabier J, Petit ME, Malleret L, Coulomb B, Laffont-Schwob I. 2015. Biomonitoring of epilobium hirsutum L. health status to assess water ecotoxicity in constructed wetlands treating mixtures of contaminants. Water (Switzerland) 7(2):697-715. doi.org/10.3390/w7020697
  • Gümüşçü A, Çöçü S, Uranbey S, Ipek A, Çalişkan M, Arslan N. 2008. In vitro micro-propagation of endangered ornamental plant-Neotchihatchewia isatidea (Boiss.) Rauschert. Afr J Biotechnol. 7(3):234-238
  • Hegazy AK, Abdel-Ghani NT, El-Chaghaby GA. 2011. Phytoremediation of industrial wastewater potentiality by Typha domingensis., Int J Environ Sci Technol. 8(3):1019-1027. doi.org/10.1007/BF03326249
  • Hesami R, Salimi A, Ghaderian SM. 2018. Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran. Environ Sci Pollut Res. 25(9):8701-8714. doi.org/10.1007/s11356-017-1156-y
  • Hilhorst HWM, Karssen CM. 1992. Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Regul. 11(3):225-238. doi.org/10.1007/BF00024561
  • Jayasri MA, Suthindhiran K. 2017. Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Appl Water Sci. 7(3):247-1253. doi.org/10.1007/s13201-015-0376-x
  • JMP. 2005. JMP SAS statistical analysis system. Cary, North Carolina, USA.
  • Kaçar B, İnal A. 2008. Bitki analizleri. Nobel Yayın Dağıtım Ltd Şti, Ankara.
  • Khan N, Ahmed M, Hafiz I, Abbasi N, Ejaz S, Anjum M. 2015. Optimizing the concentrations of plant growth regulators for in vitro shoot cultures, callus induction and shoot regeneration from calluses of grapes. Int Sci Vigne Vin. 49(1):37-45. doi.org/10.20870/oeno-one.2015.49.1.95
  • Kocaçalışkan İ, Bingöl AN. 2017. Biyoistatistik. Nobel Akademik Yayıncılık Eğitim danışmanlık Tic Ltd Şti, Ankara. Kurt S, Erdağ B. 2009. In vitro germination and axillary shoot propagation of Centaurea zeybekii. Biol. 64(1):97-101. doi.org/10.2478/s11756-009-0003-0
  • Mahdavian K, Ghaderian SM, Torkzadeh-Mahani M. 2017. Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. J Soils Sediments 17(5):1310-1320. doi.org/10.1007/s11368-015-1260-x
  • Malik N, Chamon A, Mondol M, Elahi S, Faiz S. 1970. Effects of different levels of zinc on growth and yield of red amaranth (Amaranthus sp.) and rice (Oryza sativa, Variety-BR49). J Bangladesh Assoc Young Res. 1(1):79-91. doi.org/10.3329/jbayr.v1i1.6836.
  • Maret W. 2013. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv Nutr. 4(1):2-91. doi.org/10.3945/an.112.003038.
  • Matthews DJ, Moran BM, Otte ML. 2004. Zinc tolerance, uptake, and accumulation in the wetland plants Eriophorum angustifolium, Juncus effusus, and Juncus articulatus. Wetlands 24(4):859-869
  • Mazumdar K, Das S. 2015. Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in North East India. Environ Sci Pollut Res. 22(1): 701-710. doi.org/10.1007/s11356-014-3377-7
  • Mirshekali H, Hadi H, Amirnia R, Khodaverdiloo H, Ali H M, Hadi H, Amirnia R, Verdiloo HK. 2012. Effect of zinc toxicity on plant productivity, chlorophyll and Zn contents of sorghum (Sorghum bicolor) and common lambsquarter (Chenopodium album). IJRR. 2(3):247-254
  • Murashige T, Skoog F. 1962. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol Plant. 15(3):473-497. doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Noulas C, Tziouvalekas M, Karyotis T. 2018. Zinc in Soils, Water and Food crops. J Trace Elem Med Biol. 49:252–260. doi.org/10.1016/j.jtemb.2018.02.009
  • Nardis BO, Silva EB, Grazziotti PH, Alleoni LRF, Melo L CA, Farnezi MMM 2018. Availability and zinc accumulation in forage grasses grown in contaminated soil. Int J Phytoremediation. 20(3):205-213. doi.org/10.1080/15226514.2017.1365347
  • Nasution NH, Nasution IW. 2019. The Effect of Plant Growth Regulators on Callus Induction of Mangosteen (Garcinia mangostana L.). IOP Conf Ser Earth Environ Sci. 305(1):012049. doi.org/10.1088/1755-1315/305/1/012049
  • Phillips DP, Human LRD, Adams JB. 2015. Wetland plants as indicators of heavy metal contamination. Mar Pollut Bull. 92, 227-232. doi.org/10.1016/j.marpolbul.2014.12.038
  • Prasad PJN, Chakradhar T, Pullaiah T. 2004. Micropropagation of Cryptolepis buchanani Roem. & Schult. Taiwania. 49:57-65. doi.org/10.6165/tai.2004.49(1).57
  • Reichman SM. 2002. The Responses of Plants to Metal Toxicity: A review focusing on Copper, Manganese and Zinc. Australian Minerals and Energy Environment Foundation, Melbourne, Australia.
  • Rodrigues ACD, Rocha MV de C, Lima ESA, Pinho CF de, Santos AM dos, Santos FS dos, Amaral Sobrinho NM B do. 2020. Potential of water lettuce (Pistia stratiotes L.) for phytoremediation: physiological responses and kinetics of zinc uptake. Int J Phytoremediation. 22(10):1019-1027. doi.org/10.1080/15226514.2020.1725868
  • Rogers SMD. 2003. Tissue culture and wetland establishment of the freshwater monocots Carex, Juncus, Scirpus, and Typha. In Vitro Cell Dev Biol Plant. 39(1):1-15. doi.org/10.1079/IVP2002358
  • Rout GR, Das P. 2003. Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie. 23(1):3-11. doi.org/10.1051/agro:2002073
  • Sabreena Hassan S, Bhat SA, Kumar V, Ganai BA, Ameen F. 2022. Phytoremediation of heavy metals: An indispensable contrivance in green remediation technology. Plants. 11(9):1255. doi.org/10.3390/plants11091255.
  • Sarasan V, Cripps R, Ramsay MM, Atherton C, McMichen M, Prendergast G, Rowntree JK. 2006. Conservation in vitro of threatened plants - Progress in the past decade. In Vitro Cell Dev Biol Plant. 42(3):206-214. doi.org/10.1079/IVP2006769
  • Sauer M, Robert S, Kleine-Vehn J. 2013. Auxin: Simply complicated. J Exp Bot. 64(9):2565-2577. doi.org/10.1093/jxb/ert139.
  • Schück M, Greger M. 2020. Screening the capacity of 34 wetland plant species to remove heavy metals from water. Int J Environ Res Public Health. 17(13):4623. doi.org/10.3390/ijerph17134623.
  • Shakya K, Chettri MK, Sawidis T. 2008. Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Arch Environ Contam Toxicol. 54(3):412-421. doi.org/10.1007/s00244-007-9060-y
  • Sharma A, Patni B, Shankhdhar D, Shankhdhar SC. 2013. Zinc - An Indispensable Micronutrient. Physiol Mol Biol Plants. 19(1):11-20. doi.org/10.1007/s12298-012-0139-1
  • Tămaş M, Toiu I, Oniga I, Deliu C, Oltean B, Coldea G. 2009. Quantitative determination of total polyphenols and flavonoids from indigenous species of Epilobium of wild origin and ‘in vitro’ regenerated plantlets. Contrib Bot. 44:119-123
  • Tiwari AK, de Maio M, Singh PK, Mahato MK. 2015. Evaluation of surface water quality by using GIS and a heavy metal pollution index (HPI) model in a coal mining area, India. Bull Environ Contam Toxicol. 95(3):304–310. doi.org/10.1007/s00128-015-1558-9
  • Tsonev T, Lidon FJC. 2012. Zinc in plants - An overview. Emir J Food Agric. 24(4):322-333
  • Turker AU, Mutlu EC, Yidirim AB. 2008. Efficient in vitro regeneration of fireweed, a medicinal plant. Acta Physiol Plant. 30(4):421-426. doi.org/10.1007/s11738-008-0136-8.
  • Vassilev A, Nikolova A, Koleva L, Lidon F. 2011. Effects of Excess Zn on Growth and Photosynthetic Performance of Young Bean Plants. J Phytol. 3(6):58-62
  • Vishal B, Kumar PP. 2018. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Front Plant Sci. 9:1-15. doi.org/10.3389/fpls.2018.00838
  • Waoo AA, Khare S, Ganguli S. 2013. In-vitro Propagation of Datura innoxia from nodal and shoot tip explants. World J Environ Eng. 1(1):1-4. doi.org/10.12691/wjee-1-1-1
There are 80 citations in total.

Details

Primary Language English
Subjects Plant Physiology
Journal Section Research Articles
Authors

Nüket Akanıl Bingöl 0000-0003-2797-3729

Betül Akın 0000-0002-2325-7496

Nergiz Erdaş 0000-0001-9654-5037

Project Number -
Early Pub Date December 27, 2024
Publication Date December 31, 2024
Submission Date September 17, 2024
Acceptance Date October 13, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2

Cite

APA Akanıl Bingöl, N., Akın, B., & Erdaş, N. (2024). The potential use of Epilobium hirsutum L. in phytoremediation of zinc and an efficient method for in vitro propagation. Eurasian Journal of Biological and Chemical Sciences, 7(2), 102-110. https://doi.org/10.46239/ejbcs.1548937
AMA Akanıl Bingöl N, Akın B, Erdaş N. The potential use of Epilobium hirsutum L. in phytoremediation of zinc and an efficient method for in vitro propagation. Eurasian J. Bio. Chem. Sci. December 2024;7(2):102-110. doi:10.46239/ejbcs.1548937
Chicago Akanıl Bingöl, Nüket, Betül Akın, and Nergiz Erdaş. “The Potential Use of Epilobium Hirsutum L. In Phytoremediation of Zinc and an Efficient Method for in Vitro Propagation”. Eurasian Journal of Biological and Chemical Sciences 7, no. 2 (December 2024): 102-10. https://doi.org/10.46239/ejbcs.1548937.
EndNote Akanıl Bingöl N, Akın B, Erdaş N (December 1, 2024) The potential use of Epilobium hirsutum L. in phytoremediation of zinc and an efficient method for in vitro propagation. Eurasian Journal of Biological and Chemical Sciences 7 2 102–110.
IEEE N. Akanıl Bingöl, B. Akın, and N. Erdaş, “The potential use of Epilobium hirsutum L. in phytoremediation of zinc and an efficient method for in vitro propagation”, Eurasian J. Bio. Chem. Sci., vol. 7, no. 2, pp. 102–110, 2024, doi: 10.46239/ejbcs.1548937.
ISNAD Akanıl Bingöl, Nüket et al. “The Potential Use of Epilobium Hirsutum L. In Phytoremediation of Zinc and an Efficient Method for in Vitro Propagation”. Eurasian Journal of Biological and Chemical Sciences 7/2 (December 2024), 102-110. https://doi.org/10.46239/ejbcs.1548937.
JAMA Akanıl Bingöl N, Akın B, Erdaş N. The potential use of Epilobium hirsutum L. in phytoremediation of zinc and an efficient method for in vitro propagation. Eurasian J. Bio. Chem. Sci. 2024;7:102–110.
MLA Akanıl Bingöl, Nüket et al. “The Potential Use of Epilobium Hirsutum L. In Phytoremediation of Zinc and an Efficient Method for in Vitro Propagation”. Eurasian Journal of Biological and Chemical Sciences, vol. 7, no. 2, 2024, pp. 102-10, doi:10.46239/ejbcs.1548937.
Vancouver Akanıl Bingöl N, Akın B, Erdaş N. The potential use of Epilobium hirsutum L. in phytoremediation of zinc and an efficient method for in vitro propagation. Eurasian J. Bio. Chem. Sci. 2024;7(2):102-10.