Review
BibTex RIS Cite

The Future of 3D Printing Technology in the Construction Industry: a Systematic Literature Review

Year 2018, Volume: 2 Issue: 2, 10 - 24, 01.12.2018

Abstract

Technological changes have remarkable effect on today’s business world that triggers industries to reestablish the production systems. 3D printing has evolved with the new technological developments in additive manufacturing over the last three decades. 3D printing technologies enable design optimization and have advantages over conventional production methods. All industries should adopt the new era in order to survive in a rapidly changing competitive environment. The construction industry is also under technological developments’ pressure to change. Therefore, 3D printing technology is under a great attention in construction industry as a new strategic challenge. The construction industry takes 3D printing as an idea of a new building technology. The main aim of this paper is to review the 3D printing technology applications of other industries, to review 3D printing attempts in construction industry and to comment on possible application areas for 3D printing intentions in construction industry. This paper summarizes the literature on 3D-printing applications used in other industries, with a focus on adaption strategies in construction industry. Major literature databases are reviewed about 3D printing researches and the trials of implementations in construction industry. Collected data is interpreted in the construction research jargon. The possible implementation areas in construction are suggested for future developments. The paper results in identifying and classifying the new developments in 3D printing technology in various industries and making projections on the possible adaptation areas in construction industry.

References

  • 1. Sakin M, Kiroglu YC. 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. In: Energy Procedia. ; 2017. doi:10.1016/j.
  • 2. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018. doi:10.1186/s40824-018-0122-1egypro.2017.09.562
  • 3. Tay YWD, Panda B, Paul SC, Noor Mohamed NA, Tan MJ, Leong KF. 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp. 2017. doi:10.1080/17452759.2017.1326724
  • 4. Feng P, Meng X, Chen J-F, Ye L. Mechanical properties of structures 3D printed with cementitious powders. Constr Build Mater. 2015. doi:10.1016/j.conbuildmat.2015.05.132
  • 5. Ma G, Li Z, Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater. 2018. doi:10.1016/j.conbuildmat.2017.12.051
  • 6. National Aeronautics and Space Administration https://www.nasa.gov/directorates/spacetech/centennial_challenges/3DPHab/index.html
  • 7. Xu J, Ding L, Love PED. Digital reproduction of historical building ornamental components: From 3D scanning to 3D printing. Autom Constr. 2017. doi:10.1016/j.autcon.2017.01.010
  • 8. Ju Y, Wang L, Xie H, et al. Visualization of the three-dimensional structure and stress field of aggregated concrete materials through 3D printing and frozen-stress techniques. Constr Build Mater. 2017. doi:10.1016/j.conbuildmat.2017.03.102
  • 9. Yang Z, Yu Y, Wei Y, Huang C. Crushing behavior of a thin-walled circular tube with internal gradient grooves fabricated by SLM 3D printing. Thin-Walled Struct. 2017. doi:10.1016/j.tws.2016.11.004
  • 10. Duballet R, Baverel O, Dirrenberger J. Classification of building systems for concrete 3D printing. Autom Constr. 2017. doi:10.1016/j.autcon.2017.08.018
  • 11. Pierre A, Weger D, Perrot A, Lowke D. Penetration of cement pastes into sand packings during 3D printing: analytical and experimental study. Mater Struct Constr. 2018. doi:10.1617/s11527-018-1148-5
  • 12. Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct Constr. 2016. doi:10.1617/s11527-015-0571-0
  • 13. Khalil N, Aouad G, El Cheikh K, Rémond S. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Constr Build Mater. 2017. doi:10.1016/j.conbuildmat.2017.09.109
  • 14. Zareiyan B, Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr. 2017. doi:10.1016/j.autcon.2017.08.019
  • 15. Kazemian A, Yuan X, Cochran E, Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Constr Build Mater. 2017. doi:10.1016/j.conbuildmat.2017.04.015
  • 16. Kianka KA. 3D Documentation and Printing in Forensics. Forensic Eng 2015 Perform Built Environ. 2015. doi:10.1061/9780784479711.041
  • 17. Dadi GB, Taylor TRB, Goodrum PM, Maloney WF. Performance of 3D computers and 3D printed models as a fundamental means for spatial engineering information visualization. Can J Civ Eng. 2014. doi:10.1139/cjce-2014-0019
  • 18. Nadal A, Pavón J, Liébana O. 3D printing for construction: A procedural and material-based approach. Inf la Constr. 2017. doi:10.3989/ic.16.066
  • 19. Nadal A, Cifre H, Pavón J, Liébana Ó. Material use optimization in 3D printing through a physical simulation algorithm. Autom Constr. 2017. doi:10.1016/j.autcon.2017.01.017
  • 20. Corso J, Garcia-Almirall P, Marco A. High resolution model mesh and 3D printing of the Gaudí’s Porta del Drac. In: IOP Conference Series: Materials Science and Engineering. ; 2017. doi:10.1088/1757-899X/245/5/052091
  • 21. Chung SY, Stephan D, Elrahman MA, Han TS. Effects of anisotropic voids on thermal properties of insulating media investigated using 3D printed samples. Constr Build Mater. 2016. doi:10.1016/j.conbuildmat.2016.02.165
  • 22. Hambach M, Volkmer D. Properties of 3D-printed fiber-reinforced Portland cement paste. Cem Concr Compos. 2017. doi:10.1016/j.cemconcomp.2017.02.001
  • 23. Cremers J, Marx H. 3D-ETFE: Development and evaluation of a new printed and spatially transformed foil improving shading, light quality, thermal comfort and energy demand for membrane cushion structures. In: Energy Procedia. ; 2017. doi:10.1016/j.egypro.2017.07.306
  • 24. Shakor P, Sanjayan J, Nazari A, Nejadi S. Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Constr Build Mater. 2017. doi:10.1016/j.conbuildmat.2017.02.037
  • 25. Fischer T, Herr CM. Parametric Customisation of a 3D Concrete Printed Pavilion. In: Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA 2016. ; 2016.26. Headley D, Almerbati N, Ford P, Taki A. From research to practice : exploring 3D printing in production of architectural Mashrabiya. In: Living and Learning: Research for a Better Built Environment: 49th International Conference of the Architectural Science Association. ; 2015.
  • 27. Weng Y, Li M, Tan MJ, Qian S. Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model. Constr Build Mater. 2018. doi:10.1016/j.conbuildmat.2017.12.112
  • 28. Asprone D, Auricchio F, Menna C, Mercuri V. 3D printing of reinforced concrete elements: Technology and design approach. Constr Build Mater. 2018. doi:10.1016/j.conbuildmat.2018.01.018
  • 29. Hager I, Golonka A, Putanowicz R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? In: Procedia Engineering. ; 2016. doi:10.1016/j.proeng.2016.07.357
  • 30. Musipov HN, Nikitin VS, Bakanovskaya1 LN. Technology for Subsea 3D Printing Structures for Oil and Gas Production in Arctic Region. IOP Conf. Series: Materials Science and Engineering 262 (2017) 012069 doi:10.1088/1757-899X/262/1/012069
  • 31. Bertin S, Friedrich H, Delmas P, Chan E, Gimel’farb G. Assessing surface DEM and roughness with a 3D-printed gravel bed. In: River Flow. ; 2014. doi:10.1201/b17133-47
  • 32. Audette MA, Jovanovic VM, Bilgen O. Creating the fleet maker: 3D printing for the empowerment of Sailors. Naval Engineers Journal. 2017
  • 33. STRANTZA M, VAFADARI R, DE BAERE D, et al. Evaluation of Different Topologies of Integrated Capillaries in Effective Structural Health Monitoring System Produced by 3D Printing. In: Structural Health Monitoring 2015. ; 2015. doi:10.12783/SHM2015/22
  • 34. Dinwiddie RB, Love LJ, Rowe JC. Real- time process Monitoring and Temperature Mapping of a 3D Polymer Printing Process. 2016.
  • 35. Stabile L, Scungio M, Buonanno G, Arpino F, Ficco G. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature. Indoor Air. 2017. doi:10.1111/ina.12310
  • 36. Oesterreich TD, Teuteberg F. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Comput Ind. 2016. doi:10.1016/j.compind.2016.09.006
  • 37. https://3dprintingindustry.com/news/winsun-lease-concrete-3d-printers-saudi-arabia-billion-dollar-constuction-deal-108715/
Year 2018, Volume: 2 Issue: 2, 10 - 24, 01.12.2018

Abstract

References

  • 1. Sakin M, Kiroglu YC. 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. In: Energy Procedia. ; 2017. doi:10.1016/j.
  • 2. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018. doi:10.1186/s40824-018-0122-1egypro.2017.09.562
  • 3. Tay YWD, Panda B, Paul SC, Noor Mohamed NA, Tan MJ, Leong KF. 3D printing trends in building and construction industry: a review. Virtual Phys Prototyp. 2017. doi:10.1080/17452759.2017.1326724
  • 4. Feng P, Meng X, Chen J-F, Ye L. Mechanical properties of structures 3D printed with cementitious powders. Constr Build Mater. 2015. doi:10.1016/j.conbuildmat.2015.05.132
  • 5. Ma G, Li Z, Wang L. Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Constr Build Mater. 2018. doi:10.1016/j.conbuildmat.2017.12.051
  • 6. National Aeronautics and Space Administration https://www.nasa.gov/directorates/spacetech/centennial_challenges/3DPHab/index.html
  • 7. Xu J, Ding L, Love PED. Digital reproduction of historical building ornamental components: From 3D scanning to 3D printing. Autom Constr. 2017. doi:10.1016/j.autcon.2017.01.010
  • 8. Ju Y, Wang L, Xie H, et al. Visualization of the three-dimensional structure and stress field of aggregated concrete materials through 3D printing and frozen-stress techniques. Constr Build Mater. 2017. doi:10.1016/j.conbuildmat.2017.03.102
  • 9. Yang Z, Yu Y, Wei Y, Huang C. Crushing behavior of a thin-walled circular tube with internal gradient grooves fabricated by SLM 3D printing. Thin-Walled Struct. 2017. doi:10.1016/j.tws.2016.11.004
  • 10. Duballet R, Baverel O, Dirrenberger J. Classification of building systems for concrete 3D printing. Autom Constr. 2017. doi:10.1016/j.autcon.2017.08.018
  • 11. Pierre A, Weger D, Perrot A, Lowke D. Penetration of cement pastes into sand packings during 3D printing: analytical and experimental study. Mater Struct Constr. 2018. doi:10.1617/s11527-018-1148-5
  • 12. Perrot A, Rangeard D, Pierre A. Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct Constr. 2016. doi:10.1617/s11527-015-0571-0
  • 13. Khalil N, Aouad G, El Cheikh K, Rémond S. Use of calcium sulfoaluminate cements for setting control of 3D-printing mortars. Constr Build Mater. 2017. doi:10.1016/j.conbuildmat.2017.09.109
  • 14. Zareiyan B, Khoshnevis B. Effects of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete. Autom Constr. 2017. doi:10.1016/j.autcon.2017.08.019
  • 15. Kazemian A, Yuan X, Cochran E, Khoshnevis B. Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Constr Build Mater. 2017. doi:10.1016/j.conbuildmat.2017.04.015
  • 16. Kianka KA. 3D Documentation and Printing in Forensics. Forensic Eng 2015 Perform Built Environ. 2015. doi:10.1061/9780784479711.041
  • 17. Dadi GB, Taylor TRB, Goodrum PM, Maloney WF. Performance of 3D computers and 3D printed models as a fundamental means for spatial engineering information visualization. Can J Civ Eng. 2014. doi:10.1139/cjce-2014-0019
  • 18. Nadal A, Pavón J, Liébana O. 3D printing for construction: A procedural and material-based approach. Inf la Constr. 2017. doi:10.3989/ic.16.066
  • 19. Nadal A, Cifre H, Pavón J, Liébana Ó. Material use optimization in 3D printing through a physical simulation algorithm. Autom Constr. 2017. doi:10.1016/j.autcon.2017.01.017
  • 20. Corso J, Garcia-Almirall P, Marco A. High resolution model mesh and 3D printing of the Gaudí’s Porta del Drac. In: IOP Conference Series: Materials Science and Engineering. ; 2017. doi:10.1088/1757-899X/245/5/052091
  • 21. Chung SY, Stephan D, Elrahman MA, Han TS. Effects of anisotropic voids on thermal properties of insulating media investigated using 3D printed samples. Constr Build Mater. 2016. doi:10.1016/j.conbuildmat.2016.02.165
  • 22. Hambach M, Volkmer D. Properties of 3D-printed fiber-reinforced Portland cement paste. Cem Concr Compos. 2017. doi:10.1016/j.cemconcomp.2017.02.001
  • 23. Cremers J, Marx H. 3D-ETFE: Development and evaluation of a new printed and spatially transformed foil improving shading, light quality, thermal comfort and energy demand for membrane cushion structures. In: Energy Procedia. ; 2017. doi:10.1016/j.egypro.2017.07.306
  • 24. Shakor P, Sanjayan J, Nazari A, Nejadi S. Modified 3D printed powder to cement-based material and mechanical properties of cement scaffold used in 3D printing. Constr Build Mater. 2017. doi:10.1016/j.conbuildmat.2017.02.037
  • 25. Fischer T, Herr CM. Parametric Customisation of a 3D Concrete Printed Pavilion. In: Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference of the Association for Computer-Aided Architectural Design Research in Asia CAADRIA 2016. ; 2016.26. Headley D, Almerbati N, Ford P, Taki A. From research to practice : exploring 3D printing in production of architectural Mashrabiya. In: Living and Learning: Research for a Better Built Environment: 49th International Conference of the Architectural Science Association. ; 2015.
  • 27. Weng Y, Li M, Tan MJ, Qian S. Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model. Constr Build Mater. 2018. doi:10.1016/j.conbuildmat.2017.12.112
  • 28. Asprone D, Auricchio F, Menna C, Mercuri V. 3D printing of reinforced concrete elements: Technology and design approach. Constr Build Mater. 2018. doi:10.1016/j.conbuildmat.2018.01.018
  • 29. Hager I, Golonka A, Putanowicz R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? In: Procedia Engineering. ; 2016. doi:10.1016/j.proeng.2016.07.357
  • 30. Musipov HN, Nikitin VS, Bakanovskaya1 LN. Technology for Subsea 3D Printing Structures for Oil and Gas Production in Arctic Region. IOP Conf. Series: Materials Science and Engineering 262 (2017) 012069 doi:10.1088/1757-899X/262/1/012069
  • 31. Bertin S, Friedrich H, Delmas P, Chan E, Gimel’farb G. Assessing surface DEM and roughness with a 3D-printed gravel bed. In: River Flow. ; 2014. doi:10.1201/b17133-47
  • 32. Audette MA, Jovanovic VM, Bilgen O. Creating the fleet maker: 3D printing for the empowerment of Sailors. Naval Engineers Journal. 2017
  • 33. STRANTZA M, VAFADARI R, DE BAERE D, et al. Evaluation of Different Topologies of Integrated Capillaries in Effective Structural Health Monitoring System Produced by 3D Printing. In: Structural Health Monitoring 2015. ; 2015. doi:10.12783/SHM2015/22
  • 34. Dinwiddie RB, Love LJ, Rowe JC. Real- time process Monitoring and Temperature Mapping of a 3D Polymer Printing Process. 2016.
  • 35. Stabile L, Scungio M, Buonanno G, Arpino F, Ficco G. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature. Indoor Air. 2017. doi:10.1111/ina.12310
  • 36. Oesterreich TD, Teuteberg F. Understanding the implications of digitisation and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry. Comput Ind. 2016. doi:10.1016/j.compind.2016.09.006
  • 37. https://3dprintingindustry.com/news/winsun-lease-concrete-3d-printers-saudi-arabia-billion-dollar-constuction-deal-108715/
There are 36 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Gozde Basak Ozturk

Publication Date December 1, 2018
Published in Issue Year 2018 Volume: 2 Issue: 2

Cite

APA Ozturk, G. B. (2018). The Future of 3D Printing Technology in the Construction Industry: a Systematic Literature Review. Eurasian Journal of Civil Engineering and Architecture, 2(2), 10-24.
AMA Ozturk GB. The Future of 3D Printing Technology in the Construction Industry: a Systematic Literature Review. EJCAR. December 2018;2(2):10-24.
Chicago Ozturk, Gozde Basak. “The Future of 3D Printing Technology in the Construction Industry: A Systematic Literature Review”. Eurasian Journal of Civil Engineering and Architecture 2, no. 2 (December 2018): 10-24.
EndNote Ozturk GB (December 1, 2018) The Future of 3D Printing Technology in the Construction Industry: a Systematic Literature Review. Eurasian Journal of Civil Engineering and Architecture 2 2 10–24.
IEEE G. B. Ozturk, “The Future of 3D Printing Technology in the Construction Industry: a Systematic Literature Review”, EJCAR, vol. 2, no. 2, pp. 10–24, 2018.
ISNAD Ozturk, Gozde Basak. “The Future of 3D Printing Technology in the Construction Industry: A Systematic Literature Review”. Eurasian Journal of Civil Engineering and Architecture 2/2 (December 2018), 10-24.
JAMA Ozturk GB. The Future of 3D Printing Technology in the Construction Industry: a Systematic Literature Review. EJCAR. 2018;2:10–24.
MLA Ozturk, Gozde Basak. “The Future of 3D Printing Technology in the Construction Industry: A Systematic Literature Review”. Eurasian Journal of Civil Engineering and Architecture, vol. 2, no. 2, 2018, pp. 10-24.
Vancouver Ozturk GB. The Future of 3D Printing Technology in the Construction Industry: a Systematic Literature Review. EJCAR. 2018;2(2):10-24.

Creative Commons License

Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)

byncsa.png

Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) License lets others remix, tweak, and build upon the work non-commercially, as long as they credit the author(s) and license their new creations under the identical terms.