Research Article
BibTex RIS Cite

Semaver ile Entegre Termovoltaik Gerilim Kaynağı

Year 2022, , 100 - 105, 31.12.2022
https://doi.org/10.55581/ejeas.1214673

Abstract

Yenilenebilir enerji kaynakları günümüz dünyasında çok önemli hale gelmektedir. Endüstriyel proseslerden kaynaklanan atık ısı dünyada çok yaygındır ve bu tür kaynaklar elektrik enerjisi elde etmek için kullanılabilir. Teknolojik gelişmelere bağlı olarak termovoltaik güç kaynakları ucuzlamakta ve sağladıkları elektrik güç artmaktadır. Günümüzde termovoltaik güç kaynakları için yeni uygulama sahaları aranmaktadır. Çalı çırpı yakan semaverler, kırsal kesimlerde çay gibi sıcak içecekler hazırlamak için oldukça yaygın olarak kullanılmaktadır. Semaverler yalnızca termal güç sağlar. Semaverler sadece suyu kaynatmak için termal güç sağlarlar ve ortama önemli miktarda ısı saldıkları için düşük kaliteli ısı kaynakları olarak kabul edilebilirler. Bir termovoltaik güç kaynağının bir semavere entegre edilmesi, onu bir gerilim kaynağına dönüştürür ve aynı zamanda genel enerji verimliliğini de artırır. Böyle bir sistem, elektrik şebekesine ulaşmanın zor olduğu kırsal alanlarda el feneri ve cep telefonu gibi düşük güçlü yüklere sahip pillerin şarj edilmesini sağlayabilir. Bu çalışmada literatürde ilk kez termovoltaik bir güç kaynağı semaver ile entegre edilmiş ve böyle bir sistemin performansı deneysel olarak incelenmiştir. Sistemin elektrik güç çıkışının düşük olduğu, modülün yarı iletken çiftleri etrafındaki hava konveksiyonunun düşük güç performansına katkıda bulunduğu ve sistemi doğru bir şekilde modellemek için daha karmaşık bir modele ihtiyaç duyulduğu bulunmuştur.

References

  • 1] Ökten, M. (2021). An Investigation on Provincial Production & Consumption of Electric Energy: A Case Analysis for Ankara. Kocaeli Journal of Science and Engineering, 4(1), 59-68.
  • [2] Kumaş, K., & Akyüz, A. Ö. (2020). An overview on the use of nanotechnology in the renewable energy field. International Journal of Energy Applications and Technologies, 7(4), 143-148.
  • [3] Oyedepo, S. O., & Fakeye, B. A. (2021). Waste heat recovery technologies: pathway to sustainable energy development. Journal of Thermal Engineering, 7(1), 324-348.
  • [4] Ying, P., He, R., Mao, J., Zhang, Q., Reith, H., Sui, J., ... & Schierning, G. (2021). Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nature communications, 12(1), 1-6.
  • [5] Rowe, D. M. (2018). Thermoelectrics handbook: macro to nano. CRC press.
  • [6] Ferrari, C., Melino, F., Pinelli, M., & Spina, P. R. (2014). Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences. Applied Energy, 113, 1717-1730.
  • [7] Date, A., Date, A., Dixon, C., & Akbarzadeh, A. (2014). Progress of thermoelectric power generation systems: Prospect for small to medium scale power generation. Renewable and Sustainable Energy Reviews, 33, 371-381.
  • [8] Ferrari, C., Melino, F., Pinelli, M., Spina, P. R., & Venturini, M. (2014). Overview and status of thermophotovoltaic systems. Energy Procedia, 45, 160-169.
  • [9] Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Doraghi, Q., Ahmad, L., Norman, L., ... & Dai, S. (2021). Thermoelectric generator (TEG) technologies and applications. International Journal of Thermofluids, 9, 100063.
  • [10] Ahıska, R., Mamur, H., & Uliş, M. (2011). Termoelektrik Modülün Jeneratör Olarak Modellenmesi ve Deneysel Çalışması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 26(4), 889-896.
  • [11] Punin, W., Maneewan, S., & Punlek, C. (2019). Heat transfer characteristics of a thermoelectric power generator system for low-grade waste heat recovery from the sugar industry. Heat and Mass Transfer, 55(4), 979-991.
  • [12] Risseh, A. E., Nee, H. P., & Goupil, C. (2018). Electrical power conditioning system for thermoelectric waste heat recovery in commercial vehicles. IEEE transactions on transportation electrification, 4(2), 548-562.
  • [13] Dimaggio, E., Rossella, F., & Pennelli, G. (2019). Management of the output electrical power in thermoelectric generators. Electronics, 8(12), 1514.
  • [14] Yildirim, O., Karaca, O.B. (2022). The consumption of tea and coffee in Turkey and emerging new trends. J. Ethn. Food 9, 8. https://doi.org/10.1186/s42779-022-00124-9
  • [15] Sadeghi-Bazargani, H., Mohammadi, R., Arshi, S., Svanstrom, L., & Ekman, R. (2008). The risks of using samovars as the main tea-preparing facility in some Eastern countries. Burns, 34(8), 1149-1152.
  • [16] Öğüt, Ş. T. (2009). Material culture of tea in Turkey: Transformations of design through tradition, modernity and identity. The Design Journal, 12(3), 339-363.
  • [17] Ebong, D. N., Kaze, C. V. A., & Ngouateu, A. P. (2022). Design and implementation of solar powered mini refrigerator using thermoelectric cooler module. In E3S Web of Conferences (Vol. 354, p. 01007). EDP Sciences.
  • [18] Dalmış, İ.S., Kayişoğlu, B., Tuğ, S., Aktaş, T., Durgut, M.R. & Daşçı Durgut, F. (2018). A Prototype Downdraft Gasifier Design with Mechanical Stirrer for Rice Straw Gasification and Comparative Performance Evaluation for Two Different Airflow Paths, Journal of Agricultural Sciences. 24 (3), 329-339, https://doi:10.15832/ankutbd.456649
  • [19] Akyol, U., Akal, D., & Durak, A. (2021). Estimation of power output and thermodynamic analysis of standard and finned photovoltaic panels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-20.

A Thermovoltaic Voltage Source Integrated with a Samovar

Year 2022, , 100 - 105, 31.12.2022
https://doi.org/10.55581/ejeas.1214673

Abstract

Renewable energy sources are becoming very important in today’s World. Waste heat from industrial processes is very common in the world and such sources can be used to obtain electric power. Thermovoltaic power sources are getting cheaper and their electrical power output is getting higher due to technological developments. They have been used with waste heat sources such as hot water flowing out of factories and to obtain electrical sources. Nowadays, new application areas of thermovoltaic power sources are being looked for. Samovars, which burn brushwood, are pretty commonly used in rural areas to prepare warm drinks such as tea. Samovars only supply thermal power to boil water and they can be regarded as low-grade heat sources since they release a considerable amount of heat to the ambiance. Integrating a thermovoltaic power source onto a samovar would turn it into a voltage source and also increase its overall energy efficiency. Such a system may allow charging batteries of low power loads such as flashlights and cell phones in rural areas where it is hard to reach the electrical grid. In this study, a thermovoltaic power source is integrated with a samovar for the first time in the literature and the performance of such a system is experimentally inspected. It has been found that the system’s electrical power output is low, the air convection around the semiconductor pairs of the module may be contributing to its low power performance, and a more complex system model is needed to model it accurately.

References

  • 1] Ökten, M. (2021). An Investigation on Provincial Production & Consumption of Electric Energy: A Case Analysis for Ankara. Kocaeli Journal of Science and Engineering, 4(1), 59-68.
  • [2] Kumaş, K., & Akyüz, A. Ö. (2020). An overview on the use of nanotechnology in the renewable energy field. International Journal of Energy Applications and Technologies, 7(4), 143-148.
  • [3] Oyedepo, S. O., & Fakeye, B. A. (2021). Waste heat recovery technologies: pathway to sustainable energy development. Journal of Thermal Engineering, 7(1), 324-348.
  • [4] Ying, P., He, R., Mao, J., Zhang, Q., Reith, H., Sui, J., ... & Schierning, G. (2021). Towards tellurium-free thermoelectric modules for power generation from low-grade heat. Nature communications, 12(1), 1-6.
  • [5] Rowe, D. M. (2018). Thermoelectrics handbook: macro to nano. CRC press.
  • [6] Ferrari, C., Melino, F., Pinelli, M., & Spina, P. R. (2014). Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences. Applied Energy, 113, 1717-1730.
  • [7] Date, A., Date, A., Dixon, C., & Akbarzadeh, A. (2014). Progress of thermoelectric power generation systems: Prospect for small to medium scale power generation. Renewable and Sustainable Energy Reviews, 33, 371-381.
  • [8] Ferrari, C., Melino, F., Pinelli, M., Spina, P. R., & Venturini, M. (2014). Overview and status of thermophotovoltaic systems. Energy Procedia, 45, 160-169.
  • [9] Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Doraghi, Q., Ahmad, L., Norman, L., ... & Dai, S. (2021). Thermoelectric generator (TEG) technologies and applications. International Journal of Thermofluids, 9, 100063.
  • [10] Ahıska, R., Mamur, H., & Uliş, M. (2011). Termoelektrik Modülün Jeneratör Olarak Modellenmesi ve Deneysel Çalışması. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 26(4), 889-896.
  • [11] Punin, W., Maneewan, S., & Punlek, C. (2019). Heat transfer characteristics of a thermoelectric power generator system for low-grade waste heat recovery from the sugar industry. Heat and Mass Transfer, 55(4), 979-991.
  • [12] Risseh, A. E., Nee, H. P., & Goupil, C. (2018). Electrical power conditioning system for thermoelectric waste heat recovery in commercial vehicles. IEEE transactions on transportation electrification, 4(2), 548-562.
  • [13] Dimaggio, E., Rossella, F., & Pennelli, G. (2019). Management of the output electrical power in thermoelectric generators. Electronics, 8(12), 1514.
  • [14] Yildirim, O., Karaca, O.B. (2022). The consumption of tea and coffee in Turkey and emerging new trends. J. Ethn. Food 9, 8. https://doi.org/10.1186/s42779-022-00124-9
  • [15] Sadeghi-Bazargani, H., Mohammadi, R., Arshi, S., Svanstrom, L., & Ekman, R. (2008). The risks of using samovars as the main tea-preparing facility in some Eastern countries. Burns, 34(8), 1149-1152.
  • [16] Öğüt, Ş. T. (2009). Material culture of tea in Turkey: Transformations of design through tradition, modernity and identity. The Design Journal, 12(3), 339-363.
  • [17] Ebong, D. N., Kaze, C. V. A., & Ngouateu, A. P. (2022). Design and implementation of solar powered mini refrigerator using thermoelectric cooler module. In E3S Web of Conferences (Vol. 354, p. 01007). EDP Sciences.
  • [18] Dalmış, İ.S., Kayişoğlu, B., Tuğ, S., Aktaş, T., Durgut, M.R. & Daşçı Durgut, F. (2018). A Prototype Downdraft Gasifier Design with Mechanical Stirrer for Rice Straw Gasification and Comparative Performance Evaluation for Two Different Airflow Paths, Journal of Agricultural Sciences. 24 (3), 329-339, https://doi:10.15832/ankutbd.456649
  • [19] Akyol, U., Akal, D., & Durak, A. (2021). Estimation of power output and thermodynamic analysis of standard and finned photovoltaic panels. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-20.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Erdal Kılıç 0000-0001-8212-5533

Reşat Mutlu 0000-0003-0030-7136

Ertuğrul Karakulak 0000-0001-5937-2114

Publication Date December 31, 2022
Submission Date December 5, 2022
Published in Issue Year 2022