Fractional order circuit elements have been started to model different types of circuit elements, circuits and systems in the last decades. There are different types of fractional derivatives. Recently, a new simple fractional derivative method called“conformable fractional derivative” has been brought out. It is simpler than other fractional derivatives and has already been used to
model supercapacitors. It is important to model the new circuit elements and analyze the circuits containing them so that they can be exploited at their full potential. Two capacitor problem is a famous problem in physics and circuit theory. In this study, a new two capacitor problem a circuit which consists of an LTI capacitor and a supercapacitor which has been modelled with conformable fractional derivative have been examined. The differential equations which describe the circuit have been derived. The circuit current is found explicitly however the voltages of the capacitors do not have analytical solutions. That’s why they are solved numerically.
Circuit Analysis Circuit Modelling Circuit Theory Energy Analysis Fractional Order Derivatives
Kesirli mertebeden devre elemanları, son yıllarda farklı tipteki devre elemanlarını, devreleri ve sistemleri modellemeye başlanmıştır. Farklı kesirli türev türleri vardır. Son zamanlarda, "uyumlu kesirli türev” adı verilen yeni bir basit kesirli türev yöntemi ortaya çıkmıştır. Diğer kesirli türevlerden daha basittir ve süperkapasitörleri modellemek için zaten kullanılmıştır. Yeni devre
elemanlarını modellemek ve onları içeren devreleri analiz etmek, böylece tam potansiyellerinde kullanılabilmeleri için önemlidir. İki kapasitör problemi, fizikte ve devre teorisinde ünlü bir problemdir. Bu çalışmada, bir LTI kondansatör ve bir süperkapasitörden oluşan ve uyumlu fraksiyonel türev ile modellenen yeni bir iki kondansatör problemi incelenmiştir. Devreyi tanımlayan diferansiyel denklemler türetilmiştir. Devre akımı açıkça bulunur, ancak kapasitörlerin voltajlarının analitik çözümleri yoktur. Bu yüzden sayısal olarak çözülürler.
Devre Analizi Devre Modelleme Devre Teorisi Enerji Analizi Kesirli Mertebeden Türev Kesirli Mertebeden Türev
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Research Articles |
Authors | |
Publication Date | July 31, 2021 |
Submission Date | November 21, 2020 |
Published in Issue | Year 2021 |