Review
BibTex RIS Cite

Oküler Doku Yapıştırıcıları

Year 2020, Volume: 3 Issue: 1, 19 - 36, 30.07.2020

Abstract

Kornea yaraları cerrahi, enfeksiyonlardan ve travmatik yaralanmalardan kaynaklanmaktadır. Bu yaralar geleneksel olarak naylon sütürler kullanılarak onarılmaktadır. Kornea bölgesindeki yaralanmanın şekline ve derecesine bağlı olarak, korneanın y apısal bütün lüğünü geri kazanması için genellikle birden fazla sütüre ihtiyaç vardır. Doku yapıştırıcıları, oftalmik cerrahide sütürlerin yerine kullanılabilmektedir. Doku yapıştırıcıları, sütür yardımcı maddeleri ve yaralı dokuların sızdırmazlığı için alternatif olar ak geliştirilmiştir. Doku yapıştırıcıları, çapraz bağlandıktan sonra bir dokuya yapışabilen ve dünya çapında hemen hemen tüm ameliyatlarda önemli bir element olan polimer temelli hidrojel sistemleridir. Uygulama koşullarına göre dahili ve harici olar ak sın ıflandırılırlar. Harici doku yapıştırıcları genellikle yara kapatma ve epidermal aşılama gibi topikal uygulamalarda uygulanır . Dahili doku yapıştırıcları ise dokular, organlar ve kronik organ sızıntısı onarımı ve kanama komplikasyonlarının azaltılması gibi vücut sıvıları dahil olmak üzere iç ortama doğrudan temas ile intrakorporal koşullarda kullanılmaktadır. Bu derleme çalışmasında, o küler uygulamalara yönelik literatürde geliştirilen doku yapıştırıcları, ticari uygulamaları ve uygulama teknikleri üzerine odaklanılmıştır. Kornea insizyonları için kullanılan mevcut doku yapıştırıcıları tartışılmış, komplikasyonları, güvenlik profilleri ve etkinli kleri, sentez yöntemleri ve içerikleri birlikte değerlendirilmiştir. 

References

  • [1] Koivusalo, L., Karvinen, J., Sorsa, E., Jönkkäri, I., Väliaho, J., Kallio, P. (2018). Hydrazone crosslinked hyaluronan-based hydrogels for therapeutic delivery of adipose stem cells to treat corneal defects. Materials Science and Engineering: C, 85, 68-78. [2] Miki, D., Dastgheib, K., Kim, T., Pfister-Serres, A., Smeds, K.A., Inoue, M. (2002). A photopolymerized sealant for corneal lacerations. Cornea, 21(4), 393-399. [3] Park, H.C., Champakalakshmi, R., Panengad, P.P., Raghunath, M., Mehta, J.S. Tissue adhesives in ocular surgery. Expert review of ophthalmology, 6(6), 631-655. [4] Bhatia, S.S. (2006). Ocular surface sealants and adhesives. The ocular surface, 4(3), 146-154. [5] Santos, E. (2012). Clinical Anatomy and Physiology of the Visual System 3rd edition. Remington 2012. [6] Farrell, T.A. (1998). The Eye Book: A Complete Guide to Eye Disorders and Health. Archives of Ophthalmology, 116(12), 1700. [7] Ahearne, M., Fernández‐Pérez, J., Masterton, S., Madden, P.W., Bhattacharjee, P. (2020). Designing Scaffolds for Corneal Regeneration. Advanced Functional Materials. [8] Nirankari, V.S., Karesh, J.W., Richards, R.D. (1983) Complications of exposed monofilament sutures. American journal of ophthalmology, 95(4), 515-519. [9] Varley, G.A., & Meisler, D.M. (1991). Complications of penetrating keratoplasty: graft infections. Journal of Refractive Surgery, 7(1), 62-66. [10] Rathi, S., Saka, R., Domb, A.J., Khan, W. (2019). Protein‐based bioadhesives and bioglues. Polymers for Advanced Technologies, 30(2), 217-234. [11] Tavafoghi, M., Sheikhi, A., Tutar, R., Jahangiry, J., Baidya, A., Haghniaz, R., Khademhosseini A. (2020). Engineering Tough, Injectable, Naturally Derived, Bioadhesive Composite Hydrogels. Advanced Healthcare Materials, 1901722. [12] Awaja, F., Gilbert, M., Kelly, G., Fox, B., Pigram, P.J. (2009). Adhesion of polymers. Progress in polymer science, 34(9), 948-968. [13] Peppas, N.A., & Buri, P.A. (1985). Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. Journal of Controlled Release, 2, 257-275. [14] Ebnesajjad, S. (2010). Handbook of adhesives and surface preparation: technology, applications and manufacturing. William Andrew, 2010. [15] Mehdizadeh, M., Yang, J. (2013). Design strategies and applications of tissue bioadhesives. Macromolecular bioscience, 13(3), 271-288. [16] Kinloch, AJ. (2012). Adhesion and adhesives: science and technology. Springer Science & Business Media, 2012. [17] Chen, T., Janjua, R., McDermott, M.K., Bernstein, S.L., Steidl, S.M., Payne, G.F. (2006). Gelatin‐based biomimetic tissue adhesive. Potential for retinal reattachment. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77(2), 416-422. [18] Foster, L.J.R., & Karsten, E. A. (2012). Chitosan based, laser activated thin film surgical adhesive,'SurgiLux': preparation and demonstration. JoVE (Journal of Visualized Experiments), (68), e3527. [19] Applegate, M.B., Partlow, B.P., Coburn, J., Marelli, B., Pirie, C., Pineda, R. (2016). Photocrosslinking of silk fibroin using riboflavin for ocular prostheses. Advanced materials, 28(12), 2417-2420. [20] Radosevich, M., Goubran, H., Burnouf, T. (1997). Fibrin sealant: scientific rationale, production methods, properties, and current clinical use. Vox sanguinis, 72(3), 133-143. [21] Duarte, A., Coelho, J., Bordado, J., Cidade, M., Gil, M. (2012). Surgical adhesives: Systematic review of the main types and development forecast. Progress in Polymer Science, 37(8), 1031-1050. [22] Kamimura, T., & Kimura, M. (2014). Meniscal repair of degenerative horizontal cleavage tears using fibrin clots: clinical and arthroscopic outcomes in 10 cases. Orthopaedic journal of sports medicine, 2(11), 2325967114555678. [23] Shulman, I.A. (1999). Transfusion Therapy: Clinical Principles and Practice. Paul D. Mintz, ed., Bethesda, MD: AABB Press 1999, 481 pp. ISBN 1-56395-099-5. [24] Bochyńska, A., Hannink, G., Grijpma, D., Buma, P. (2016). Tissue adhesives for meniscus tear repair: an overview of current advances and prospects for future clinical solutions. Journal of Materials Science: Materials in Medicine, 27(5), 85. [25] Harris, D.M., Siedentop, K.H., Ham, K.R., Sanchez, B. (1987). Autologous fibrin tissue adhesive biodegration and systemic effects. The Laryngoscope, 97(10), 1141-1144. [26] Sierra, D.H., Feldman, D.S., Saltz, R., Huang, S. (1992). A method to determine shear adhesive strength of fibrin sealants. Journal of Applied Biomaterials, 3(2), 147-151. [27] Trujillo-de Santiago, G., Sharifi, R., Yue, K., Sani, E.S., Kashaf, S.S., Alvarez, M.M., Annabi, N. (2019). Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials, 197, 345-367. [28] Lagoutte, F., Gauthier, L., Comte, P. (1989). A fibrin sealant for perforated and preperforated corneal ulcers. British journal of ophthalmology, 73(9), 757-761. [29] Khadem, J.J., & Dana, M.R. (2000). Photodynamic biologic tissue glue in perforating rabbit corneal wounds. Journal of clinical laser medicine & surgery, 18(3), 125-129. [30] Bahar, I., Weinberger, D., Lusky, M., Avisar, R., Robinson, A., Gaton, D. (2006). Fibrin glue as a suture substitute: histological evaluation of trabeculectomy in rabbit eyes. Current eye research, 31(1), 313-6. [31] Sharma, A., Kaur, R., Kumar, S., Gupta, P., Pandav, S., Patnaik, B. (2003). Fibrin glue versus N-butyl-2-cyanoacrylate in corneal perforations. Ophthalmology, 110(2), 291-298. [32] Rama, P., Bonini, S., Lambiase, A., Golisano, O., Paterna, P., De Luca, M. (2001). Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency1. Transplantation, 72(9), 1478-1485. [33] de Paiva, A.R.Q., de Azevedo Fraga, L.A., Torres, V.L.L. (2016). Surgical Reconstruction of Ocular Surface Tumors Using Fibrin Sealant Tissue Adhesive. Ocular oncology and pathology, 2(4), 207-211. [34] Bungum, M., Humaidan, P., Bungum, L. (2002). Recombinant human albumin as protein source in culture media used for IVF: a prospective randomized study. Reproductive biomedicine online, 4(3), 233-6. [35] Wester, H.J., Hamacher, K., Stöcklin, G. (1996). A comparative study of NCA fluorine-18 labeling of proteins via acylation and photochemical conjugation. Nuclear medicine and biology, 23(3), 365-372. [36] Anraku, M., Chuang, V.T.G., Maruyama, T., Otagiri, M. (2013). Redox properties of serum albumin. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(12), 5465-5472. [37] Oettl, K., Birner-Gruenberger, R., Spindelboeck, W., Stueger, H.P., Dorn, L., Stadlbauer, V. (2013). Oxidative albumin damage in chronic liver failure: relation to albumin binding capacity, liver dysfunction and survival. Journal of Hepatology, 59(5), 978-983. [38] Khadem, J., Martino, M., Anatelli, F., Dana, M.R., Hamblin, M.R. (2004). Healing of perforating rat corneal incisions closed with photodynamic laser‐activated tissue glue. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 35(4), 304-311. [39] Krieg, T., Hein, R., Hatamochi, A., Aumailley, M. (1988). Molecular and clinical aspects of connective tissue. European journal of clinical investigation, 18(2),105-23. [40] Meek, K.M., & Boote, C. (2004). The organization of collagen in the corneal stroma. Experimental eye research, 78(3), 503-512. [41] Bella, J. (2016). Collagen structure: new tricks from a very old dog. Biochemical Journal, 473(8), 1001-1025. [42] Zhang, J., Sisley, A.M,, Anderson, A.J., Taberner, A.J., McGhee, C.N., Patel, D.V. (2016). Characterization of a novel collagen scaffold for corneal tissue engineering. Tissue Engineering Part C: Methods, 22(2), 165-172. [43] Kim, E.Y., Tripathy, N., Cho, S.A., Lee, D., Khang, G. (2017). Collagen type I–PLGA film as an efficient substratum for corneal endothelial cells regeneration. Journal of Tissue Engineering and Regenerative Medicine, 11(9), 2471-2478. [44] Noguera, G., Lee, W.S., Castro-Combs, J., Chuck, R.S., Soltz, B., Soltz, R. (2007). Novel laser-activated solder for sealing corneal wounds. Investigative ophthalmology & visual science, 48(3), 1038-1042. [45] Small, I.V.W., Heredia, N.J., Celliers, P.M., Da Silva, L.B., Eder, D.C., Glinsky, M.E. (1996). Laser tissue welding mediated with a protein solder. Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, International Society for Optics and Photonics. [46] Miyashita, H., Shimmura, S., Kobayashi, H., Taguchi, T., Asano‐Kato, N., Uchino, Y., et all. (2006). Collagen‐immobilized poly (vinyl alcohol) as an artificial cornea scaffold that supports a stratified corneal epithelium. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 76(1), 56-63. [47] Liu, W., Merrett, K., Griffith, M., Fagerholm, P., Dravida, S., Heyne, B., et all. (2008). Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials, 29(9), 1147-1158. [48] Rafat, M., Li, F., Fagerholm, P., Lagali, N.S., Watsky, M.A., Munger, R., et all. (2008). PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials, 29(29), 3960-3972. [49] Liu, W., Deng, C., McLaughlin, C.R., Fagerholm, P., Lagali, N.S., Heyne, B., et all. (2009). Collagen–phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials, 30(8), 1551-1559. [50] Deng, C., Li, F., Hackett, J.M., Chaudhry, S.H., Toll, F.N., Toye, B., et all. (2010). Collagen and glycopolymer based hydrogel for potential corneal application. Acta biomaterialia, 6(1), 187-194. [51] Reece, T.B., Maxey, T.S., Kron, I.L. (2001). A prospectus on tissue adhesives. The American journal of surgery, 182(2), S40-S44. [52] Foster, L.J.R. (2015). Bioadhesives as surgical sealants: A Review. Bioadhesion Biomim Nat Appl, 203. [53] Yamamoto, S., Hirata, A., Ishikawa, S., Ohta, K., Nakamura, K-i., Okinami, S. (2013). Feasibility of using gelatin-microbial transglutaminase complex to repair experimental retinal detachment in rabbit eyes. Graefe's Archive for Clinical and Experimental Ophthalmology, 251(4), 1109-1114. [54] Noshadi, I., Hong, S., Sullivan, K.E., Sani, E.S., Portillo-Lara, R., Tamayol, A., et all. (2017). In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomaterials science, 5(10), 2093-20105. [55] Sani, E.S., Kheirkhah, A., Rana, D., Sun, Z., Foulsham, W., Sheikhi, A., et all. (2019). Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Science advances, 5(3), eaav1281. [56] Basu, A., Kunduru, K.R., Abtew, E., Domb, A.J. (2015). Polysaccharide-based conjugates for biomedical applications. Bioconjugate chemistry, 26(8), 1396-1412. [57] Yu, C., Gao, C., Lü, S., Chen, C., Yang, J., Di, X., et all. (2014). Facile preparation of pH-sensitive micelles self-assembled from amphiphilic chondroitin sulfate-histamine conjugate for triggered intracellular drug release. Colloids and Surfaces B: Biointerfaces, 115, 331-339. [58] Bishnoi, M., Jain, A., Hurkat, P., Jain, S.K. (2014). Aceclofenac-loaded chondroitin sulfate conjugated SLNs for effective management of osteoarthritis. Journal of drug targeting, 22(9), 805-812. [59] Ge, L., & Chen, S. (2020). Recent Advances in Tissue Adhesives for Clinical Medicine. Polymers, 12(4), 939. [60] Wang, D.A., Varghese, S., Sharma, B., Strehin, I,, Fermanian, S., Gorham, J., et all. (2007). Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nature materials, 6(5), 385-392. [61] Li, Q., Williams, C.G., Sun, D.D., Wang, J., Leong, K., Elisseeff, J.H. (2004). Photocrosslinkable polysaccharides based on chondroitin sulfate. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 68(1), 28-33. [62] Reyes, J.M., Herretes, S., Pirouzmanesh, A., Wang, D-A., Elisseeff, J.H., Jun, A., et all. (2005). A modified chondroitin sulfate aldehyde adhesive for sealing corneal incisions. Investigative ophthalmology & visual science, 46(4), 1247-1250. [63] Khalikova, E., Susi, P., Korpel,a T. (2005). Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiol Mol Biol Rev, 69(2), 306-325. [64] Bashari, M., Lagnika, C., Ocen, D., Chen, H., Wang, J., Xu, X., et all. (2013). Separation and characterization of dextran extracted from deteriorated sugarcane. International journal of biological macromolecules, 59, 246-254. [65] Mehvar, R. (2000). Dextrans for targeted and sustained delivery of therapeutic and imaging agents. Journal of controlled release, 69(1), 1-25. [66] Hiemstra, C., van der Aa, L.J., Zhong, Z., Dijkstra, P.J., Feijen, J. (2007). Novel in situ forming, degradable dextran hydrogels by Michael addition chemistry: synthesis, rheology, and degradation. Macromolecules, 40(4), 1165-1173. [67] Jin, R., Hiemstra, C., Zhong, Z., Feijen, J. (2007). Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials, 28(18), 2791-2800. [68] Bhatia, S.K., Arthur, S.D., Chenault, H.K., Kodokian, G.K. (2007). Interactions of polysaccharide-based tissue adhesives with clinically relevant fibroblast and macrophage cell lines. Biotechnology letters, 29(11), 1645-1649. [69] Araki, M., Tao, H., Sato, T., Nakajima, N., Sugai, H., Hyon, S-H., et all. (2007). Creation of a uniform pleural defect model for the study of lung sealants. The Journal of thoracic and cardiovascular surgery, 134(1), 145-151. [70] Tan, H., Chu, C.R., Payne, K.A., Marra, K.G. (2009). Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30(13), 2499-2506. [71] Yang, G., Espandar, L., Mamalis, N., Prestwich, G.D. (2010). A cross‐linked hyaluronan gel accelerates healing of corneal epithelial abrasion and alkali burn injuries in rabbits. Veterinary ophthalmology, 13(3), 144-150. [72] Polack, F.M. (1982). Penetrating keratoplasty using MK stored corneas and Na Hyaluronate (Healon). Transactions of the American Ophthalmological Society, 80, 248. [73] Tsubota, K., & Yamada, M. (1992). Tear evaporation from the ocular surface. Investigative ophthalmology & visual science, 33(10), 2942-2950. [74] Coover, H. (1959). Chemistry and performance of cyanoacrylate adhesives. J Soc Plast Eng, 15, 413-417. [75] Oelker, A.M., & Grinstaff, M.W. (2008). Ophthalmic adhesives: a materials chemistry perspective. Journal of Materials Chemistry, 18(22), 2521-2536. [76] Vote, B.J., & Elder, M.J. (2000). Cyanoacrylate glue for corneal perforations: a description of a surgical technique and a review of the literature. Clinical & experimental ophthalmology, 28(6), 437-442. [77] Webster, R.G., Slansky, H.H., Refojo, M.F., Boruchoff, S.A., Dohlman, C.H. (1968). The use of adhesive for the closure of corneal perforations: report of two cases. Archives of Ophthalmology, 80(6), 705-709. [78] Bloomfield, S., Barnert, A.H., Kanter, P.D. (1963). The Use of Eastman 910 Monomer as an Adhesive in Ocular Surgery: I. Biologic Effects on Ocular Tissues. American journal of ophthalmology, 55(4), 742-748. [79] Chivers, R., & Wolowacz, R. The strength of adhesive-bonded tissue joints. International journal of adhesion and adhesives, 17(2), 127-132. [80] Leonard, F., Kulkarni, R., Brandes, G., Nelson, J., Cameron, J.J. (1966). Synthesis and degradation of poly (alkyl α‐cyanoacrylates). Journal of applied polymer science, 10(2), 259-272. [81] Refojo, M.F., & Dohlman, C.H. (1969). The tensile strength of adhesive joints between eye tissues and alloplastic materials. American journal of ophthalmology, 68(2), 248-255. [82] Chen, W.L., Lin, C.T,, Hsieh, C.Y., Tu, I.H., Chen, W.Y., Hu, F.R. (2007). Comparison of the bacteriostatic effects, corneal cytotoxicity, and the ability to seal corneal incisions among three different tissue adhesives. Cornea, 26(10), 1228-1234. [83] Romero, I.L., Malta, J.B., Silva, C.B., Mimica, L.M., Soong, K.H., Hida, R.Y. (2009). Antibacterial properties of cyanoacrylate tissue adhesive: Does the polymerization reaction play a role? Indian journal of ophthalmology, 57(5), 341. [84] Rana, M., & Savant, V. (2013). A brief review of techniques used to seal corneal perforation using cyanoacrylate tissue adhesive. Contact Lens and Anterior Eye, 36(4), 156-158. [85] Bona, M.D., & Arthur, B.W. (2014). Cyanoacrylate tissue adhesive on a polyglactin scaffold in strabismus surgery: a laboratory study. Journal of American Association for Pediatric Ophthalmology and Strabismus, 18(1), 21-25. [86] Leahey, A.B., Gottsch, J.D., Stark, W.J. (1993). Clinical experience with N-butyl cyanoacryiate (Nexacryl) tissue adhesive. Ophthalmology, 100(2), 173-180. [87] Gupta, B.K., Edward, D., Duffy, MT. (2001). 2-Octyl cyanoacrylate tissue adhesive and muscle attachment to porous anophthalmic orbital implants. Ophthalmic Plastic & Reconstructive Surgery, 17(4), 264-269. [88] Lee, Y.J., Son, H.S., Jung, G.B., Kim, J.H., Choi, S., Lee, G.J., et all. (2015). Enhanced biocompatibility and wound healing properties of biodegradable polymer-modified allyl 2-cyanoacrylate tissue adhesive. Materials Science and Engineering: C, 51, 43-50. [89] Kaufman, H.E., Insler, M.S., Ibrahim-Elzembely, H.A., Kaufman, S.C. (2003). Human fibrin tissue adhesive for sutureless lamellar keratoplasty and scleral patch adhesion: a pilot study. Ophthalmology, 110(11), 2168-2172. [90] Ciapetti, G., Stea, S., Cenni, E., Sudanese, A., Marraro, D., Toni. A., et all. (1994). Cytotoxicity testing of cyanoacrylates using direct contact assay on cell cultures. Biomaterials, 15(1), 63-67. [91] Tseng, Y.C., Tabata, Y., Hyon, S.H., Ikada, Y. (1990). In vitro toxicity test of 2‐cyanoacrylate polymers by cell culture method. Journal of biomedical materials research, 24(10), 1355-1367. [92] Leggat, P.A., Smith, D.R., Kedjarune, U. (2007). Surgical applications of cyanoacrylate adhesives: a review of toxicity. ANZ journal of surgery, 77(4), 209-213. [93] Mizrahi, B., Stefanescu, C.F., Yang, C., Lawlor, M.W., Ko, D., Langer, R., et all. (2011). Elasticity and safety of alkoxyethyl cyanoacrylate tissue adhesives. Acta biomaterialia, 7(8), 3150-3157. [94] Caliceti, P., & Veronese, F.M. (2003). Pharmacokinetic and biodistribution properties of poly (ethylene glycol)–protein conjugates. Advanced drug delivery reviews, 55(10), 1261-77. [95] Sanborn, T.J., Messersmith, P.B., Barron, A.E (2002). In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII. Biomaterials, 23(13), 2703-2710. [96] Bahney, C., Lujan, T., Hsu, C., Bottlang, M., West, J., Johnstone, B. (2011). Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. European cells & materials, 22, 43. [97] Tanaka, K., Takamoto, S., Ohtsuka, T., Kotsuka, Y., Kawauchi, M. (1999). Application of AdvaSeal for acute aortic dissection: experimental study. The Annals of thoracic surgery, 68(4), 1308-1312. [98] Bryant, S.J., Nuttelman, C.R., Anseth, K.S. (2000). Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. Journal of Biomaterials Science, Polymer Edition, 11(5), 439-457. [99] Lauto, A., Mawad, D., Foster, L.J.R. (2008). Adhesive biomaterials for tissue reconstruction. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(4), 464-472. [100] Hoshi, S., Okamoto, F., Arai, M., Hirose, T., Sugiura, Y., Kaji, Y., et all. (2015). In Vivo and In Vitro Feasibility Studies of Intraocular Use of Polyethylene Glycol–Based Synthetic Sealant to Close Retinal Breaks in Porcine and Rabbit Eyes. Investigative ophthalmology & visual science, 56(8), 4705-4711. [101] Yanez‐Soto, B., Liliensiek, S., Murphy, C.J., Nealey, P. (2013). Biochemically and topographically engineered poly (ethylene glycol) diacrylate hydrogels with biomimetic characteristics as substrates for human corneal epithelial cells. Journal of biomedical materials research Part A, 101(4), 1184-1194. [102] Mazzoccoli, J.P., Feke, D.L., Baskaran, H., Pintauro, P.N. (2010). Mechanical and cell viability properties of crosslinked low‐and high‐molecular weight poly (ethylene glycol) diacrylate blends. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 93(2), 558-566. [103] Hartmann, L., Watanabe, K., Zheng, L.L., Kim, C.Y., Beck, S.E., Huie, P., et all. (2011). Toward the development of an artificial cornea: improved stability of interpenetrating polymer networks. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 98(1), 8-17. [104] Duncan, R., & Izzo, L. (2005). Dendrimer biocompatibility and toxicity. Advanced drug delivery reviews, 57(15), 2215-2237. [105] Grayson, S.M., & Frechet, J.M. (2001). Convergent dendrons and dendrimers: from synthesis to applications. Chemical Reviews, 101(12), 3819-3868. [106] Valencia-Gallegos, J.A., Álvarez, M.M., Martínez-Merino, V.J. (2015). High loaded dendrimers with free peripheral groups. Tetrahedron Letters, 56(48), 6803-6806. [107] Grinstaff, M.W. (2008). Dendritic macromers for hydrogel formation: Tailored materials for ophthalmic, orthopedic, and biotech applications. Journal of Polymer Science Part A: Polymer Chemistry, 46(2), 383-400. [108] Carnahan, M.A., Middleton, C., Kim, J., Kim, T., Grinstaff, M.W. (2002). Hybrid dendritic− linear polyester− ethers for in situ photopolymerization. Journal of the American Chemical Society, 124(19), 5291-5293. [109] Newkome, G.R., Moorefield, C.N., Vögtle, F. (2008). Dendritic molecules: concepts, syntheses, perspectives, John Wiley & Sons. [110] Percec, V., Cho, W-D., Ungar, G., Yeardley, D.J. (2001). Synthesis and structural analysis of two constitutional isomeric libraries of AB2-based monodendrons and supramolecular dendrimers. Journal of the American Chemical Society, 123(7), 1302-1315. [111] Fréchet, J.M. (2002). Dendrimers and supramolecular chemistry. Proceedings of the National Academy of Sciences, 99(8), 4782-4787. [112] André, S., Cejas Ortega, P.J., Perez, M.A., Roy, R., Gabius, H-J. (1999). Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties. Glycobiology, 9(11), 1253-1261. [113] Fischer, M., & Vögtle, F. (1999). Dendrimers: from design to application—a progress report. Angewandte Chemie International Edition, 38(7), 884-905. [114] Duan, X., & Sheardown, H. (2006). Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials, 27(26), 4608-4617. [115] Grinstaff, MW. (2007). Designing hydrogel adhesives for corneal wound repair. Biomaterials, 28(35), 5205-5214. [116] Wathier, M., Jung, P.J., Carnahan, M.A., Kim, T., Grinstaff, M.W. (2004). Dendritic macromers as in situ polymerizing biomaterials for securing cataract incisions. Journal of the American Chemical Society, 126(40), 12744-12745. [117] Cerdá, D.G., Ballester, A.M., Aliena-Valero, A., Carabén-Redaño, A., Lloris, J.M. (2015). Use of cyanoacrylate adhesives in general surgery. Surgery today, 45(8), 939-956. [118] Schonauer, F., Pereira, J., La, I.R., Harris, J., Cullen, K. (2001). Use of Indermil tissue adhesive for closure of superficial skin lacerations in children. Minerva chirurgica, 56(4), 427-429. [119] Sharma, A., Mohan, K., Sharma, R., Nirankari, V.S. (2013). Scleral patch graft augmented cyanoacrylate tissue adhesive for treatment of moderate-sized noninfectious corneal perforations (3.5–4.5 mm). Cornea, 32(10), 1326-1330. [120] Strehin, I., Ambrose, W.M., Schein, O., Salahuddin, A., Elisseeff, J. (2009). Synthesis and characterization of a chondroitin sulfate-polyethylene glycol corneal adhesive. Journal of Cataract & Refractive Surgery, 35(3), 567-576. [121] Paterson, S.M., Liu, L., Brook, M.A.,, Sheardown H. (2015). Poly (ethylene glycol)‐or silicone‐modified hyaluronan for contact lens wetting agent applications. Journal of Biomedical Materials Research Part A, 103(8), 2602-2610. [122] Hirst, L.W. (2013). Pterygium removal using a polyethylene glycol hydrogel adherent ocular bandage. Cornea, 32(6), 803-805. [123] Uy, H.S., & Kenyon, K.R. (2013). Surgical outcomes after application of a liquid adhesive ocular bandage to clear corneal incisions during cataract surgery. Journal of Cataract & Refractive Surgery, 39(11), 1668-1674. [124] Masket, S., Hovanesian, J.A., Levenson, J., Tyson, F., Flynn, W., Endl, M., et all. (2014). Hydrogel sealant versus sutures to prevent fluid egress after cataract surgery. Journal of Cataract & Refractive Surgery, 40(12), 2057-2066. [125] Calladine, D., Ward, M., Packard, R. (2010). Adherent ocular bandage for clear corneal incisions used in cataract surgery. Journal of Cataract & Refractive Surgery, 36(11), 1839-1848. [126] Chao, H.H., & Torchiana, D.F. (2003). BioGlue: albumin/glutaraldehyde sealant in cardiac surgery. Journal of cardiac surgery, 18(6), 500-503. [127] Fürst, W., & Banerjee, A. (2005). Release of glutaraldehyde from an albumin-glutaraldehyde tissue adhesive causes significant in vitro and in vivo toxicity. The Annals of thoracic surgery, 79(5), 1522-1528. [128] Kobayashi, K. (2006). Summary of recombinant human serum albumin development. Biologicals, 34(1), 55-59. [129] Cai, M., Zhang, J., Guan, L., Zhao, M. (2015). Novel implantable composite biomaterial by fibrin glue and amniotic membrane for ocular surface reconstruction. Journal of Materials Science: Materials in Medicine, 26(3), 149. [130] Lima, L.H., Morales, Y., Cabral, T. (2016). Ocular biocompatibility of poly-N-isopropylacrylamide (pNIPAM). Journal of ophthalmology. [131] Kanellopoulos, A., & Asimellis, G. (2015). Ocular Tissue Adhesive Application in DSAEK: a Comparative Study. [132] Bayat, N., Zhang, Y., Falabella, P., Menefee, R., Whalen, J.J., Humayun, M.S., et all. (2017). A reversible thermoresponsive sealant for temporary closure of ocular trauma. Science translational medicine, 9(419), eaan3879.

Ocular Tissue Adhesives

Year 2020, Volume: 3 Issue: 1, 19 - 36, 30.07.2020

Abstract

Corneal wounds are caused by surgical infections and traumatic injuries. Traditionally, the nylon sutures are used to repair these corneal wounds. In order for the cornea to regain its structural integrity, more than one suture is usually required, depending on the shape and degree of the injury in the corneal wound. In ophthalmic surgery, tissue adhesives can be used instead of sutur es. Tissue adhesives have been developed as an alterna tive for suturing aids and for sealing injured tissues. Polymer based hydrogel systems, which can adhere to a tissue after crosslinking and are an important element in almost all surgeries worldwide, are applied as tissue adhesives. They are classified as internal and external according to the application conditions. External tissue adhesives are generally applied in topical applications such as wound closure and epidermal vaccination. On the other hand, internal tissue adhesives are used in intracorporeal conditions with direct contact to the internal environment including tissues, organs and body fluids such as chronic organ leak repair and reduction of bleeding complications. In this review study, tissue adhesives deve loped in the literature for ocular ap plications, commercial applications and application techniques of these adhesives are focused. Existing
tissue adhesives used for corneal incisions are discussed and complications, safety profiles and efficacy, synthesis methods and contents of these adhes ives are evaluated together.

References

  • [1] Koivusalo, L., Karvinen, J., Sorsa, E., Jönkkäri, I., Väliaho, J., Kallio, P. (2018). Hydrazone crosslinked hyaluronan-based hydrogels for therapeutic delivery of adipose stem cells to treat corneal defects. Materials Science and Engineering: C, 85, 68-78. [2] Miki, D., Dastgheib, K., Kim, T., Pfister-Serres, A., Smeds, K.A., Inoue, M. (2002). A photopolymerized sealant for corneal lacerations. Cornea, 21(4), 393-399. [3] Park, H.C., Champakalakshmi, R., Panengad, P.P., Raghunath, M., Mehta, J.S. Tissue adhesives in ocular surgery. Expert review of ophthalmology, 6(6), 631-655. [4] Bhatia, S.S. (2006). Ocular surface sealants and adhesives. The ocular surface, 4(3), 146-154. [5] Santos, E. (2012). Clinical Anatomy and Physiology of the Visual System 3rd edition. Remington 2012. [6] Farrell, T.A. (1998). The Eye Book: A Complete Guide to Eye Disorders and Health. Archives of Ophthalmology, 116(12), 1700. [7] Ahearne, M., Fernández‐Pérez, J., Masterton, S., Madden, P.W., Bhattacharjee, P. (2020). Designing Scaffolds for Corneal Regeneration. Advanced Functional Materials. [8] Nirankari, V.S., Karesh, J.W., Richards, R.D. (1983) Complications of exposed monofilament sutures. American journal of ophthalmology, 95(4), 515-519. [9] Varley, G.A., & Meisler, D.M. (1991). Complications of penetrating keratoplasty: graft infections. Journal of Refractive Surgery, 7(1), 62-66. [10] Rathi, S., Saka, R., Domb, A.J., Khan, W. (2019). Protein‐based bioadhesives and bioglues. Polymers for Advanced Technologies, 30(2), 217-234. [11] Tavafoghi, M., Sheikhi, A., Tutar, R., Jahangiry, J., Baidya, A., Haghniaz, R., Khademhosseini A. (2020). Engineering Tough, Injectable, Naturally Derived, Bioadhesive Composite Hydrogels. Advanced Healthcare Materials, 1901722. [12] Awaja, F., Gilbert, M., Kelly, G., Fox, B., Pigram, P.J. (2009). Adhesion of polymers. Progress in polymer science, 34(9), 948-968. [13] Peppas, N.A., & Buri, P.A. (1985). Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. Journal of Controlled Release, 2, 257-275. [14] Ebnesajjad, S. (2010). Handbook of adhesives and surface preparation: technology, applications and manufacturing. William Andrew, 2010. [15] Mehdizadeh, M., Yang, J. (2013). Design strategies and applications of tissue bioadhesives. Macromolecular bioscience, 13(3), 271-288. [16] Kinloch, AJ. (2012). Adhesion and adhesives: science and technology. Springer Science & Business Media, 2012. [17] Chen, T., Janjua, R., McDermott, M.K., Bernstein, S.L., Steidl, S.M., Payne, G.F. (2006). Gelatin‐based biomimetic tissue adhesive. Potential for retinal reattachment. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 77(2), 416-422. [18] Foster, L.J.R., & Karsten, E. A. (2012). Chitosan based, laser activated thin film surgical adhesive,'SurgiLux': preparation and demonstration. JoVE (Journal of Visualized Experiments), (68), e3527. [19] Applegate, M.B., Partlow, B.P., Coburn, J., Marelli, B., Pirie, C., Pineda, R. (2016). Photocrosslinking of silk fibroin using riboflavin for ocular prostheses. Advanced materials, 28(12), 2417-2420. [20] Radosevich, M., Goubran, H., Burnouf, T. (1997). Fibrin sealant: scientific rationale, production methods, properties, and current clinical use. Vox sanguinis, 72(3), 133-143. [21] Duarte, A., Coelho, J., Bordado, J., Cidade, M., Gil, M. (2012). Surgical adhesives: Systematic review of the main types and development forecast. Progress in Polymer Science, 37(8), 1031-1050. [22] Kamimura, T., & Kimura, M. (2014). Meniscal repair of degenerative horizontal cleavage tears using fibrin clots: clinical and arthroscopic outcomes in 10 cases. Orthopaedic journal of sports medicine, 2(11), 2325967114555678. [23] Shulman, I.A. (1999). Transfusion Therapy: Clinical Principles and Practice. Paul D. Mintz, ed., Bethesda, MD: AABB Press 1999, 481 pp. ISBN 1-56395-099-5. [24] Bochyńska, A., Hannink, G., Grijpma, D., Buma, P. (2016). Tissue adhesives for meniscus tear repair: an overview of current advances and prospects for future clinical solutions. Journal of Materials Science: Materials in Medicine, 27(5), 85. [25] Harris, D.M., Siedentop, K.H., Ham, K.R., Sanchez, B. (1987). Autologous fibrin tissue adhesive biodegration and systemic effects. The Laryngoscope, 97(10), 1141-1144. [26] Sierra, D.H., Feldman, D.S., Saltz, R., Huang, S. (1992). A method to determine shear adhesive strength of fibrin sealants. Journal of Applied Biomaterials, 3(2), 147-151. [27] Trujillo-de Santiago, G., Sharifi, R., Yue, K., Sani, E.S., Kashaf, S.S., Alvarez, M.M., Annabi, N. (2019). Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials, 197, 345-367. [28] Lagoutte, F., Gauthier, L., Comte, P. (1989). A fibrin sealant for perforated and preperforated corneal ulcers. British journal of ophthalmology, 73(9), 757-761. [29] Khadem, J.J., & Dana, M.R. (2000). Photodynamic biologic tissue glue in perforating rabbit corneal wounds. Journal of clinical laser medicine & surgery, 18(3), 125-129. [30] Bahar, I., Weinberger, D., Lusky, M., Avisar, R., Robinson, A., Gaton, D. (2006). Fibrin glue as a suture substitute: histological evaluation of trabeculectomy in rabbit eyes. Current eye research, 31(1), 313-6. [31] Sharma, A., Kaur, R., Kumar, S., Gupta, P., Pandav, S., Patnaik, B. (2003). Fibrin glue versus N-butyl-2-cyanoacrylate in corneal perforations. Ophthalmology, 110(2), 291-298. [32] Rama, P., Bonini, S., Lambiase, A., Golisano, O., Paterna, P., De Luca, M. (2001). Autologous fibrin-cultured limbal stem cells permanently restore the corneal surface of patients with total limbal stem cell deficiency1. Transplantation, 72(9), 1478-1485. [33] de Paiva, A.R.Q., de Azevedo Fraga, L.A., Torres, V.L.L. (2016). Surgical Reconstruction of Ocular Surface Tumors Using Fibrin Sealant Tissue Adhesive. Ocular oncology and pathology, 2(4), 207-211. [34] Bungum, M., Humaidan, P., Bungum, L. (2002). Recombinant human albumin as protein source in culture media used for IVF: a prospective randomized study. Reproductive biomedicine online, 4(3), 233-6. [35] Wester, H.J., Hamacher, K., Stöcklin, G. (1996). A comparative study of NCA fluorine-18 labeling of proteins via acylation and photochemical conjugation. Nuclear medicine and biology, 23(3), 365-372. [36] Anraku, M., Chuang, V.T.G., Maruyama, T., Otagiri, M. (2013). Redox properties of serum albumin. Biochimica et Biophysica Acta (BBA)-General Subjects, 1830(12), 5465-5472. [37] Oettl, K., Birner-Gruenberger, R., Spindelboeck, W., Stueger, H.P., Dorn, L., Stadlbauer, V. (2013). Oxidative albumin damage in chronic liver failure: relation to albumin binding capacity, liver dysfunction and survival. Journal of Hepatology, 59(5), 978-983. [38] Khadem, J., Martino, M., Anatelli, F., Dana, M.R., Hamblin, M.R. (2004). Healing of perforating rat corneal incisions closed with photodynamic laser‐activated tissue glue. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 35(4), 304-311. [39] Krieg, T., Hein, R., Hatamochi, A., Aumailley, M. (1988). Molecular and clinical aspects of connective tissue. European journal of clinical investigation, 18(2),105-23. [40] Meek, K.M., & Boote, C. (2004). The organization of collagen in the corneal stroma. Experimental eye research, 78(3), 503-512. [41] Bella, J. (2016). Collagen structure: new tricks from a very old dog. Biochemical Journal, 473(8), 1001-1025. [42] Zhang, J., Sisley, A.M,, Anderson, A.J., Taberner, A.J., McGhee, C.N., Patel, D.V. (2016). Characterization of a novel collagen scaffold for corneal tissue engineering. Tissue Engineering Part C: Methods, 22(2), 165-172. [43] Kim, E.Y., Tripathy, N., Cho, S.A., Lee, D., Khang, G. (2017). Collagen type I–PLGA film as an efficient substratum for corneal endothelial cells regeneration. Journal of Tissue Engineering and Regenerative Medicine, 11(9), 2471-2478. [44] Noguera, G., Lee, W.S., Castro-Combs, J., Chuck, R.S., Soltz, B., Soltz, R. (2007). Novel laser-activated solder for sealing corneal wounds. Investigative ophthalmology & visual science, 48(3), 1038-1042. [45] Small, I.V.W., Heredia, N.J., Celliers, P.M., Da Silva, L.B., Eder, D.C., Glinsky, M.E. (1996). Laser tissue welding mediated with a protein solder. Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VI, International Society for Optics and Photonics. [46] Miyashita, H., Shimmura, S., Kobayashi, H., Taguchi, T., Asano‐Kato, N., Uchino, Y., et all. (2006). Collagen‐immobilized poly (vinyl alcohol) as an artificial cornea scaffold that supports a stratified corneal epithelium. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 76(1), 56-63. [47] Liu, W., Merrett, K., Griffith, M., Fagerholm, P., Dravida, S., Heyne, B., et all. (2008). Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials, 29(9), 1147-1158. [48] Rafat, M., Li, F., Fagerholm, P., Lagali, N.S., Watsky, M.A., Munger, R., et all. (2008). PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials, 29(29), 3960-3972. [49] Liu, W., Deng, C., McLaughlin, C.R., Fagerholm, P., Lagali, N.S., Heyne, B., et all. (2009). Collagen–phosphorylcholine interpenetrating network hydrogels as corneal substitutes. Biomaterials, 30(8), 1551-1559. [50] Deng, C., Li, F., Hackett, J.M., Chaudhry, S.H., Toll, F.N., Toye, B., et all. (2010). Collagen and glycopolymer based hydrogel for potential corneal application. Acta biomaterialia, 6(1), 187-194. [51] Reece, T.B., Maxey, T.S., Kron, I.L. (2001). A prospectus on tissue adhesives. The American journal of surgery, 182(2), S40-S44. [52] Foster, L.J.R. (2015). Bioadhesives as surgical sealants: A Review. Bioadhesion Biomim Nat Appl, 203. [53] Yamamoto, S., Hirata, A., Ishikawa, S., Ohta, K., Nakamura, K-i., Okinami, S. (2013). Feasibility of using gelatin-microbial transglutaminase complex to repair experimental retinal detachment in rabbit eyes. Graefe's Archive for Clinical and Experimental Ophthalmology, 251(4), 1109-1114. [54] Noshadi, I., Hong, S., Sullivan, K.E., Sani, E.S., Portillo-Lara, R., Tamayol, A., et all. (2017). In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomaterials science, 5(10), 2093-20105. [55] Sani, E.S., Kheirkhah, A., Rana, D., Sun, Z., Foulsham, W., Sheikhi, A., et all. (2019). Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Science advances, 5(3), eaav1281. [56] Basu, A., Kunduru, K.R., Abtew, E., Domb, A.J. (2015). Polysaccharide-based conjugates for biomedical applications. Bioconjugate chemistry, 26(8), 1396-1412. [57] Yu, C., Gao, C., Lü, S., Chen, C., Yang, J., Di, X., et all. (2014). Facile preparation of pH-sensitive micelles self-assembled from amphiphilic chondroitin sulfate-histamine conjugate for triggered intracellular drug release. Colloids and Surfaces B: Biointerfaces, 115, 331-339. [58] Bishnoi, M., Jain, A., Hurkat, P., Jain, S.K. (2014). Aceclofenac-loaded chondroitin sulfate conjugated SLNs for effective management of osteoarthritis. Journal of drug targeting, 22(9), 805-812. [59] Ge, L., & Chen, S. (2020). Recent Advances in Tissue Adhesives for Clinical Medicine. Polymers, 12(4), 939. [60] Wang, D.A., Varghese, S., Sharma, B., Strehin, I,, Fermanian, S., Gorham, J., et all. (2007). Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nature materials, 6(5), 385-392. [61] Li, Q., Williams, C.G., Sun, D.D., Wang, J., Leong, K., Elisseeff, J.H. (2004). Photocrosslinkable polysaccharides based on chondroitin sulfate. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 68(1), 28-33. [62] Reyes, J.M., Herretes, S., Pirouzmanesh, A., Wang, D-A., Elisseeff, J.H., Jun, A., et all. (2005). A modified chondroitin sulfate aldehyde adhesive for sealing corneal incisions. Investigative ophthalmology & visual science, 46(4), 1247-1250. [63] Khalikova, E., Susi, P., Korpel,a T. (2005). Microbial dextran-hydrolyzing enzymes: fundamentals and applications. Microbiol Mol Biol Rev, 69(2), 306-325. [64] Bashari, M., Lagnika, C., Ocen, D., Chen, H., Wang, J., Xu, X., et all. (2013). Separation and characterization of dextran extracted from deteriorated sugarcane. International journal of biological macromolecules, 59, 246-254. [65] Mehvar, R. (2000). Dextrans for targeted and sustained delivery of therapeutic and imaging agents. Journal of controlled release, 69(1), 1-25. [66] Hiemstra, C., van der Aa, L.J., Zhong, Z., Dijkstra, P.J., Feijen, J. (2007). Novel in situ forming, degradable dextran hydrogels by Michael addition chemistry: synthesis, rheology, and degradation. Macromolecules, 40(4), 1165-1173. [67] Jin, R., Hiemstra, C., Zhong, Z., Feijen, J. (2007). Enzyme-mediated fast in situ formation of hydrogels from dextran–tyramine conjugates. Biomaterials, 28(18), 2791-2800. [68] Bhatia, S.K., Arthur, S.D., Chenault, H.K., Kodokian, G.K. (2007). Interactions of polysaccharide-based tissue adhesives with clinically relevant fibroblast and macrophage cell lines. Biotechnology letters, 29(11), 1645-1649. [69] Araki, M., Tao, H., Sato, T., Nakajima, N., Sugai, H., Hyon, S-H., et all. (2007). Creation of a uniform pleural defect model for the study of lung sealants. The Journal of thoracic and cardiovascular surgery, 134(1), 145-151. [70] Tan, H., Chu, C.R., Payne, K.A., Marra, K.G. (2009). Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 30(13), 2499-2506. [71] Yang, G., Espandar, L., Mamalis, N., Prestwich, G.D. (2010). A cross‐linked hyaluronan gel accelerates healing of corneal epithelial abrasion and alkali burn injuries in rabbits. Veterinary ophthalmology, 13(3), 144-150. [72] Polack, F.M. (1982). Penetrating keratoplasty using MK stored corneas and Na Hyaluronate (Healon). Transactions of the American Ophthalmological Society, 80, 248. [73] Tsubota, K., & Yamada, M. (1992). Tear evaporation from the ocular surface. Investigative ophthalmology & visual science, 33(10), 2942-2950. [74] Coover, H. (1959). Chemistry and performance of cyanoacrylate adhesives. J Soc Plast Eng, 15, 413-417. [75] Oelker, A.M., & Grinstaff, M.W. (2008). Ophthalmic adhesives: a materials chemistry perspective. Journal of Materials Chemistry, 18(22), 2521-2536. [76] Vote, B.J., & Elder, M.J. (2000). Cyanoacrylate glue for corneal perforations: a description of a surgical technique and a review of the literature. Clinical & experimental ophthalmology, 28(6), 437-442. [77] Webster, R.G., Slansky, H.H., Refojo, M.F., Boruchoff, S.A., Dohlman, C.H. (1968). The use of adhesive for the closure of corneal perforations: report of two cases. Archives of Ophthalmology, 80(6), 705-709. [78] Bloomfield, S., Barnert, A.H., Kanter, P.D. (1963). The Use of Eastman 910 Monomer as an Adhesive in Ocular Surgery: I. Biologic Effects on Ocular Tissues. American journal of ophthalmology, 55(4), 742-748. [79] Chivers, R., & Wolowacz, R. The strength of adhesive-bonded tissue joints. International journal of adhesion and adhesives, 17(2), 127-132. [80] Leonard, F., Kulkarni, R., Brandes, G., Nelson, J., Cameron, J.J. (1966). Synthesis and degradation of poly (alkyl α‐cyanoacrylates). Journal of applied polymer science, 10(2), 259-272. [81] Refojo, M.F., & Dohlman, C.H. (1969). The tensile strength of adhesive joints between eye tissues and alloplastic materials. American journal of ophthalmology, 68(2), 248-255. [82] Chen, W.L., Lin, C.T,, Hsieh, C.Y., Tu, I.H., Chen, W.Y., Hu, F.R. (2007). Comparison of the bacteriostatic effects, corneal cytotoxicity, and the ability to seal corneal incisions among three different tissue adhesives. Cornea, 26(10), 1228-1234. [83] Romero, I.L., Malta, J.B., Silva, C.B., Mimica, L.M., Soong, K.H., Hida, R.Y. (2009). Antibacterial properties of cyanoacrylate tissue adhesive: Does the polymerization reaction play a role? Indian journal of ophthalmology, 57(5), 341. [84] Rana, M., & Savant, V. (2013). A brief review of techniques used to seal corneal perforation using cyanoacrylate tissue adhesive. Contact Lens and Anterior Eye, 36(4), 156-158. [85] Bona, M.D., & Arthur, B.W. (2014). Cyanoacrylate tissue adhesive on a polyglactin scaffold in strabismus surgery: a laboratory study. Journal of American Association for Pediatric Ophthalmology and Strabismus, 18(1), 21-25. [86] Leahey, A.B., Gottsch, J.D., Stark, W.J. (1993). Clinical experience with N-butyl cyanoacryiate (Nexacryl) tissue adhesive. Ophthalmology, 100(2), 173-180. [87] Gupta, B.K., Edward, D., Duffy, MT. (2001). 2-Octyl cyanoacrylate tissue adhesive and muscle attachment to porous anophthalmic orbital implants. Ophthalmic Plastic & Reconstructive Surgery, 17(4), 264-269. [88] Lee, Y.J., Son, H.S., Jung, G.B., Kim, J.H., Choi, S., Lee, G.J., et all. (2015). Enhanced biocompatibility and wound healing properties of biodegradable polymer-modified allyl 2-cyanoacrylate tissue adhesive. Materials Science and Engineering: C, 51, 43-50. [89] Kaufman, H.E., Insler, M.S., Ibrahim-Elzembely, H.A., Kaufman, S.C. (2003). Human fibrin tissue adhesive for sutureless lamellar keratoplasty and scleral patch adhesion: a pilot study. Ophthalmology, 110(11), 2168-2172. [90] Ciapetti, G., Stea, S., Cenni, E., Sudanese, A., Marraro, D., Toni. A., et all. (1994). Cytotoxicity testing of cyanoacrylates using direct contact assay on cell cultures. Biomaterials, 15(1), 63-67. [91] Tseng, Y.C., Tabata, Y., Hyon, S.H., Ikada, Y. (1990). In vitro toxicity test of 2‐cyanoacrylate polymers by cell culture method. Journal of biomedical materials research, 24(10), 1355-1367. [92] Leggat, P.A., Smith, D.R., Kedjarune, U. (2007). Surgical applications of cyanoacrylate adhesives: a review of toxicity. ANZ journal of surgery, 77(4), 209-213. [93] Mizrahi, B., Stefanescu, C.F., Yang, C., Lawlor, M.W., Ko, D., Langer, R., et all. (2011). Elasticity and safety of alkoxyethyl cyanoacrylate tissue adhesives. Acta biomaterialia, 7(8), 3150-3157. [94] Caliceti, P., & Veronese, F.M. (2003). Pharmacokinetic and biodistribution properties of poly (ethylene glycol)–protein conjugates. Advanced drug delivery reviews, 55(10), 1261-77. [95] Sanborn, T.J., Messersmith, P.B., Barron, A.E (2002). In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII. Biomaterials, 23(13), 2703-2710. [96] Bahney, C., Lujan, T., Hsu, C., Bottlang, M., West, J., Johnstone, B. (2011). Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogels. European cells & materials, 22, 43. [97] Tanaka, K., Takamoto, S., Ohtsuka, T., Kotsuka, Y., Kawauchi, M. (1999). Application of AdvaSeal for acute aortic dissection: experimental study. The Annals of thoracic surgery, 68(4), 1308-1312. [98] Bryant, S.J., Nuttelman, C.R., Anseth, K.S. (2000). Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. Journal of Biomaterials Science, Polymer Edition, 11(5), 439-457. [99] Lauto, A., Mawad, D., Foster, L.J.R. (2008). Adhesive biomaterials for tissue reconstruction. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 83(4), 464-472. [100] Hoshi, S., Okamoto, F., Arai, M., Hirose, T., Sugiura, Y., Kaji, Y., et all. (2015). In Vivo and In Vitro Feasibility Studies of Intraocular Use of Polyethylene Glycol–Based Synthetic Sealant to Close Retinal Breaks in Porcine and Rabbit Eyes. Investigative ophthalmology & visual science, 56(8), 4705-4711. [101] Yanez‐Soto, B., Liliensiek, S., Murphy, C.J., Nealey, P. (2013). Biochemically and topographically engineered poly (ethylene glycol) diacrylate hydrogels with biomimetic characteristics as substrates for human corneal epithelial cells. Journal of biomedical materials research Part A, 101(4), 1184-1194. [102] Mazzoccoli, J.P., Feke, D.L., Baskaran, H., Pintauro, P.N. (2010). Mechanical and cell viability properties of crosslinked low‐and high‐molecular weight poly (ethylene glycol) diacrylate blends. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 93(2), 558-566. [103] Hartmann, L., Watanabe, K., Zheng, L.L., Kim, C.Y., Beck, S.E., Huie, P., et all. (2011). Toward the development of an artificial cornea: improved stability of interpenetrating polymer networks. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 98(1), 8-17. [104] Duncan, R., & Izzo, L. (2005). Dendrimer biocompatibility and toxicity. Advanced drug delivery reviews, 57(15), 2215-2237. [105] Grayson, S.M., & Frechet, J.M. (2001). Convergent dendrons and dendrimers: from synthesis to applications. Chemical Reviews, 101(12), 3819-3868. [106] Valencia-Gallegos, J.A., Álvarez, M.M., Martínez-Merino, V.J. (2015). High loaded dendrimers with free peripheral groups. Tetrahedron Letters, 56(48), 6803-6806. [107] Grinstaff, M.W. (2008). Dendritic macromers for hydrogel formation: Tailored materials for ophthalmic, orthopedic, and biotech applications. Journal of Polymer Science Part A: Polymer Chemistry, 46(2), 383-400. [108] Carnahan, M.A., Middleton, C., Kim, J., Kim, T., Grinstaff, M.W. (2002). Hybrid dendritic− linear polyester− ethers for in situ photopolymerization. Journal of the American Chemical Society, 124(19), 5291-5293. [109] Newkome, G.R., Moorefield, C.N., Vögtle, F. (2008). Dendritic molecules: concepts, syntheses, perspectives, John Wiley & Sons. [110] Percec, V., Cho, W-D., Ungar, G., Yeardley, D.J. (2001). Synthesis and structural analysis of two constitutional isomeric libraries of AB2-based monodendrons and supramolecular dendrimers. Journal of the American Chemical Society, 123(7), 1302-1315. [111] Fréchet, J.M. (2002). Dendrimers and supramolecular chemistry. Proceedings of the National Academy of Sciences, 99(8), 4782-4787. [112] André, S., Cejas Ortega, P.J., Perez, M.A., Roy, R., Gabius, H-J. (1999). Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties. Glycobiology, 9(11), 1253-1261. [113] Fischer, M., & Vögtle, F. (1999). Dendrimers: from design to application—a progress report. Angewandte Chemie International Edition, 38(7), 884-905. [114] Duan, X., & Sheardown, H. (2006). Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials, 27(26), 4608-4617. [115] Grinstaff, MW. (2007). Designing hydrogel adhesives for corneal wound repair. Biomaterials, 28(35), 5205-5214. [116] Wathier, M., Jung, P.J., Carnahan, M.A., Kim, T., Grinstaff, M.W. (2004). Dendritic macromers as in situ polymerizing biomaterials for securing cataract incisions. Journal of the American Chemical Society, 126(40), 12744-12745. [117] Cerdá, D.G., Ballester, A.M., Aliena-Valero, A., Carabén-Redaño, A., Lloris, J.M. (2015). Use of cyanoacrylate adhesives in general surgery. Surgery today, 45(8), 939-956. [118] Schonauer, F., Pereira, J., La, I.R., Harris, J., Cullen, K. (2001). Use of Indermil tissue adhesive for closure of superficial skin lacerations in children. Minerva chirurgica, 56(4), 427-429. [119] Sharma, A., Mohan, K., Sharma, R., Nirankari, V.S. (2013). Scleral patch graft augmented cyanoacrylate tissue adhesive for treatment of moderate-sized noninfectious corneal perforations (3.5–4.5 mm). Cornea, 32(10), 1326-1330. [120] Strehin, I., Ambrose, W.M., Schein, O., Salahuddin, A., Elisseeff, J. (2009). Synthesis and characterization of a chondroitin sulfate-polyethylene glycol corneal adhesive. Journal of Cataract & Refractive Surgery, 35(3), 567-576. [121] Paterson, S.M., Liu, L., Brook, M.A.,, Sheardown H. (2015). Poly (ethylene glycol)‐or silicone‐modified hyaluronan for contact lens wetting agent applications. Journal of Biomedical Materials Research Part A, 103(8), 2602-2610. [122] Hirst, L.W. (2013). Pterygium removal using a polyethylene glycol hydrogel adherent ocular bandage. Cornea, 32(6), 803-805. [123] Uy, H.S., & Kenyon, K.R. (2013). Surgical outcomes after application of a liquid adhesive ocular bandage to clear corneal incisions during cataract surgery. Journal of Cataract & Refractive Surgery, 39(11), 1668-1674. [124] Masket, S., Hovanesian, J.A., Levenson, J., Tyson, F., Flynn, W., Endl, M., et all. (2014). Hydrogel sealant versus sutures to prevent fluid egress after cataract surgery. Journal of Cataract & Refractive Surgery, 40(12), 2057-2066. [125] Calladine, D., Ward, M., Packard, R. (2010). Adherent ocular bandage for clear corneal incisions used in cataract surgery. Journal of Cataract & Refractive Surgery, 36(11), 1839-1848. [126] Chao, H.H., & Torchiana, D.F. (2003). BioGlue: albumin/glutaraldehyde sealant in cardiac surgery. Journal of cardiac surgery, 18(6), 500-503. [127] Fürst, W., & Banerjee, A. (2005). Release of glutaraldehyde from an albumin-glutaraldehyde tissue adhesive causes significant in vitro and in vivo toxicity. The Annals of thoracic surgery, 79(5), 1522-1528. [128] Kobayashi, K. (2006). Summary of recombinant human serum albumin development. Biologicals, 34(1), 55-59. [129] Cai, M., Zhang, J., Guan, L., Zhao, M. (2015). Novel implantable composite biomaterial by fibrin glue and amniotic membrane for ocular surface reconstruction. Journal of Materials Science: Materials in Medicine, 26(3), 149. [130] Lima, L.H., Morales, Y., Cabral, T. (2016). Ocular biocompatibility of poly-N-isopropylacrylamide (pNIPAM). Journal of ophthalmology. [131] Kanellopoulos, A., & Asimellis, G. (2015). Ocular Tissue Adhesive Application in DSAEK: a Comparative Study. [132] Bayat, N., Zhang, Y., Falabella, P., Menefee, R., Whalen, J.J., Humayun, M.S., et all. (2017). A reversible thermoresponsive sealant for temporary closure of ocular trauma. Science translational medicine, 9(419), eaan3879.
There are 1 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Reviews
Authors

Rumeysa Tutar This is me 0000-0002-4743-424X

Ayça Bal Öztürk 0000-0002-6502-528X

Publication Date July 30, 2020
Submission Date May 28, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1