Research Article
BibTex RIS Cite

Analyzing Factors Influencing Vocational High School IT Program Students' University Choices Using Association Rule Mining

Year 2024, Volume: 7 Issue: 2, 135 - 142, 31.12.2024
https://doi.org/10.55581/ejeas.1606948

Abstract

The complex masses of data that have emerged with increasing data generation and storage have increased the need for computers and software with more advanced computing capabilities to process this data. However, extracting meaningful information from complex data remains a challenge. Data mining, particularly in collaboration with artificial intelligence algorithms, works to uncover intricate relationships within data. One of the complex problems to be solved is guiding high school students toward university departments that will optimize their performance. This study investigates the factors influencing the university department preferences of vocational high school information technology students and graduates in the field of computer science. Unlike previous research, has typically focused on academic performance and current educational contexts, this study explores the connections among students' past educational experiences, preferences, habits, and hobbies, tracing these back to primary and secondary education. As a case study, the research centers on the computer engineering department, revealing that students who wish to study or are studying computer engineering show a greater interest in activities related to design and game development, have a preference for the C# programming language, and exhibit a particular interest in chemistry, while demonstrating less affinity for street games. These findings underscore the relationship between students' higher education preferences in computer science and their prior learning experiences and social preferences, offering deeper insights into the decision-making process.

Thanks

This study is part of the Master of Science thesis by Esma Türk, conducted in the Department of Computer Engineering within the Institute of Natural and Applied Sciences at Tekirdağ Namık Kemal University, under the supervision of thesis advisor Erkan Özhan. The authors would like to thank the Institute for its support and all survey participants for their valuable contributions.

References

  • Alangari, N., & Alturki, R. (2020). Association rule mining in higher education: A case study of computer science students. In R. Mehmood, S. See, I. Katib, & I. Chlamtac (Eds.), Smart Infrastructure and Applications, EAI/Springer Innovations in Communication and Computing (pp. 311–328). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-13705-2_13.
  • Baker, R. S. J. D. (2010). Mining data for student models. In R. Nkambou, J. Bourdeau, & R. Mizoguchi (Eds.), Advances in Intelligent Tutoring Systems, Studies in Computational Intelligence, vol. 308 (pp. 323–337). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-14363-2_16.
  • Nie, L. (2024). College students’ career prediction model based on association rule mining algorithm. In Y. Zhang & N. Shah (Eds.), Application of Big Data, Blockchain, and Internet of Things for Education Informatization, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 584 (pp. 378–384). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63142-9_38.
  • Sarıkaya, T., & Khorshid, L. (2009). Üniversite öğrencilerinin meslek seçimini etkileyen etmenlerin incelenmesi: Üniversite öğrencilerinin meslek seçimi. TEBD, 7(2), 393–423.
  • Kurt, T., & Fidan, T. (2021). University for career construction: Expectations and realities. Yükseköğretim Dergisi, 11(2Pt2), 421–437. https://doi.org/10.2399/yod.20.591001.
  • Wang, T., Xiao, B., & Ma, W. (2022). Student behavior data analysis based on association rule mining. International Journal of Computational Intelligence Systems, 15(1), 32. https://doi.org/10.1007/s44196-022-00087-4.
  • Wang, L., & Bai, Y. (2022). Research on career guidance course system based on apriori algorithm and computer big data. In 2022 International Conference on Computers, Information Processing and Advanced Education (CIPAE) (pp. 136–140). Ottawa, ON, Canada: IEEE. https://doi.org/10.1109/CIPAE55637.2022.00036.
  • Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5). https://doi.org/10.14569/IJACSA.2016.070531.
  • Kim, J., Hwang, D., & Lee, S.-S. (2022). An analysis of students’ online class preference depending on the gender and levels of school using Apriori Algorithm. Journal of Digital Convergence, 20(1), 33–39. https://doi.org/10.14400/JDC.2022.20.1.033.
  • Sodanil, M., Chotirat, S., Poomhiran, L., & Viriyapant, K. (2019). Guideline for academic support of student career path using mining algorithm. In Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval (pp. 133–137). Tokushima Japan: ACM. https://doi.org/10.1145/3342827.3342841.
  • Si, H., Wu, H., Zhou, L., Wan, J., Xiong, N., & Zhang, J. (2020). An industrial analysis technology about occupational adaptability and association rules in social networks. IEEE Transactions on Industrial Informatics, 16(3), 1698–1707. https://doi.org/10.1109/TII.2019.2926574.
  • Concha, C. R. V., & Fabregas, A. C. (2023). Apriori algorithm applied in job forecasting with elective tracking. In TRANSPORT, ECOLOGY - SUSTAINABLE DEVELOPMENT: EKOVarna2022 (p. 020002). Varna, Bulgaria: AIP Publishing. https://doi.org/10.1063/5.0162456.
  • Ahmed, S., Paul, R., & Hoque, A. S. M. L. (2014). Knowledge discovery from academic data using association rule mining. In 2014 17th International Conference on Computer and Information Technology (ICCIT) (pp. 314–319). Dhaka, Bangladesh: IEEE. https://doi.org/10.1109/ICCITechn.2014.7073107.
  • Mashiloane, L. (2014). Using association rule mining to find the effect of course selection on academic performance in computer science. In R. Prasath, P. O’Reilly, & T. Kathirvalavakumar (Eds.), Mining Intelligence and Knowledge Exploration, Lecture Notes in Computer Science, vol. 8891 (pp. 323–332). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-13817-6_31.
  • Wang, Y., Yang, L., Wu, J., Song, Z., & Shi, L. (2022). Mining campus big data: Prediction of career choice using interpretable machine learning method. Mathematics, 10(8), 1289. https://doi.org/10.3390/math10081289.
  • Sözen, E., Bardak, T., Peker, H., & Bardak, S. (2017). Apriori algoritması kullanılarak mobilya seçimde etkili olan faktörlerin analizi. İleri Teknoloji Bilimleri Dergisi, 6(3), 679–684.
  • Öztemiz, F. (2017). Apriori Algoritması ile Müşteri Bazlı Market Sepet Analizi ve Ürün Satış Tahmini (MSc. Thesis). İnönü University, Malatya, Turkey. Retrieved from https://avesis.inonu.edu.tr/yonetilen-tez/b6a95449-a644-44f5-a254-fb3ddfad0953/apriori-algoritmasi-ile-musteri-bazli-market-sepet-analizi-ve-urun-satis-tahmini.
  • Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94) (pp. 487–499). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Meslek Lisesi Bilişim Programında Üniversite Bölüm Tercihini Etkileyen Faktörlerin Birliktelik Kuralı ile Analizi

Year 2024, Volume: 7 Issue: 2, 135 - 142, 31.12.2024
https://doi.org/10.55581/ejeas.1606948

Abstract

Artan veri üretimi ve depolamasıyla birlikte ortaya çıkan karmaşık veri yığınları, bu verilerin işlenmesi için daha gelişmiş hesaplama yeteneklerine sahip bilgisayarlar ve yazılımlara olan ihtiyacı artırdı. Ancak, karmaşık verilerden anlamlı bilgiler çıkarmak hala bir zorluktur. Veri madenciliği bilimi, özellikle yapay zeka algoritmaları ile iş birliği içinde, verilerdeki karmaşık ilişkileri ortaya çıkarmak için çalışmaktadır. Çözülmesi gereken karmaşık sorunlardan biri de lise öğrencilerinin üniversitede en yüksek verimi sağlayacak bölüme yönlendirilmesidir. Bu çalışma, meslek lisesi bilişim teknolojileri öğrencilerinin ve mezunlarının bilgisayar bilimleri alanındaki üniversite bölüm tercihlerini etkileyen faktörleri araştırmaktadır. Genellikle akademik performans ve mevcut eğitim bağlamlarına odaklanan önceki araştırmalardan farklı olarak bu çalışma, öğrencilerin geçmiş eğitim deneyimleri, tercihleri, alışkanlıkları ve hobileri arasındaki bağlantıları ilk ve orta öğretime kadar izleyerek araştırmaktadır. Bir vaka çalışması olarak bilgisayar mühendisliği bölümüne odaklanan araştırma, bilgisayar mühendisliği okumak isteyen veya okumakta olan öğrencilerin tasarım ve oyun geliştirmeyle ilgili faaliyetlere daha fazla ilgi gösterdiğini, C# programlama dilini tercih ettiğini ve kimyaya özel bir ilgi gösterirken sokak oyunlarına daha az yakınlık gösterdiğini ortaya koymaktadır. Bu bulgular, öğrencilerin bilgisayar bilimleri alanındaki yüksek öğrenim tercihleri ile önceki öğrenme deneyimleri ve sosyal tercihleri arasındaki ilişkinin altını çizmekte ve karar verme sürecine dair daha derin bilgiler sunmaktadır.

References

  • Alangari, N., & Alturki, R. (2020). Association rule mining in higher education: A case study of computer science students. In R. Mehmood, S. See, I. Katib, & I. Chlamtac (Eds.), Smart Infrastructure and Applications, EAI/Springer Innovations in Communication and Computing (pp. 311–328). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-13705-2_13.
  • Baker, R. S. J. D. (2010). Mining data for student models. In R. Nkambou, J. Bourdeau, & R. Mizoguchi (Eds.), Advances in Intelligent Tutoring Systems, Studies in Computational Intelligence, vol. 308 (pp. 323–337). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-14363-2_16.
  • Nie, L. (2024). College students’ career prediction model based on association rule mining algorithm. In Y. Zhang & N. Shah (Eds.), Application of Big Data, Blockchain, and Internet of Things for Education Informatization, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 584 (pp. 378–384). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63142-9_38.
  • Sarıkaya, T., & Khorshid, L. (2009). Üniversite öğrencilerinin meslek seçimini etkileyen etmenlerin incelenmesi: Üniversite öğrencilerinin meslek seçimi. TEBD, 7(2), 393–423.
  • Kurt, T., & Fidan, T. (2021). University for career construction: Expectations and realities. Yükseköğretim Dergisi, 11(2Pt2), 421–437. https://doi.org/10.2399/yod.20.591001.
  • Wang, T., Xiao, B., & Ma, W. (2022). Student behavior data analysis based on association rule mining. International Journal of Computational Intelligence Systems, 15(1), 32. https://doi.org/10.1007/s44196-022-00087-4.
  • Wang, L., & Bai, Y. (2022). Research on career guidance course system based on apriori algorithm and computer big data. In 2022 International Conference on Computers, Information Processing and Advanced Education (CIPAE) (pp. 136–140). Ottawa, ON, Canada: IEEE. https://doi.org/10.1109/CIPAE55637.2022.00036.
  • Saa, A. A. (2016). Educational data mining & students’ performance prediction. International Journal of Advanced Computer Science and Applications, 7(5). https://doi.org/10.14569/IJACSA.2016.070531.
  • Kim, J., Hwang, D., & Lee, S.-S. (2022). An analysis of students’ online class preference depending on the gender and levels of school using Apriori Algorithm. Journal of Digital Convergence, 20(1), 33–39. https://doi.org/10.14400/JDC.2022.20.1.033.
  • Sodanil, M., Chotirat, S., Poomhiran, L., & Viriyapant, K. (2019). Guideline for academic support of student career path using mining algorithm. In Proceedings of the 2019 3rd International Conference on Natural Language Processing and Information Retrieval (pp. 133–137). Tokushima Japan: ACM. https://doi.org/10.1145/3342827.3342841.
  • Si, H., Wu, H., Zhou, L., Wan, J., Xiong, N., & Zhang, J. (2020). An industrial analysis technology about occupational adaptability and association rules in social networks. IEEE Transactions on Industrial Informatics, 16(3), 1698–1707. https://doi.org/10.1109/TII.2019.2926574.
  • Concha, C. R. V., & Fabregas, A. C. (2023). Apriori algorithm applied in job forecasting with elective tracking. In TRANSPORT, ECOLOGY - SUSTAINABLE DEVELOPMENT: EKOVarna2022 (p. 020002). Varna, Bulgaria: AIP Publishing. https://doi.org/10.1063/5.0162456.
  • Ahmed, S., Paul, R., & Hoque, A. S. M. L. (2014). Knowledge discovery from academic data using association rule mining. In 2014 17th International Conference on Computer and Information Technology (ICCIT) (pp. 314–319). Dhaka, Bangladesh: IEEE. https://doi.org/10.1109/ICCITechn.2014.7073107.
  • Mashiloane, L. (2014). Using association rule mining to find the effect of course selection on academic performance in computer science. In R. Prasath, P. O’Reilly, & T. Kathirvalavakumar (Eds.), Mining Intelligence and Knowledge Exploration, Lecture Notes in Computer Science, vol. 8891 (pp. 323–332). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-13817-6_31.
  • Wang, Y., Yang, L., Wu, J., Song, Z., & Shi, L. (2022). Mining campus big data: Prediction of career choice using interpretable machine learning method. Mathematics, 10(8), 1289. https://doi.org/10.3390/math10081289.
  • Sözen, E., Bardak, T., Peker, H., & Bardak, S. (2017). Apriori algoritması kullanılarak mobilya seçimde etkili olan faktörlerin analizi. İleri Teknoloji Bilimleri Dergisi, 6(3), 679–684.
  • Öztemiz, F. (2017). Apriori Algoritması ile Müşteri Bazlı Market Sepet Analizi ve Ürün Satış Tahmini (MSc. Thesis). İnönü University, Malatya, Turkey. Retrieved from https://avesis.inonu.edu.tr/yonetilen-tez/b6a95449-a644-44f5-a254-fb3ddfad0953/apriori-algoritmasi-ile-musteri-bazli-market-sepet-analizi-ve-urun-satis-tahmini.
  • Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules in large databases. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94) (pp. 487–499). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
There are 18 citations in total.

Details

Primary Language English
Subjects Information Systems (Other)
Journal Section Research Articles
Authors

Esma Türk 0000-0003-1998-8947

Erkan Özhan 0000-0002-3971-2676

Publication Date December 31, 2024
Submission Date December 24, 2024
Acceptance Date December 27, 2024
Published in Issue Year 2024 Volume: 7 Issue: 2