Review
BibTex RIS Cite

Orman yangınları çalışmalarında uygulanan makine öğrenmesi (ML) tekniklerine genel bir bakış

Year 2024, , 1 - 9, 25.02.2024
https://doi.org/10.31195/ejejfs.1386306

Abstract

Dünya genelinde orman yangınlarının sıklığının artması, ciddi çevresel ve ekonomik zararlara neden olmaktadır ve bu durum, erken yangın tahmini ve tespiti için zorunlu bir ihtiyaç doğurmuştur. Bu çalışma, orman yangınlarını tahmin etme ve tespit etme konusunda makine öğrenimi tekniklerinin kullanımını incelemeyi amaçlamaktadır. Orman yangını tahmini için önerilen çeşitli teknolojiler ve teknikler üzerine kapsamlı bir inceleme yapılmıştır. Her bir makine öğrenimi algoritmasının artılarını ve eksilerini anlayarak, en etkili yaklaşımları belirlemek için özel bir vurgu yapılmıştır. Orman yangınlarını tahmin etmek için pek çok makine öğrenimi yöntemi bulunmasına rağmen, her birinin kendine has güçlü yönleri ve sınırlılıkları olduğu gözlemlenmiştir. Bazı teknikler, özel orman özelliklerine göre uyarlandığında, gelişmiş tahmin yetenekleri sergilemiştir. Makine öğrenimi (ML), orman yangını çalışmalarının ilerlemesinde kilit bir rol oynamaktadır. Ormanın özelliklerine ve verinin doğasına bağlı olarak en uygun ML tekniğini belirleyerek kullanmak, tahmin doğruluğunu önemli ölçüde artırabilir.

References

  • Abid, F. (2021). A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems. Fire Technology, 57, 559-590.
  • Allauddin, M. S., Kiran, G. S., Kiran, G. S. R., Srinivas, G., Mouli, G. U. R., & Prasad, P. V. (2019). Development of a Surveillance System for Forest Fire Detection and Monitoring using Drones. In Proceedings of the IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 7, 9361-9363.
  • Arif, M., Alghamdi, K. K., Sahel, S. A., et al. (2021). Role of Machine Learning Algorithms in Forest Fire Management: A Literature Review. Journal of Robotics & Automation, 5, 212-226.
  • Arkin, J., Coops, N. C., Hermosilla, T., Daniels, L. D., & Plowright, A. (2019). Integrated fire severity–land cover mapping using very-high-spatial-resolution aerial imagery and point clouds. International Journal of Wildland Fire, 28, 840.
  • Arpaci, A., Malowerschnig, B., Sass, O., & Vacik, H. (2014). Using multivariate data mining techniques for estimating fire susceptibility of Tyrolean forests. Applied Geography, 53, 258-270.
  • Arrue, B., Ollero, A., & Matinez de Dios, J. (2000). An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intelligent Systems, 15, 64-73.
  • Bahrepour, M., van der Zwaag, B. J., Meratnia, N., & Havinga, P. (2010). Fire Data Analysis and Feature Reduction Using Computational Intelligence Methods. Berlin/Heidelberg: Springer, 289-298.
  • Barmpoutis, P., Stathaki, T., Dimitropoulos, K., & Grammalidis, N. (2020). Early Fire Detection Based on Aerial 360-Degree Sensors, Deep Convolution Neural Networks and Exploitation of Fire Dynamic Textures. Remote Sensing, 12, 3177.
  • Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525, 47–55.
  • Bayat, G., & Yıldız, K. (2022). Comparison of the Machine Learning Methods to Predict Wildfire Areas. Turkish Journal of Science & Technology, 17, 241-250.
  • Bond, W., & Keeley, J. (2005). Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 20, 387–394.
  • Borges, P. V. K., & Izquierdo, E. (2010). A Probabilistic Approach for Vision-Based Fire Detection in Videos. IEEE Transactions on Circuits and Systems for Video Technology, 20, 721-731.
  • Borrelli, P., Armenteras, D., Panagos, P., Modugno, S., & Schütt, B. (2015). The Implications of Fire Management in the Andean Paramo: A Preliminary Assessment Using Satellite Remote Sensing. Remote Sensing, 7, 11061–11082.
  • Bulatov, D., & Leidinger, F. (2021). Instance segmentation of deadwood objects in combined optical and elevation data using convolutional neural networks. Earth Resources and Environmental Remote Sensing/GIS Applications, 12, 9-37.
  • Catry, F. X., Rego, F. C., Bação, F. L., & Moreira, F. (2009). Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire, 18, 921.
  • Chang, Y., Zhu, Z., Bu, R., Chen, H., Feng, Y., Li, Y., Hu, Y., & Wang, Z. (2013). Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 28, 1989-2004.
  • Chen, S., Bao, H., Zeng, X., & Yang, Y. (2003). A fire detecting method based on multi-sensor data fusion. In Proceedings of the SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Washington, DC, USA, 3775-3780.
  • Coen, J. (2018). Some Requirements for Simulating Wildland Fire Behavior Using Insight from Coupled Weather—Wildland Fire Models. Fire, 1, 6.
  • Cortez, P., & Morais, A. de J. R. (2007). A Data Mining Approach to Predict Forest Fires Using Meteorological Data. In Associação Portuguesa para a Inteligência Artificial (APPIA), Guimarães, Portugal.
  • De Vasconcelos, M. J. P., Silva, S., Tome, M., Alvim, M., & Pereira, J. C. (2001). Spatial prediction of fire ignition probabilities: Comparing logistic regression and neural networks. Photogrammetric Engineering & Remote Sensing, 67, 73-81.
  • Dimuccio, L. A., Ferreira, R., Cunha, L., & Campar de Almeida, A. (2011). Regional forest-fire susceptibility analysis in central Portugal using a probabilistic ratings procedure and artificial neural network weights assignment. International Journal of Wildland Fire, 20, 776.
  • Dlamini, W. M. (2010). A Bayesian belief network analysis of factors influencing wildfire occurrence in Swaziland. Environmental Modelling & Software, 25, 199-208.
  • Georgiev, G. D., Hristov, G., Zahariev, P., & Kinaneva, D. (2020). Forest Monitoring System for Early Fire Detection Based on Convolutional Neural Network and UAV imagery. In Proceedings of the 2020 28th National Conference with International Participation (TELECOM), Sofia, Bulgaria, 10, 57-60.
  • Gibson, R., Danaher, T., Hehir, W., & Collins, L. (2020). A remote sensing approach to mapping fire severity in southeastern Australia using sentinel 2 and random forest. Remote Sensing of Environment, 240, 111702.
  • Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., & Justice, C. O. (2018). The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, 217, 72–85.
  • Giuntini, F. T., Beder, D. M., & Ueyama, J. (2017). Exploiting self-organization and fault tolerance in wireless sensor networks: A case study on wildfire detection application. International Journal of Distributed Sensor Networks, 13, 155014771770412.
  • Habibog˘lu, Y. H., Günay, O., & Çetin, A. E. (2012). Covariance matrix-based fire and flame detection method in video. Machine Vision and Applications, 23, 1103-1113.
  • Hodges, J. L., & Lattimer, B. Y. (2019). Wildland Fire Spread Modeling Using Convolutional Neural Networks. Fire Technology, 55, 2115-2142.
  • Hoffman, C. M., Canfield, J., Linn, R. R., Mell, W., Sieg, C. H., Pimont, F., & Ziegler, J. (2016). Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models. Fire Technology, 52, 221–237.
  • Jiao, Z., Zhang, Y., Mu, L., Xin, J., Jiao, S., Liu, H., & Liu, D. (2020). A YOLOv3-based Learning Strategy for Real-time UAV-based Forest Fire Detection. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 8, 4963-4967.
  • Jiao, Z., Zhang, Y., Xin, J., et al. (2019). A Deep Learning Based Forest Fire Detection Approach Using UAV and YOLOv3. In Proceedings of the 2019 1st International Conference on Industrial Artificial Intelligence (IAI). Shenyang, China, 1-5.
  • Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., & Kumar, V. (2019). Machine Learning for the Geosciences: Challenges and Opportunities. IEEE Transactions on Knowledge and Data Engineering, 31, 1544–1554.
  • Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7, 3–10.
  • Liu, Z., Peng, C., Work, T., Candau, J.-N., DesRochers, A., & Kneeshaw, D. (2018). Application of machine-learning methods in forest ecology: Recent progress and future challenges. Environmental Reviews, 26, 339–350. Mallinis, G., & Koutsias, N. (2012). Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data. International Journal of Remote Sensing, 33, 4408-4433.
  • McGovern, A., Elmore, K. L., Gagne, D. J., Haupt, S. E., Karstens, C. D., Lagerquist, R., Smith, T., & Williams, J. K. (2017). Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather. Bulletin of the American Meteorological Society, 98, 2073–2090.
  • Mitchell, T. M. (1997). Machine Learning. New York, NY: McGraw-Hill.
  • Mohajane, M., Costache, R., Karimi, F., Bao Pham, Q., Essahlaoui, A., Nguyen, H., Laneve, G., & Oudija, F. (2021). Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecological Indicators, 129, 107869.
  • Mohler, R. L., & Goodin, D. G. (2012). Identifying a suitable combination of classification technique and bandwidth(s) for burned area mapping in tallgrass prairie with MODIS imagery. International Journal of Applied Earth Observation and Geoinformation, 14, 103-111.
  • Mosavi, A., Ozturk, P., & Chau, K.-w. (2018). Flood Prediction Using Machine Learning Models: Literature Review. Water, 10, 1536. Olden, J., Lawler, J., & Poff, N. (2008). Machine Learning Methods Without Tears: A Primer for Ecologists. Quarterly Review of Biology, 83, 171–193.
  • Poole, D. L., & Mackworth, A. K. (2010). Artificial Intelligence. Cambridge, UK: Cambridge University Press. Schmoldt, D. L. (2001). Application of Artificial Intelligence to Risk Analysis for Forested Ecosystems. In Springer (pp. 49–74). Berlin/Heidelberg, Germany: Springer.
  • Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resources Research, 54, 8558-8593.
  • Simard, S. (1991). Fire Severity, Changing Scales, and How Things Hang Together. International Journal of Wildland Fire, 1, 23.
  • Sun, A. Y., & Scanlon, B. R. (2019). How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environmental Research Letters, 14, 073001.
  • Tien Bui, D., Hoang, N.-D., & Samui, P. (2019). Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: A case study at Lao Cai province (Viet Nam). Journal of Environmental Management, 237, 476-487.
  • Vandal, T., Kodra, E., & Ganguly, A. R. (2019). Intercomparison of machine learning methods for statistical downscaling: The case of daily and extreme precipitation. Theoretical and Applied Climatology, 137, 557–570.
  • Zheng, J., Cao, X., Zhang, B., Huang, Y., & Hu, Y. (2017). Bi-heterogeneous Convolutional Neural Network for UAV-based dynamic scene classification. In Proceedings of the 2017 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 4, 5C2-1-5C2-8.

An overview of machine learning (ML) techniques applied to forest fire studies

Year 2024, , 1 - 9, 25.02.2024
https://doi.org/10.31195/ejejfs.1386306

Abstract

With the increasing frequency of forest fires globally, causing substantial environmental and economic damages, there is an imperative need for early fire prediction and detection. This study aims to examine the utility of machine learning techniques in predicting and identifying forest fires. A comprehensive review was conducted on various technologies and techniques proposed for forest fire prediction. Particular emphasis was placed on understanding the pros and cons of each machine learning algorithm, with an aim to identify the most effective approaches. It was observed that while numerous machine learning methods exist for forecasting forest fires, each possesses unique strengths and limitations. Some techniques, when tailored to specific forest characteristics, displayed enhanced predictive capabilities. Machine learning (ML) plays a pivotal role in advancing the field of forest fire studies. Identifying and utilizing the most suited ML technique, based on forest characteristics and the nature of data, can significantly augment prediction accuracy.

References

  • Abid, F. (2021). A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems. Fire Technology, 57, 559-590.
  • Allauddin, M. S., Kiran, G. S., Kiran, G. S. R., Srinivas, G., Mouli, G. U. R., & Prasad, P. V. (2019). Development of a Surveillance System for Forest Fire Detection and Monitoring using Drones. In Proceedings of the IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 7, 9361-9363.
  • Arif, M., Alghamdi, K. K., Sahel, S. A., et al. (2021). Role of Machine Learning Algorithms in Forest Fire Management: A Literature Review. Journal of Robotics & Automation, 5, 212-226.
  • Arkin, J., Coops, N. C., Hermosilla, T., Daniels, L. D., & Plowright, A. (2019). Integrated fire severity–land cover mapping using very-high-spatial-resolution aerial imagery and point clouds. International Journal of Wildland Fire, 28, 840.
  • Arpaci, A., Malowerschnig, B., Sass, O., & Vacik, H. (2014). Using multivariate data mining techniques for estimating fire susceptibility of Tyrolean forests. Applied Geography, 53, 258-270.
  • Arrue, B., Ollero, A., & Matinez de Dios, J. (2000). An intelligent system for false alarm reduction in infrared forest-fire detection. IEEE Intelligent Systems, 15, 64-73.
  • Bahrepour, M., van der Zwaag, B. J., Meratnia, N., & Havinga, P. (2010). Fire Data Analysis and Feature Reduction Using Computational Intelligence Methods. Berlin/Heidelberg: Springer, 289-298.
  • Barmpoutis, P., Stathaki, T., Dimitropoulos, K., & Grammalidis, N. (2020). Early Fire Detection Based on Aerial 360-Degree Sensors, Deep Convolution Neural Networks and Exploitation of Fire Dynamic Textures. Remote Sensing, 12, 3177.
  • Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525, 47–55.
  • Bayat, G., & Yıldız, K. (2022). Comparison of the Machine Learning Methods to Predict Wildfire Areas. Turkish Journal of Science & Technology, 17, 241-250.
  • Bond, W., & Keeley, J. (2005). Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution, 20, 387–394.
  • Borges, P. V. K., & Izquierdo, E. (2010). A Probabilistic Approach for Vision-Based Fire Detection in Videos. IEEE Transactions on Circuits and Systems for Video Technology, 20, 721-731.
  • Borrelli, P., Armenteras, D., Panagos, P., Modugno, S., & Schütt, B. (2015). The Implications of Fire Management in the Andean Paramo: A Preliminary Assessment Using Satellite Remote Sensing. Remote Sensing, 7, 11061–11082.
  • Bulatov, D., & Leidinger, F. (2021). Instance segmentation of deadwood objects in combined optical and elevation data using convolutional neural networks. Earth Resources and Environmental Remote Sensing/GIS Applications, 12, 9-37.
  • Catry, F. X., Rego, F. C., Bação, F. L., & Moreira, F. (2009). Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire, 18, 921.
  • Chang, Y., Zhu, Z., Bu, R., Chen, H., Feng, Y., Li, Y., Hu, Y., & Wang, Z. (2013). Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 28, 1989-2004.
  • Chen, S., Bao, H., Zeng, X., & Yang, Y. (2003). A fire detecting method based on multi-sensor data fusion. In Proceedings of the SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Washington, DC, USA, 3775-3780.
  • Coen, J. (2018). Some Requirements for Simulating Wildland Fire Behavior Using Insight from Coupled Weather—Wildland Fire Models. Fire, 1, 6.
  • Cortez, P., & Morais, A. de J. R. (2007). A Data Mining Approach to Predict Forest Fires Using Meteorological Data. In Associação Portuguesa para a Inteligência Artificial (APPIA), Guimarães, Portugal.
  • De Vasconcelos, M. J. P., Silva, S., Tome, M., Alvim, M., & Pereira, J. C. (2001). Spatial prediction of fire ignition probabilities: Comparing logistic regression and neural networks. Photogrammetric Engineering & Remote Sensing, 67, 73-81.
  • Dimuccio, L. A., Ferreira, R., Cunha, L., & Campar de Almeida, A. (2011). Regional forest-fire susceptibility analysis in central Portugal using a probabilistic ratings procedure and artificial neural network weights assignment. International Journal of Wildland Fire, 20, 776.
  • Dlamini, W. M. (2010). A Bayesian belief network analysis of factors influencing wildfire occurrence in Swaziland. Environmental Modelling & Software, 25, 199-208.
  • Georgiev, G. D., Hristov, G., Zahariev, P., & Kinaneva, D. (2020). Forest Monitoring System for Early Fire Detection Based on Convolutional Neural Network and UAV imagery. In Proceedings of the 2020 28th National Conference with International Participation (TELECOM), Sofia, Bulgaria, 10, 57-60.
  • Gibson, R., Danaher, T., Hehir, W., & Collins, L. (2020). A remote sensing approach to mapping fire severity in southeastern Australia using sentinel 2 and random forest. Remote Sensing of Environment, 240, 111702.
  • Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., & Justice, C. O. (2018). The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, 217, 72–85.
  • Giuntini, F. T., Beder, D. M., & Ueyama, J. (2017). Exploiting self-organization and fault tolerance in wireless sensor networks: A case study on wildfire detection application. International Journal of Distributed Sensor Networks, 13, 155014771770412.
  • Habibog˘lu, Y. H., Günay, O., & Çetin, A. E. (2012). Covariance matrix-based fire and flame detection method in video. Machine Vision and Applications, 23, 1103-1113.
  • Hodges, J. L., & Lattimer, B. Y. (2019). Wildland Fire Spread Modeling Using Convolutional Neural Networks. Fire Technology, 55, 2115-2142.
  • Hoffman, C. M., Canfield, J., Linn, R. R., Mell, W., Sieg, C. H., Pimont, F., & Ziegler, J. (2016). Evaluating Crown Fire Rate of Spread Predictions from Physics-Based Models. Fire Technology, 52, 221–237.
  • Jiao, Z., Zhang, Y., Mu, L., Xin, J., Jiao, S., Liu, H., & Liu, D. (2020). A YOLOv3-based Learning Strategy for Real-time UAV-based Forest Fire Detection. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 8, 4963-4967.
  • Jiao, Z., Zhang, Y., Xin, J., et al. (2019). A Deep Learning Based Forest Fire Detection Approach Using UAV and YOLOv3. In Proceedings of the 2019 1st International Conference on Industrial Artificial Intelligence (IAI). Shenyang, China, 1-5.
  • Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., & Kumar, V. (2019). Machine Learning for the Geosciences: Challenges and Opportunities. IEEE Transactions on Knowledge and Data Engineering, 31, 1544–1554.
  • Lary, D. J., Alavi, A. H., Gandomi, A. H., & Walker, A. L. (2016). Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7, 3–10.
  • Liu, Z., Peng, C., Work, T., Candau, J.-N., DesRochers, A., & Kneeshaw, D. (2018). Application of machine-learning methods in forest ecology: Recent progress and future challenges. Environmental Reviews, 26, 339–350. Mallinis, G., & Koutsias, N. (2012). Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data. International Journal of Remote Sensing, 33, 4408-4433.
  • McGovern, A., Elmore, K. L., Gagne, D. J., Haupt, S. E., Karstens, C. D., Lagerquist, R., Smith, T., & Williams, J. K. (2017). Using Artificial Intelligence to Improve Real-Time Decision-Making for High-Impact Weather. Bulletin of the American Meteorological Society, 98, 2073–2090.
  • Mitchell, T. M. (1997). Machine Learning. New York, NY: McGraw-Hill.
  • Mohajane, M., Costache, R., Karimi, F., Bao Pham, Q., Essahlaoui, A., Nguyen, H., Laneve, G., & Oudija, F. (2021). Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecological Indicators, 129, 107869.
  • Mohler, R. L., & Goodin, D. G. (2012). Identifying a suitable combination of classification technique and bandwidth(s) for burned area mapping in tallgrass prairie with MODIS imagery. International Journal of Applied Earth Observation and Geoinformation, 14, 103-111.
  • Mosavi, A., Ozturk, P., & Chau, K.-w. (2018). Flood Prediction Using Machine Learning Models: Literature Review. Water, 10, 1536. Olden, J., Lawler, J., & Poff, N. (2008). Machine Learning Methods Without Tears: A Primer for Ecologists. Quarterly Review of Biology, 83, 171–193.
  • Poole, D. L., & Mackworth, A. K. (2010). Artificial Intelligence. Cambridge, UK: Cambridge University Press. Schmoldt, D. L. (2001). Application of Artificial Intelligence to Risk Analysis for Forested Ecosystems. In Springer (pp. 49–74). Berlin/Heidelberg, Germany: Springer.
  • Shen, C. (2018). A Transdisciplinary Review of Deep Learning Research and Its Relevance for Water Resources Scientists. Water Resources Research, 54, 8558-8593.
  • Simard, S. (1991). Fire Severity, Changing Scales, and How Things Hang Together. International Journal of Wildland Fire, 1, 23.
  • Sun, A. Y., & Scanlon, B. R. (2019). How can Big Data and machine learning benefit environment and water management: A survey of methods, applications, and future directions. Environmental Research Letters, 14, 073001.
  • Tien Bui, D., Hoang, N.-D., & Samui, P. (2019). Spatial pattern analysis and prediction of forest fire using new machine learning approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination optimization: A case study at Lao Cai province (Viet Nam). Journal of Environmental Management, 237, 476-487.
  • Vandal, T., Kodra, E., & Ganguly, A. R. (2019). Intercomparison of machine learning methods for statistical downscaling: The case of daily and extreme precipitation. Theoretical and Applied Climatology, 137, 557–570.
  • Zheng, J., Cao, X., Zhang, B., Huang, Y., & Hu, Y. (2017). Bi-heterogeneous Convolutional Neural Network for UAV-based dynamic scene classification. In Proceedings of the 2017 Integrated Communications, Navigation and Surveillance Conference (ICNS), Herndon, VA, USA, 4, 5C2-1-5C2-8.
There are 46 citations in total.

Details

Primary Language English
Subjects Forestry Fire Management
Journal Section Articles
Authors

Ali Bahadır Küçükarslan 0009-0000-2580-146X

Early Pub Date March 3, 2024
Publication Date February 25, 2024
Submission Date November 5, 2023
Acceptance Date February 6, 2024
Published in Issue Year 2024

Cite

APA Küçükarslan, A. B. (2024). An overview of machine learning (ML) techniques applied to forest fire studies. Eurasian Journal of Forest Science, 12(1), 1-9. https://doi.org/10.31195/ejejfs.1386306

Cited By


 

E-posta: hbarist@gmail.com 

 

Eurasian Journal of Forest Science © 2013 is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1