Research Article
BibTex RIS Cite
Year 2019, , 84 - 97, 20.08.2019
https://doi.org/10.31195/ejejfs.481705

Abstract

References

  • Baylis, G.T.S. 1967. Experiments on the ecological significance of phycomycetous mycorrhizas. New Phytologist 66:231.
  • Blake, G.R. and K.H. Hartge. 1986a. Bulk density. In Methods of Soil Analysis. Part 1. Physical and mineralogical methods, ed. A. Klute (2nd Edn.), pp.363-375. Madison, WI: SSSA Book Series 5.
  • Blake, G.R. and K.H. Hartge. 1986b. Particle density. In Methods of Soil Analysis. Part 1. Physical and mineralogical methods, ed. A. Klute (2nd Edn.), pp.377-382. Madison, WI: SSSA Book Series 5.
  • Bouyoucos, G.J. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal 43:434-438.
  • Bremner, J.M. 1996. Nitrogen-total. In: Method of Soil Analysis. Part 3. Chemical methods, eds. D.L Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner, pp.1085-1122. Madison, WI: SSSA.
  • Cui, Y., Y. Dong, H. Li, and Q. Wang. 2004. Effect of elemental sulfur on solubility of soil heavy metals and their uptake by maize. Environment International. 30 (3): 323-328.
  • Diaz, G., O. Barrantes, M. Honrubia, and C. Gracia. 1996. Effect of ozone and sulfur dioxide on mycorrhizae of Pinus halepensis miller. Annales des Sciences Forestieres 53: 849-856.
  • Fabig, W., J.C.G. Ottow, and F. Muller. 1978. Mineralisation von 14C-Markiertem Benzoat Mit Nitrat als Wasser-Stoffakzeptor unter Vollstandig Anaeroben Bedingungen Sowie Bei Vermindertem Sauer-stoffpartialdruck [Mineralization of 14C-labeled benzoate with nitrate as water under completely anaerobic conditions, as well as partially heavy clay oxygen]. Landwirstschaft Forschung, 35: 441-453.
  • Fachgruppe Wasserchemie in der Gesellscheft Deutscher Chemiker. 1983. Deutsche Einheitsverfahren Zur Wasser-Abwasser-und Schlammuntersuchungen [German Standart Methods for Water, Wastewater and Sludge Tests]. Weinheim: Verlag Chemie.
  • Gerdemann, J.W. and T.H. Nicolson. 1963. Spors of mycorrhizal endogeny species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235-244.
  • Guo, T., J.L. Zhang, and X.L. Li. 2005. Effect of sulfur supply and mycorrhizal colonization on the growth and pungency of Allium cepa L. In: Plant Nutrition for Food Security, Human Health and Environmental Protection, ed.C.J.Li, pp. 860-861. Tsinghua, China: Tsinghua University Press.
  • Hoffman, C., H.J. Koch, G. Schlinker, G. Sander, M. Saurer, and K. Burcky. 1998. Supply and nutrient demand of sugar beet for sulphur. Zuckerindustrie 123: 675-682.
  • Kacar, B. 1972. Chemical analysis of soil and plant (in Turkish). Ankara, Turkey: Ankara University Agricultural Press 453.
  • Karaca, H. 2013. Effects of elemental sulfur and mycorrhizae on the yield of wheat in different soils. Journal of Plant Nutrition.
  • Karaca, H., V. Uygur, A. Özkan, and Z. Kaya. 2013. Effects of mycorrhizae and fertilization on soybean yield and nutrient uptake. Communications in Soil Science and Plant Analysis. 44(16): 2459-2471.
  • Karaca, H. 2012a. Buffering effect of elemental sulfur on mycorrhizal infection of leek. Journal of Plant Nutrition 35(5): 678-687.
  • Karaca, H. 2012b. Efficiency of elemental sulfur on mycorrhizae in the yield increase of wheat. Journal of Plant Nutrition 35(8): 1225-1233.
  • Klute, A. and C. Dirksen. 1986. Hydraulic Conductivity and Diffusivity: Laboratory Methods. In Methods of Soil Analysis. Part 1. Physical and mineralogical methods, ed, A. Klute (2nd Eds.). Madison, WI: SSSA Book Series 5.
  • Koske, R.E. and J.N.Gemma. 1989. A modified procedure for staining roots to detect VAM. Mycological Research 92: 486-505.
  • Lees, R. 1971. Laboratory Handbook of Methods of Food Analysis. London: Leonard Hill Books.
  • Lindsay, W.L. and W.A. Norwell. 1978. Development of DTPA for soil test zinc, iron, manganese and copper. Soil Science Society of America Journal 42: 421-428.
  • Loeppert, R.H. and D.L. Suarez, 1996. Carbonate and gypsum. In: Method of soil analysis. Part 3. Chemical methods, eds, D.L Sarks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner, pp. 437-474. Madison, WI: SSSA.
  • McLaughlin, B.D. and I.C.R. Holford. 1982. Initial and medium –term responses of white clover to three sulfur fertilizers on a basaltic soil. Australian Journal of Experimental Agriculture and Animal Husbandry 22(115): 95-99.
  • Menge, J.A., C.K. Labanuskas, E.L.V. Johnson, and R.G. Platt. 1978. Partial substitution of mycorrhizal fungi for phosphorous fertilization in the greenhouse culture of citrus. Soil Science Society of American Journal 42: 926-930.
  • Merrien, A. 1987. La fertilization soufree du colza: un oubli qui peut couter cher! Perspectives Agricoles 115:201-203.
  • Mosse, B. 1967. Effects of host nutrient status on mycorrhizal infection. Annual Report of the Rothamsted Experiment Station, p.79.
  • Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31-36.
  • Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939. Washington, DC: US Government Printing Office.
  • Ortas, I., D. L. Rowell, and P.J. Haris. 2004. Effect of mycorrhizae and pH change at the root soil interface on phosphorus uptake by sorghum using a rhizocyclinder technique. Communications in Soil Science and Plant Analysis 35: 1061-1080.
  • Ortas, I., D. Ortakcı, and Z. Kaya. 2002. Various mycorrhizal fungi propagated on different hosts have different effect on citrus growth and nutrient uptake. Communications in Soil Science and Plant Analysis 33(1&2): 259-272.
  • Ortas, I., P.J. Harris, and D.L. Rowell. 1996. Enhanced uptake of phosphorous by mycorrhizal sorghum plants as influenced by forms of nitrogen. Plant and Soil 184: 255-264.
  • Özbek, H., U. Dinç, and S. Kapur. 1974. Detailed basic survey and mapping of the soils of Cukurova University settlement area (in Turkish). Cukurova University Agricultural Faculty publication 73. Adana, Turkey: Cukurova University.
  • Pratt, P.F. and H.H. Morse. 1954. Potassium release from exchangeable and non-exchangeable forms in Ohio soils. Ohio Agricultural Experiment Station Research Bulletin 747. Columbus, OH: Ohio State University.
  • Raj, J., D.J, Bagyaraj, and A. Manjunath. 1981. Influence of soil inoculation with vesicular- arbuscular mycorrhizae and a phosphate-dissolving bacterium on plant growth and 32p uptake. Soil Biology and Biochemistry 13(2): 105-108.
  • Romero, A., J. Ryder, J.T. Fisher, and J.G. Mexal. 1986. Root system modification of container stock for arid land plantings. Forest Ecology and Management 16: 281-290.
  • Schlichting, E. and H. Blume. 1966. Bodenkundliches Practikum [Soil Science Handbook]. Berlin: Paul Parey Verlag.
  • U.S. Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. USDA Handbook 60. Washington, DC: U.S. Government Printing Office.
  • Yibirin, H., J.W. Johnson, and D. Eckert. 1996. Corn production as affected by daily fertilization with ammonium, nitrate, and phosphorous. Soil Science Society of America Journal 60: 512-518.

Mycorrhizal efficiency in pepper yield by fertilization in clay soil growth conditions

Year 2019, , 84 - 97, 20.08.2019
https://doi.org/10.31195/ejejfs.481705

Abstract

Biomass responses to mycorrhizae and
fertilization of phosphorus (P) and elemental sulfur (ES) on green pepper (Capsicum annuum L.) grown for 45 days on
calcareous sterilized Menekşe soil (sub-group Typic Xerorthent) were
investigated. Root yield was increased by mycorrhizal inoculation compared to
the control treatment. However, shoot yield remained unchanged. On the other
hand, there was more synergistic effect between mycorrhizae and combined fertilization
of ES and P, compared to the ES or P fertilization alone. Accordingly, shoot
concentrations of P significantly increased. The other shoot nutrient
concentrations differed independently from each other (p>0.05). Results
showed that P and ES fertilization increased the efficieny of mycorrhizae in
the clay soil growth conditions and mycorrhizae has potential to increase yield.
 


References

  • Baylis, G.T.S. 1967. Experiments on the ecological significance of phycomycetous mycorrhizas. New Phytologist 66:231.
  • Blake, G.R. and K.H. Hartge. 1986a. Bulk density. In Methods of Soil Analysis. Part 1. Physical and mineralogical methods, ed. A. Klute (2nd Edn.), pp.363-375. Madison, WI: SSSA Book Series 5.
  • Blake, G.R. and K.H. Hartge. 1986b. Particle density. In Methods of Soil Analysis. Part 1. Physical and mineralogical methods, ed. A. Klute (2nd Edn.), pp.377-382. Madison, WI: SSSA Book Series 5.
  • Bouyoucos, G.J. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal 43:434-438.
  • Bremner, J.M. 1996. Nitrogen-total. In: Method of Soil Analysis. Part 3. Chemical methods, eds. D.L Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner, pp.1085-1122. Madison, WI: SSSA.
  • Cui, Y., Y. Dong, H. Li, and Q. Wang. 2004. Effect of elemental sulfur on solubility of soil heavy metals and their uptake by maize. Environment International. 30 (3): 323-328.
  • Diaz, G., O. Barrantes, M. Honrubia, and C. Gracia. 1996. Effect of ozone and sulfur dioxide on mycorrhizae of Pinus halepensis miller. Annales des Sciences Forestieres 53: 849-856.
  • Fabig, W., J.C.G. Ottow, and F. Muller. 1978. Mineralisation von 14C-Markiertem Benzoat Mit Nitrat als Wasser-Stoffakzeptor unter Vollstandig Anaeroben Bedingungen Sowie Bei Vermindertem Sauer-stoffpartialdruck [Mineralization of 14C-labeled benzoate with nitrate as water under completely anaerobic conditions, as well as partially heavy clay oxygen]. Landwirstschaft Forschung, 35: 441-453.
  • Fachgruppe Wasserchemie in der Gesellscheft Deutscher Chemiker. 1983. Deutsche Einheitsverfahren Zur Wasser-Abwasser-und Schlammuntersuchungen [German Standart Methods for Water, Wastewater and Sludge Tests]. Weinheim: Verlag Chemie.
  • Gerdemann, J.W. and T.H. Nicolson. 1963. Spors of mycorrhizal endogeny species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235-244.
  • Guo, T., J.L. Zhang, and X.L. Li. 2005. Effect of sulfur supply and mycorrhizal colonization on the growth and pungency of Allium cepa L. In: Plant Nutrition for Food Security, Human Health and Environmental Protection, ed.C.J.Li, pp. 860-861. Tsinghua, China: Tsinghua University Press.
  • Hoffman, C., H.J. Koch, G. Schlinker, G. Sander, M. Saurer, and K. Burcky. 1998. Supply and nutrient demand of sugar beet for sulphur. Zuckerindustrie 123: 675-682.
  • Kacar, B. 1972. Chemical analysis of soil and plant (in Turkish). Ankara, Turkey: Ankara University Agricultural Press 453.
  • Karaca, H. 2013. Effects of elemental sulfur and mycorrhizae on the yield of wheat in different soils. Journal of Plant Nutrition.
  • Karaca, H., V. Uygur, A. Özkan, and Z. Kaya. 2013. Effects of mycorrhizae and fertilization on soybean yield and nutrient uptake. Communications in Soil Science and Plant Analysis. 44(16): 2459-2471.
  • Karaca, H. 2012a. Buffering effect of elemental sulfur on mycorrhizal infection of leek. Journal of Plant Nutrition 35(5): 678-687.
  • Karaca, H. 2012b. Efficiency of elemental sulfur on mycorrhizae in the yield increase of wheat. Journal of Plant Nutrition 35(8): 1225-1233.
  • Klute, A. and C. Dirksen. 1986. Hydraulic Conductivity and Diffusivity: Laboratory Methods. In Methods of Soil Analysis. Part 1. Physical and mineralogical methods, ed, A. Klute (2nd Eds.). Madison, WI: SSSA Book Series 5.
  • Koske, R.E. and J.N.Gemma. 1989. A modified procedure for staining roots to detect VAM. Mycological Research 92: 486-505.
  • Lees, R. 1971. Laboratory Handbook of Methods of Food Analysis. London: Leonard Hill Books.
  • Lindsay, W.L. and W.A. Norwell. 1978. Development of DTPA for soil test zinc, iron, manganese and copper. Soil Science Society of America Journal 42: 421-428.
  • Loeppert, R.H. and D.L. Suarez, 1996. Carbonate and gypsum. In: Method of soil analysis. Part 3. Chemical methods, eds, D.L Sarks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, and M.E. Sumner, pp. 437-474. Madison, WI: SSSA.
  • McLaughlin, B.D. and I.C.R. Holford. 1982. Initial and medium –term responses of white clover to three sulfur fertilizers on a basaltic soil. Australian Journal of Experimental Agriculture and Animal Husbandry 22(115): 95-99.
  • Menge, J.A., C.K. Labanuskas, E.L.V. Johnson, and R.G. Platt. 1978. Partial substitution of mycorrhizal fungi for phosphorous fertilization in the greenhouse culture of citrus. Soil Science Society of American Journal 42: 926-930.
  • Merrien, A. 1987. La fertilization soufree du colza: un oubli qui peut couter cher! Perspectives Agricoles 115:201-203.
  • Mosse, B. 1967. Effects of host nutrient status on mycorrhizal infection. Annual Report of the Rothamsted Experiment Station, p.79.
  • Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31-36.
  • Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939. Washington, DC: US Government Printing Office.
  • Ortas, I., D. L. Rowell, and P.J. Haris. 2004. Effect of mycorrhizae and pH change at the root soil interface on phosphorus uptake by sorghum using a rhizocyclinder technique. Communications in Soil Science and Plant Analysis 35: 1061-1080.
  • Ortas, I., D. Ortakcı, and Z. Kaya. 2002. Various mycorrhizal fungi propagated on different hosts have different effect on citrus growth and nutrient uptake. Communications in Soil Science and Plant Analysis 33(1&2): 259-272.
  • Ortas, I., P.J. Harris, and D.L. Rowell. 1996. Enhanced uptake of phosphorous by mycorrhizal sorghum plants as influenced by forms of nitrogen. Plant and Soil 184: 255-264.
  • Özbek, H., U. Dinç, and S. Kapur. 1974. Detailed basic survey and mapping of the soils of Cukurova University settlement area (in Turkish). Cukurova University Agricultural Faculty publication 73. Adana, Turkey: Cukurova University.
  • Pratt, P.F. and H.H. Morse. 1954. Potassium release from exchangeable and non-exchangeable forms in Ohio soils. Ohio Agricultural Experiment Station Research Bulletin 747. Columbus, OH: Ohio State University.
  • Raj, J., D.J, Bagyaraj, and A. Manjunath. 1981. Influence of soil inoculation with vesicular- arbuscular mycorrhizae and a phosphate-dissolving bacterium on plant growth and 32p uptake. Soil Biology and Biochemistry 13(2): 105-108.
  • Romero, A., J. Ryder, J.T. Fisher, and J.G. Mexal. 1986. Root system modification of container stock for arid land plantings. Forest Ecology and Management 16: 281-290.
  • Schlichting, E. and H. Blume. 1966. Bodenkundliches Practikum [Soil Science Handbook]. Berlin: Paul Parey Verlag.
  • U.S. Salinity Laboratory Staff. 1954. Diagnosis and improvement of saline and alkali soils. USDA Handbook 60. Washington, DC: U.S. Government Printing Office.
  • Yibirin, H., J.W. Johnson, and D. Eckert. 1996. Corn production as affected by daily fertilization with ammonium, nitrate, and phosphorous. Soil Science Society of America Journal 60: 512-518.
There are 38 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Hüseyin Karaca 0000-0002-3720-3552

Publication Date August 20, 2019
Submission Date November 12, 2018
Published in Issue Year 2019

Cite

APA Karaca, H. (2019). Mycorrhizal efficiency in pepper yield by fertilization in clay soil growth conditions. Eurasian Journal of Forest Science, 7(2), 84-97. https://doi.org/10.31195/ejejfs.481705

 

E-posta: hbarist@gmail.com 

 

Eurasian Journal of Forest Science © 2013 is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1