Research Article
BibTex RIS Cite
Year 2020, , 123 - 128, 15.06.2020
https://doi.org/10.31195/ejejfs.712478

Abstract

References

  • Balmford, A., Bennun, L., Brink, B. T., Cooper, D., Cote, I. M., Crane, P. (2005). The convention on biological diversity’s 2010 target. Science 307, 212–213. doi: 10.1126/science.1106281.
  • Carbonetto, B., Rascovan, N., Álvarez, R., Mentaberry, A., and Vázquez, M. P. (2014). Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas. PLoS ONE 9:e99949. doi:10.1371/journal.pone.0099949
  • Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.A., Young, C.C., 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied soil ecology 34, 33-41.
  • Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., et al. (2014). Producing more grain with lower environmental costs. Nature 514, 486–489. doi: 10.1038/nature13609.
  • Crowther, T. W., Maynard, D. S., Leff, J. W., Oldfield, E. E., McCulley, R. L., Fierer, N., et al. (2014). Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study. Glob. Change Biol. 20, 2983–2994. doi:10.1111/gcb.12565.
  • Doran, J. W., and Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15, 3–11. doi: 10.1016/S0929-1393(00)00067-6.
  • Figuerola, E. L., Guerrero, L. D., Türkowsky, D., Wall, L. G., and Erijman, L. (2015). Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale. Environ. Microbiol. 17, 678–688. doi: 10.1111/1462-2920.12497.
  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science 309,570–574. doi: 10.1126/science.1111772.
  • Greiner, R., Alminger, M.L., Carlsson, N.-G., 2001. Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of baker's yeast. Journal of agricultural and food chemistry 49, 2228-2233.
  • Gugino, B. K., Idowu, O. J., Schindelbeck, R. R., van Es, H. M., Wolfe, D. W., Moebius, B. N., et al. (2009). Cornell Soil Health Assessment Training Manual, 2nd Edn. Geneva: Cornell University.
  • Mehmood U, Inam-ul-Haq, Saeed M, Altaf A, Azam F. 2018. A brief review on plant growth promoting rhizobacteria (PGPR): a key role in plant growth promotion. Plant Protection 2(2):77-82.
  • Moura, D.S., Bergey, D.R., Ryan, C.A., 2001. Characterization and localization of a woundinducible type I serine-carboxypeptidase from leaves of tomato plants (Lycopersicon esculentum Mill.). Planta 212, 222-230.
  • Nautiyal, C.S., Bhadauria, S., Kumar, P., Lal, H., Mondal, R., Verma, D., 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters 182, 291-296.
  • Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., et al. (2001). Forecasting agriculturally driven global environmental change. Science 292, 281–284. doi: 10.1126/science.1057544.
  • Rodrı́guez, H., Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances 17, 319-339.
  • Trivedi P, Delgado0Baqruerizo M, Anderson IC, Singh BK. 2016. Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Frontiers in Plant Science 7: 1-13.
  • Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., et al. (2009). Nutrient imbalances in agricultural development. Science 324:1519. doi: 10.1126/science.1170261.
  • Yadav, K.S., Dadarwal, K.R., 1997. Phosphate slubilization and mobilization through soil microorganisms, Biotechnological approaches in soil microorganisms for sustainable crop production, pp. 293-308.

Abundance of soil microbial communities and plant growth in agroecosystems and forest ecosystems

Year 2020, , 123 - 128, 15.06.2020
https://doi.org/10.31195/ejejfs.712478

Abstract

Objective: The objective of this study was to review natural ecosystems and agroecosystems to compare the abundance of soil microbial communities and also plant growth.
Material and Methods: This study used a random block design method, each soil from both ecosystems is planted with corn and string beans. Each treatment is repeated three times and arranged in random block design. At the end of the study, head height, root display and leaf count were calculated. The data obtained were then analyzed using the SAS 9.0 program. Results: The results showed that soils from agroecosystems had greater microbial abundance and good plant growth responses.
Conclusion: The results showed that agroecosystems are ecosystems that have an abundance of microbial communities that are the most good compared to forest ecosystems. This has an impact on good growth responses in agroecosystems compared to forest ecosystems.

References

  • Balmford, A., Bennun, L., Brink, B. T., Cooper, D., Cote, I. M., Crane, P. (2005). The convention on biological diversity’s 2010 target. Science 307, 212–213. doi: 10.1126/science.1106281.
  • Carbonetto, B., Rascovan, N., Álvarez, R., Mentaberry, A., and Vázquez, M. P. (2014). Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in Argentine Pampas. PLoS ONE 9:e99949. doi:10.1371/journal.pone.0099949
  • Chen, Y.P., Rekha, P.D., Arun, A.B., Shen, F.T., Lai, W.A., Young, C.C., 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied soil ecology 34, 33-41.
  • Chen, X., Cui, Z., Fan, M., Vitousek, P., Zhao, M., Ma, W., et al. (2014). Producing more grain with lower environmental costs. Nature 514, 486–489. doi: 10.1038/nature13609.
  • Crowther, T. W., Maynard, D. S., Leff, J. W., Oldfield, E. E., McCulley, R. L., Fierer, N., et al. (2014). Predicting the responsiveness of soil biodiversity to deforestation: a cross-biome study. Glob. Change Biol. 20, 2983–2994. doi:10.1111/gcb.12565.
  • Doran, J. W., and Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Appl. Soil Ecol. 15, 3–11. doi: 10.1016/S0929-1393(00)00067-6.
  • Figuerola, E. L., Guerrero, L. D., Türkowsky, D., Wall, L. G., and Erijman, L. (2015). Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale. Environ. Microbiol. 17, 678–688. doi: 10.1111/1462-2920.12497.
  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., et al. (2005). Global consequences of land use. Science 309,570–574. doi: 10.1126/science.1111772.
  • Greiner, R., Alminger, M.L., Carlsson, N.-G., 2001. Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of baker's yeast. Journal of agricultural and food chemistry 49, 2228-2233.
  • Gugino, B. K., Idowu, O. J., Schindelbeck, R. R., van Es, H. M., Wolfe, D. W., Moebius, B. N., et al. (2009). Cornell Soil Health Assessment Training Manual, 2nd Edn. Geneva: Cornell University.
  • Mehmood U, Inam-ul-Haq, Saeed M, Altaf A, Azam F. 2018. A brief review on plant growth promoting rhizobacteria (PGPR): a key role in plant growth promotion. Plant Protection 2(2):77-82.
  • Moura, D.S., Bergey, D.R., Ryan, C.A., 2001. Characterization and localization of a woundinducible type I serine-carboxypeptidase from leaves of tomato plants (Lycopersicon esculentum Mill.). Planta 212, 222-230.
  • Nautiyal, C.S., Bhadauria, S., Kumar, P., Lal, H., Mondal, R., Verma, D., 2000. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters 182, 291-296.
  • Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., et al. (2001). Forecasting agriculturally driven global environmental change. Science 292, 281–284. doi: 10.1126/science.1057544.
  • Rodrı́guez, H., Fraga, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology advances 17, 319-339.
  • Trivedi P, Delgado0Baqruerizo M, Anderson IC, Singh BK. 2016. Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Frontiers in Plant Science 7: 1-13.
  • Vitousek, P. M., Naylor, R., Crews, T., David, M. B., Drinkwater, L. E., Holland, E., et al. (2009). Nutrient imbalances in agricultural development. Science 324:1519. doi: 10.1126/science.1170261.
  • Yadav, K.S., Dadarwal, K.R., 1997. Phosphate slubilization and mobilization through soil microorganisms, Biotechnological approaches in soil microorganisms for sustainable crop production, pp. 293-308.
There are 18 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Evan Purnama Ramdan This is me

Achmad Yozar Perkasa 0000-0002-8327-1599

Abdul Munif This is me

Dwi Astuti This is me

Andini Hanif This is me

Cheppy Wati This is me

Astri Afriani This is me

Nur Holis This is me

Publication Date June 15, 2020
Submission Date April 1, 2020
Published in Issue Year 2020

Cite

APA Ramdan, E. P., Perkasa, A. Y., Munif, A., Astuti, D., et al. (2020). Abundance of soil microbial communities and plant growth in agroecosystems and forest ecosystems. Eurasian Journal of Forest Science, 8(2), 123-128. https://doi.org/10.31195/ejejfs.712478

 

E-posta: hbarist@gmail.com 

 

Eurasian Journal of Forest Science © 2013 is licensed under CC BY 4.0cc.svg?ref=chooser-v1by.svg?ref=chooser-v1