| | | |

## A Computational Software for PCM Snow Avalanche Model

#### Abdurrahim Aydin [1] , Remzi Eker [2]

Some numerical methods were applied to PCM snow avalanche model for calculation of avalanche dynamics and the software named NUM-PCM 1.0 was developed. The implemented numerical methods included Euler (1st and 2nd order Taylor Polynomial), Midpoint, Modified Euler, and Runge-Kutta Order Four method. Once results from numerical calculation were obtained, every approach was compared using NUM-PCM 1.0, Also, friction parameter, mass-to-drag parameter, and delta (horizontal distance) parameter of the model were tested with different scenarios. It was found that run-out distance decreased when the other parameters were constant with increasing of friction value. While mass-to-drag was increasing, velocity of the avalanche was also increasing, although the run-out distances were close to each other. In addition, it was determined that when the horizontal distance exceeds 50 meters, even if the velocity values of avalanche are close in each method, avalanche with high velocity is stopped harshly without reaching the run-out zone.

Avalanche Dynamics, Euler Method, Numerical Approach, NUM-PCM 1.0, PCM Model, Runge-Kutta
• Ancey, C., 2013. Why don’t avalanche-dynamics models of higher complexity necessarily lead to better predictions?, in International Snow Science Workshop, pp. 611–618, Grenoble.
• Barbolini, M., Gruber, U., Keylock, C.J., Naaim, M., Savi, F., 2000. Application of statistical and hydraulic-continuum dense-flow avalanche models to five real European sites. Cold Regions Science and Technology, 31, 133–149.
• Bartelt, P., Bühler, Y., Christen, M., Deubelbeiss, Y., Salz, M., Schneider, M., Schumacher, L., 2013. A numerical model for snow avalanches in research and practice, User Manual v1.5 Avalanche. WSL Institute for Snow and Avalanche Research SLF.
• Borstad, C.P. and McClung, D.M., 2009. Sensitive analyses in snow avalanche dynamics modeling and implications when modeling extreme events. Can. Geotech. J. 46, 1024-1033.
• Burden, R. and Faires, J., 1997. Numerical Analysis, 6th Edition New York: Brooks/Cole Pub. Co. Christen, M., Bartelt, P., Kowalski, J., 2010. Back calculation of the in den Arelen avalanche with RAMMS: interpretation of model results. Annals of Glaciology 51(54), 161-168.
• Christen, M., Bartelt, P., Gruber, U., 2002. AVAL-1D: an avalanche dynamics program for the practice. In Proceedings of International Congress INTERPRAEVENT 2002 in the Pacific Rim, 14–18 October 2002, Matsumoto, Japan. Tokyo, International Research Society INTERPRAEVENT for the Pacific Rim, 715–725.
• Fuchs, S., Bründl, M., Stötter, J., 2004. Development of avalanche risk between 1950 and 2000 in the Municipally of Davos, Switzerland. Natural Hazards and Earth System Sciences 263–275.
• Gubler, H.U., 1993. Swiss avalanche-dynamics procedures for dense flow, Avalanches. AlpuG, Dr. H. Gubler, Richtstattweg 2, CH-7270 Davos Platz.
• Jamieson, B., Margreth, S., Jones, A., 2008. Application and limitations of dynamic models for snow avalanche hazard mapping. International Snow Science Workshop, pg 730-739.
• Jóhannesson, T., Arnalds, Þ., Tracy, L., 2001. Results of the 2D avalanche model SAMOS for Siglufjörður. Report 01019, Vedurstofa Island.
• Karagöz, İ., 2001. Digital Analysis and Engineering Applications, Vipaş Publications cop., Bursa.
• McClung, D. and Schaerer, P., 1993. The Avalanche Handbook. The Mountaineers, Seattle, WA, 271 pp.
• Mears, A.I., 1992. Snow-avalanche hazard analysis for land-use planning and engineering. Colorado Geological Survey, Bulletin 49, 55 pp.
• Norem, H., Irgens, F., Schieldrop, B., 1989. Simulation of Snow-Avalanche Flow in Run-Out Zones. Annals of Glaciology, 13, 218-225.
• Oller, P., Muntán, E., Marturià, J., García, C., García, A., Martínez, P., 2006. The Avalanche Data in the Catalan Pyrennees. 20 years of avalanche mapping. Proceedings of the International Snow Science Workshop. Telluride, Colorado, USA. Oct. 2006.
• Oremus, R.M., 2006. A one-dimensional model of dense snow avalanches using mass and momentum balances. Thesis, the Faculty of Humboldt State University.
• Perla, R., Cheng, T.T., McClung, D.M., 1980. A two-parameter model of snow avalanche motion. Journal of Glaciology, Vol. 26, No. 94.
• Petrascheck, A. and Kienholz, H., 2003. Hazard assessment and mapping of mountain risks in Switzerland. In: Rickenmann D, Chen CL (eds) Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation. Millpress, Rotterdam.
• Salm, B., 1966. Contribution to avalanche dynamics, in Scientific Aspects of Snow and Ice Avalanche, pp. 199-214, IAHS Press, Wallingford.
• Salm, B., 1968. On non-uniform, steady flow of avalanching snow. International Association of Scientific Hydrology Publication 79 (General Assembly of Bern 1967 - Snow and Ice), 19-29.
• Salm, B., 2004. A short and personal history of snow avalanche dynamics. Cold Regions Science and Technology, 39, 83– 92.
• SLF, 1951. Winterbericht 1951. Winterberichte des Eidg. Institut für Schnee- und Lawinenforschung, Nr. 15, Davos.
• Sovilla, B., 2004. Field experiments and numerical modelling of mass entrainment and deposition processes in snow avalanches. (Doctoral dissertation) Swiss Federal Institute of Technology Zurich. DISS. ETH NO. 15462.
• Voellmy, A., 1955. Ueber die Zerstfrungskraft von Lawinen. Schweizerische Bauzeitung 73, Hefte 12, 15, 17, 19 und 37; 159–162, 212–217, 246–249, 280–285.
• Volk, G., Aydın, A., Eker, R., 2015. Avalanche Control with Mitigation Measures: A Case Study from Karaçam-Trabzon (Turkey). Eur J Forest Eng, 1(2):61-68.
Subjects Engineering Research Articles Author: Abdurrahim Aydin Author: Remzi Eker Institution: Düzce UniversityCountry: Turkey Publication Date : September 9, 2016
 Bibtex @research article { ejfe281321, journal = {European Journal of Forest Engineering}, issn = {}, eissn = {2149-5637}, address = {}, publisher = {Forest Engineering and Technologies Platform}, year = {2016}, volume = {2}, pages = {11 - 21}, doi = {}, title = {A Computational Software for PCM Snow Avalanche Model}, key = {cite}, author = {Aydin, Abdurrahim and Eker, Remzi} } APA Aydin, A , Eker, R . (2016). A Computational Software for PCM Snow Avalanche Model. European Journal of Forest Engineering , 2 (1) , 11-21 . Retrieved from https://dergipark.org.tr/en/pub/ejfe/issue/24263/281321 MLA Aydin, A , Eker, R . "A Computational Software for PCM Snow Avalanche Model". European Journal of Forest Engineering 2 (2016 ): 11-21 Chicago Aydin, A , Eker, R . "A Computational Software for PCM Snow Avalanche Model". European Journal of Forest Engineering 2 (2016 ): 11-21 RIS TY - JOUR T1 - A Computational Software for PCM Snow Avalanche Model AU - Abdurrahim Aydin , Remzi Eker Y1 - 2016 PY - 2016 N1 - DO - T2 - European Journal of Forest Engineering JF - Journal JO - JOR SP - 11 EP - 21 VL - 2 IS - 1 SN - -2149-5637 M3 - UR - Y2 - 2016 ER - EndNote %0 European Journal of Forest Engineering A Computational Software for PCM Snow Avalanche Model %A Abdurrahim Aydin , Remzi Eker %T A Computational Software for PCM Snow Avalanche Model %D 2016 %J European Journal of Forest Engineering %P -2149-5637 %V 2 %N 1 %R %U ISNAD Aydin, Abdurrahim , Eker, Remzi . "A Computational Software for PCM Snow Avalanche Model". European Journal of Forest Engineering 2 / 1 (September 2016): 11-21 . AMA Aydin A , Eker R . A Computational Software for PCM Snow Avalanche Model. Eur J Forest Eng. 2016; 2(1): 11-21. Vancouver Aydin A , Eker R . A Computational Software for PCM Snow Avalanche Model. European Journal of Forest Engineering. 2016; 2(1): 21-11.