Research Article
BibTex RIS Cite

Arum italicum Miller tuber extracts: evaluation of synergistic activities with ciprofloxacin against some pathogens

Year 2022, , 97 - 106, 28.02.2023
https://doi.org/10.55971/EJLS.1148283

Abstract

Antibiotic misuse or overuse leads antibiotic resistance. Antibiotic resistant bacteria infections cause significant clinical problem. Recently, antibiotic resistant bacteria numbers have increased, this situation has become a global public health treat. To achieve these problems, development of new antibacterial compounds is still popular among researchers. The focus on natural compounds/plant extracts in combination with antibiotics increase their activities and decrease the doses of antibiotics and their side effects. Despite known as poisonous, Arum italicum Miller is used as food and/or is used for the treatment such ailments as furuncle, eczema, peptic ulcer, wounds, etc. This interesting species was found as anticancer, cytotoxic, apoptotic agent against some human cancers. In the present study, the fractions of A. italicum tuber extract against human pathogens (Pseudomonas aeruginosa ATCC 27853, Bacillus cereus NRRL B-3711, Staphylococcus aureus ATCC 6538) were evaluated for their antibacterial activities by microdilution method. Each fraction was combined with ciprofloxacin and their synergistic activities were tested by checkerboard method. The MIC (minimum inhibitory concentrations) and FICI (fractional inhibitory concentration indexes) values were calculated. Totally, seven synergic interactions, ten additive interactions, and four indifferent interactions of tested fractions with ciprofloxacin were found.

Supporting Institution

Anadolu University

Project Number

1206S100

Thanks

Authors are very thankful to Prof. Dr. Hulusi Malyer (Uludag University, Faculty of Arts & Science, Department of Biology, 16059-Görükle, Bursa-Turkey) for the identification of the plant material. Authors remember Prof. Dr. Malyer with respect, he lost his life because of Covid-19 infection.

References

  • World Health Organization. Antibiotic resistance. Available at: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (Accessed on January 19, 2021).
  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P&T. 2015;40(4):277.
  • Kuok CF, Hoi SO, Hoi CF, Chan CH, Fong IH, Ngok CK, Meng LR, Fong P. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Exp Biol Med. 2017;242(7):731-743. https://doi.org/10.1177/1535370216689828
  • Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomed. 2009;16(2-3):97-110. https://doi.org/10.1016/j.phymed.2008.12.018
  • Yam TS, Hamilton-Miller JM, Shah S. The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP2’ synthesis, and beta-lactamase production in Staphylococcus aureus. J Antimicrob Chemother. 1998;42:211-216. https://doi.org/10.1093/jac/42.2.211
  • Nascimento GGF, Locatelli J, Freitas, FC, Silva GL. Antibacterial activity of plant extracts and phytochemicals on antibiotic resistant bacteria. Braz J Microbiol. 2000;31:247-256. https://doi.org/10.1590/S1517-83822000000400003
  • Rafiq Z, Narasimhan S, Haridoss M, Vennila R, Vaidyanathan R. Punica granatum rind extract: Antibiotic potentiator and efflux pump inhibitor of multidrug resistant Klebsiella pneumoniae clinical isolates. Asian J Pharm Clin Res. 2017;10:1-5. https://doi.org/10.22159/ajpcr.2017.v10i3.16000
  • Bouarab-Chibane L, Forquet V, Lanteri P, et al. Antibacterial Properties of Polyphenols: Characterisation and QSAR (Quantitative Structure- Activity Relationship) Models. Front Microbiol. 2019;10:829. https://doi.org/10.3389/fmicb.2019.00829
  • Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front Microbiol. 2019;10:911. https://doi.org/10.3389/fmicb.2019.00911
  • Ibitoye OB, Ajiboye TO. Ferulic acid potentiates the antibacterial activity of quinolone-based antibiotics against Acinetobacter baumannii. Mic Path. 2019;126:393-398. https://doi.org/10.1016/j.micpath.2018.11.033
  • De Natale A, Pollio A. Plants species in the folk medicine of Montecorvino Rovella (inland Campania, Italy). J Ethnopharmacol. 2007;109:295-303. https://doi.org/10.1016/j.jep.2006.07.038
  • Cornara L, La Rocca A, Marsili S, Mariotti MG. Traditional uses of plants in the Eastern Riviera (Liguria, Italy). J Ethnopharmacol. 2009;125:16-30. https://doi.org/10.1016/j.jep.2009.06.021
  • Tuzlacı E, Alparslan DF. Turkish folk medicinal plants, Part V: Babaeski (Kırklareli). J Fac Pharm Ist Univ. 2007;39:11-23. Available at: https://dergipark.org.tr/tr/pub/iujfp/issue/577/5694
  • Genç GE, Özhatay N. An ethnobotanical study in Çatalca (European part of İstanbul) II. Turk J Pharm Sci. 2006;3(2):73-89.
  • Wright CA. Mediterranean Vegetables: A Cook’s ABC of Vegetables and Their Preparation in Spain, France, Italy, Greece, Turkey, the Middle East, and North Africa with More Than 200 Authentic Recipes for the Home Cook. Harvard Common Press; 2001.
  • Luczaj L, Dolina K. A hundred years of change in wild vegetable use in Southern Herzegovina. J Ethnopharmacol. 2015;166:297-304. https://doi.org/10.1016/j.jep.2015.02.033
  • Della Greca M, Molinaro A, Monaco P, Previtera L. Two new lignan glucosides from Arum italicum. Heterocycl. 1993;36(9):2081-2086. https://doi.org/10.3987/COM-93-6424
  • Della Greca M, Fiorentino A, Molinaro A, Monaco P, Previtera L. Steroidal 5,6-epoxides from Arum italicum. Nat Prod Lett. 1993;2(1):27-32. https://doi.org/10.1080/10575639308043450
  • Della Greca M, Molinaro A, Monaco P, Previtera L. Dihydrobenzofuran neolignans from Arum italicum. Heterocycl. 1994;38(5):1099-1102. https://doi.org/10.3987/COM-94-6681
  • Della Greca M, Fiorentino A, Molinaro A, Monaco P, Previtera L. Hydroperoxysterols in Arum italicum. Nat Prod Lett. 1994;5(1):7-14. https://doi.org/10.1080/10575639408043928
  • Agalar HG, Akalın Çiftci G, Goger F, Kırımer N. Activity guided fractionation of Arum italicum Miller tubers and the LC/MS-MS profiles. Rec Nat Prod. 2018; 12(1):64-75. https://doi.org/10.25135/rnp.06.17.05.089
  • Quave CL, Plano LRW, Pantuso T, Bennett BC. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol. 2008;118:418-428. https://doi.org/10.1016/j.jep.2008.05.005
  • Yılmaz AD. Karaciğer ve safra rahatsızlıklarında kullanılan tıbbi bitkilerin antioksidan aktiviteleri üzerinde farmakognozik araştırmalar [master’s thesis]. İstanbul: Marmara University; 2008.
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement. CLSI document M100-S16. vol. 26–3; M7-A7, vol. 26–2; M2-A9, vol. 26–1. Wayne, PA: USA; 2006.
  • Demirci F, Güven K, Demirci B, Dadandı MY, Baser KHC. Antibacterial activity of two Phlomis essential oils against food pathogens. Food Cont. 2008;19(12):1159-1164. https://doi.org/10.1016/j.foodcont.2008.01.001
  • Van Vuuren SF, Suliman S, Viljoen AM. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol. 2009;48(4):440-446. https://doi.org/10.1111/j.1472-765X.2008.02548.x
  • Stanojevic D, Comic L, Stefanovic O, Solujic-Sukdolak S. In vitro synergistic antibacterial activity of Salvia officinalis L. and some preservatives. Arch Biol Sci. 2010;62(1):175-183. https://doi.org/10.2298/ABS1001167S
  • Jain SN, Vishwanatha T, Reena V, et al. Antibiotic synergy test: checkerboard method on multidrug resistant Pseudomonas aeruginosa. Int Res J Pharm. 2011;2(12):196-198.
  • Clinical and Laboratory Standards Institute. Clinical and Laboratory Standards Institute methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approve Standard M7-A7, CLSI, 7th ed, Wayne, PA: USA; 2006.
  • Goldberg JB, Pier GB. The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. Trend Microbiol. 2000;8(11):514-520. https://doi.org/10.1016/S0966-842X(00)01872-2
  • Wolska K, Szweda P. Genetic Features of Clinical Pseudomonas aeruginosa Strains. Polish J Microbiol. 2009;58(3):255-260.
  • Fields PI, Swanson RV, Haidaris CG, Heffron F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci. 1986;83:5189-5193. https://doi.org/10.1073/pnas.83.14.5189
  • Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microb Infect. 2000;2(2):189-198. https://doi.org/10.1016/S1286-4579(00)00269-0
  • El Demeiry M, Ali A, Abouleila Y, et al. Quantification and targeted detection of ciprofloxacin in dosage form and human urine by direct injection nano-electrospray ionization multi-stage mass spectrometry. Microchem J. 2020;153:104534. https://doi.org/10.1016/j.microc.2019.104534
  • Martin M, Boixeda R, Munoz A, Felip A. Ciprofloxacin as a cause of acute renal failure. Enferm Infect Microbiol Clin. 2020;38(8):402-403. https://doi.org/10.1016/j.eimc.2020.01.010
  • Wang X, Zhao X, Malik M, Drlica K. Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. J Antimicrob Chemother. 2010;65:520-524. https://doi.org/10.1093/jac/dkp486
  • Borges A, Ferreira C, Saavedra MJ, Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist. 2013;19:256-265. https://doi.org/10.1089/mdr.2012.0244
  • Naz S, Ahmad S, Ajaz Rasool S, Asad Sayeed S, Siddiqi R. Antibacterial activity directed isolation of compounds from Onosma hispidum. Microbiol Res. 2006;161:43-48. https://doi.org/10.1016/j.micres.2005.05.001
  • Tsou MF, Hung CF, Lu HF, et al. Effects of caffeic acid, chlorogenic acid and ferulic acid on growth and arylamine N-acetyltransferase activity in Shigella sonnei (group D). Microbios. 2000;101:37-46.
  • Takahashi H, Kashimura M, Koiso H, Kuda T, Kimura B. Use of ferulic acid as a novel candidate of growth inhibiting agent against Listeria monocytogenes in ready-to-eat food. Food Cont. 2013;33(1):244-248. https://doi.org/10.1016/j.foodcont.2013.03.013
  • Ganan M, Martinez-Rodriguez AJ, Carrascosa AV. Antimicrobial activity of phenolic compounds of wine against Campylobacter jejuni. Food Cont. 2009;20:739-742. https://doi.org/10.1016/j.foodcont.2008.09.012
  • Lou Z, Wang H, Rao S, Sun J, Ma C, Li J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Cont. 2012;25(2):550-554. https://doi.org/10.1016/j.foodcont.2011.11.022
  • Bag A, Chattopadhyay RR. On the basis of fractional inhibitory concentration indices values, nisin/p‐coumaric acid combination exhibited synergistic antibiofilm activity. Lett Appl Microbiol. 2017;65(5):366-372. https://doi.org/10.1111/lam.12793
  • Giacomini D, Musumeci R, Galletti P, et al. 4-alkyliden-azetidinones modified with plant derived polyphenols: antibacterial and antioxidant properties. Eur J Med Chem. 2017;140:604-614. https://doi.org/10.1016/j.ejmech.2017.09.048
  • Edreva AM, Velikova VB, Tsonev TD. Phenylamides in Plants. Russ J Plant Physiol. 2007;54(3):287-301. https://doi.org/10.1134/S1021443707030016
  • Tiburcio AF, Altabella T, Bitrian M, Alcazar R. The roles of polyamines during the lifespan of plants: from development to stress. Planta. 2014;240:1-18. https://doi.org/10.1007/s00425-014-2055-9
  • Walters DR. Polyamines and plant disease. Phytochem. 2003;64(1):97-107. https://doi.org/10.1016/S0031-9422(03)00329-7
  • Kwon DH, Lu CD. Polyamines Increase Antibiotic Susceptibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(5):1623-1627. https://doi.org/10.1128/AAC.50.5.1623-1627.2006
  • Zhang H, Liu R, Lu Q. Separation and Characterization of phenolamines and flavonoids from rape bee pollen, and comparison of their antioxidant activities and protective effects against oxidative stress. Molecules. 2020;25(6):1264. https://doi.org/10.3390/molecules25061264
Year 2022, , 97 - 106, 28.02.2023
https://doi.org/10.55971/EJLS.1148283

Abstract

Project Number

1206S100

References

  • World Health Organization. Antibiotic resistance. Available at: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (Accessed on January 19, 2021).
  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P&T. 2015;40(4):277.
  • Kuok CF, Hoi SO, Hoi CF, Chan CH, Fong IH, Ngok CK, Meng LR, Fong P. Synergistic antibacterial effects of herbal extracts and antibiotics on methicillin-resistant Staphylococcus aureus: A computational and experimental study. Exp Biol Med. 2017;242(7):731-743. https://doi.org/10.1177/1535370216689828
  • Wagner H, Ulrich-Merzenich G. Synergy research: approaching a new generation of phytopharmaceuticals. Phytomed. 2009;16(2-3):97-110. https://doi.org/10.1016/j.phymed.2008.12.018
  • Yam TS, Hamilton-Miller JM, Shah S. The effect of a component of tea (Camellia sinensis) on methicillin resistance, PBP2’ synthesis, and beta-lactamase production in Staphylococcus aureus. J Antimicrob Chemother. 1998;42:211-216. https://doi.org/10.1093/jac/42.2.211
  • Nascimento GGF, Locatelli J, Freitas, FC, Silva GL. Antibacterial activity of plant extracts and phytochemicals on antibiotic resistant bacteria. Braz J Microbiol. 2000;31:247-256. https://doi.org/10.1590/S1517-83822000000400003
  • Rafiq Z, Narasimhan S, Haridoss M, Vennila R, Vaidyanathan R. Punica granatum rind extract: Antibiotic potentiator and efflux pump inhibitor of multidrug resistant Klebsiella pneumoniae clinical isolates. Asian J Pharm Clin Res. 2017;10:1-5. https://doi.org/10.22159/ajpcr.2017.v10i3.16000
  • Bouarab-Chibane L, Forquet V, Lanteri P, et al. Antibacterial Properties of Polyphenols: Characterisation and QSAR (Quantitative Structure- Activity Relationship) Models. Front Microbiol. 2019;10:829. https://doi.org/10.3389/fmicb.2019.00829
  • Othman L, Sleiman A, Abdel-Massih RM. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front Microbiol. 2019;10:911. https://doi.org/10.3389/fmicb.2019.00911
  • Ibitoye OB, Ajiboye TO. Ferulic acid potentiates the antibacterial activity of quinolone-based antibiotics against Acinetobacter baumannii. Mic Path. 2019;126:393-398. https://doi.org/10.1016/j.micpath.2018.11.033
  • De Natale A, Pollio A. Plants species in the folk medicine of Montecorvino Rovella (inland Campania, Italy). J Ethnopharmacol. 2007;109:295-303. https://doi.org/10.1016/j.jep.2006.07.038
  • Cornara L, La Rocca A, Marsili S, Mariotti MG. Traditional uses of plants in the Eastern Riviera (Liguria, Italy). J Ethnopharmacol. 2009;125:16-30. https://doi.org/10.1016/j.jep.2009.06.021
  • Tuzlacı E, Alparslan DF. Turkish folk medicinal plants, Part V: Babaeski (Kırklareli). J Fac Pharm Ist Univ. 2007;39:11-23. Available at: https://dergipark.org.tr/tr/pub/iujfp/issue/577/5694
  • Genç GE, Özhatay N. An ethnobotanical study in Çatalca (European part of İstanbul) II. Turk J Pharm Sci. 2006;3(2):73-89.
  • Wright CA. Mediterranean Vegetables: A Cook’s ABC of Vegetables and Their Preparation in Spain, France, Italy, Greece, Turkey, the Middle East, and North Africa with More Than 200 Authentic Recipes for the Home Cook. Harvard Common Press; 2001.
  • Luczaj L, Dolina K. A hundred years of change in wild vegetable use in Southern Herzegovina. J Ethnopharmacol. 2015;166:297-304. https://doi.org/10.1016/j.jep.2015.02.033
  • Della Greca M, Molinaro A, Monaco P, Previtera L. Two new lignan glucosides from Arum italicum. Heterocycl. 1993;36(9):2081-2086. https://doi.org/10.3987/COM-93-6424
  • Della Greca M, Fiorentino A, Molinaro A, Monaco P, Previtera L. Steroidal 5,6-epoxides from Arum italicum. Nat Prod Lett. 1993;2(1):27-32. https://doi.org/10.1080/10575639308043450
  • Della Greca M, Molinaro A, Monaco P, Previtera L. Dihydrobenzofuran neolignans from Arum italicum. Heterocycl. 1994;38(5):1099-1102. https://doi.org/10.3987/COM-94-6681
  • Della Greca M, Fiorentino A, Molinaro A, Monaco P, Previtera L. Hydroperoxysterols in Arum italicum. Nat Prod Lett. 1994;5(1):7-14. https://doi.org/10.1080/10575639408043928
  • Agalar HG, Akalın Çiftci G, Goger F, Kırımer N. Activity guided fractionation of Arum italicum Miller tubers and the LC/MS-MS profiles. Rec Nat Prod. 2018; 12(1):64-75. https://doi.org/10.25135/rnp.06.17.05.089
  • Quave CL, Plano LRW, Pantuso T, Bennett BC. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J Ethnopharmacol. 2008;118:418-428. https://doi.org/10.1016/j.jep.2008.05.005
  • Yılmaz AD. Karaciğer ve safra rahatsızlıklarında kullanılan tıbbi bitkilerin antioksidan aktiviteleri üzerinde farmakognozik araştırmalar [master’s thesis]. İstanbul: Marmara University; 2008.
  • Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Sixteenth Informational Supplement. CLSI document M100-S16. vol. 26–3; M7-A7, vol. 26–2; M2-A9, vol. 26–1. Wayne, PA: USA; 2006.
  • Demirci F, Güven K, Demirci B, Dadandı MY, Baser KHC. Antibacterial activity of two Phlomis essential oils against food pathogens. Food Cont. 2008;19(12):1159-1164. https://doi.org/10.1016/j.foodcont.2008.01.001
  • Van Vuuren SF, Suliman S, Viljoen AM. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett Appl Microbiol. 2009;48(4):440-446. https://doi.org/10.1111/j.1472-765X.2008.02548.x
  • Stanojevic D, Comic L, Stefanovic O, Solujic-Sukdolak S. In vitro synergistic antibacterial activity of Salvia officinalis L. and some preservatives. Arch Biol Sci. 2010;62(1):175-183. https://doi.org/10.2298/ABS1001167S
  • Jain SN, Vishwanatha T, Reena V, et al. Antibiotic synergy test: checkerboard method on multidrug resistant Pseudomonas aeruginosa. Int Res J Pharm. 2011;2(12):196-198.
  • Clinical and Laboratory Standards Institute. Clinical and Laboratory Standards Institute methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approve Standard M7-A7, CLSI, 7th ed, Wayne, PA: USA; 2006.
  • Goldberg JB, Pier GB. The role of the CFTR in susceptibility to Pseudomonas aeruginosa infections in cystic fibrosis. Trend Microbiol. 2000;8(11):514-520. https://doi.org/10.1016/S0966-842X(00)01872-2
  • Wolska K, Szweda P. Genetic Features of Clinical Pseudomonas aeruginosa Strains. Polish J Microbiol. 2009;58(3):255-260.
  • Fields PI, Swanson RV, Haidaris CG, Heffron F. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci. 1986;83:5189-5193. https://doi.org/10.1073/pnas.83.14.5189
  • Kotiranta A, Lounatmaa K, Haapasalo M. Epidemiology and pathogenesis of Bacillus cereus infections. Microb Infect. 2000;2(2):189-198. https://doi.org/10.1016/S1286-4579(00)00269-0
  • El Demeiry M, Ali A, Abouleila Y, et al. Quantification and targeted detection of ciprofloxacin in dosage form and human urine by direct injection nano-electrospray ionization multi-stage mass spectrometry. Microchem J. 2020;153:104534. https://doi.org/10.1016/j.microc.2019.104534
  • Martin M, Boixeda R, Munoz A, Felip A. Ciprofloxacin as a cause of acute renal failure. Enferm Infect Microbiol Clin. 2020;38(8):402-403. https://doi.org/10.1016/j.eimc.2020.01.010
  • Wang X, Zhao X, Malik M, Drlica K. Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell death. J Antimicrob Chemother. 2010;65:520-524. https://doi.org/10.1093/jac/dkp486
  • Borges A, Ferreira C, Saavedra MJ, Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Resist. 2013;19:256-265. https://doi.org/10.1089/mdr.2012.0244
  • Naz S, Ahmad S, Ajaz Rasool S, Asad Sayeed S, Siddiqi R. Antibacterial activity directed isolation of compounds from Onosma hispidum. Microbiol Res. 2006;161:43-48. https://doi.org/10.1016/j.micres.2005.05.001
  • Tsou MF, Hung CF, Lu HF, et al. Effects of caffeic acid, chlorogenic acid and ferulic acid on growth and arylamine N-acetyltransferase activity in Shigella sonnei (group D). Microbios. 2000;101:37-46.
  • Takahashi H, Kashimura M, Koiso H, Kuda T, Kimura B. Use of ferulic acid as a novel candidate of growth inhibiting agent against Listeria monocytogenes in ready-to-eat food. Food Cont. 2013;33(1):244-248. https://doi.org/10.1016/j.foodcont.2013.03.013
  • Ganan M, Martinez-Rodriguez AJ, Carrascosa AV. Antimicrobial activity of phenolic compounds of wine against Campylobacter jejuni. Food Cont. 2009;20:739-742. https://doi.org/10.1016/j.foodcont.2008.09.012
  • Lou Z, Wang H, Rao S, Sun J, Ma C, Li J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Cont. 2012;25(2):550-554. https://doi.org/10.1016/j.foodcont.2011.11.022
  • Bag A, Chattopadhyay RR. On the basis of fractional inhibitory concentration indices values, nisin/p‐coumaric acid combination exhibited synergistic antibiofilm activity. Lett Appl Microbiol. 2017;65(5):366-372. https://doi.org/10.1111/lam.12793
  • Giacomini D, Musumeci R, Galletti P, et al. 4-alkyliden-azetidinones modified with plant derived polyphenols: antibacterial and antioxidant properties. Eur J Med Chem. 2017;140:604-614. https://doi.org/10.1016/j.ejmech.2017.09.048
  • Edreva AM, Velikova VB, Tsonev TD. Phenylamides in Plants. Russ J Plant Physiol. 2007;54(3):287-301. https://doi.org/10.1134/S1021443707030016
  • Tiburcio AF, Altabella T, Bitrian M, Alcazar R. The roles of polyamines during the lifespan of plants: from development to stress. Planta. 2014;240:1-18. https://doi.org/10.1007/s00425-014-2055-9
  • Walters DR. Polyamines and plant disease. Phytochem. 2003;64(1):97-107. https://doi.org/10.1016/S0031-9422(03)00329-7
  • Kwon DH, Lu CD. Polyamines Increase Antibiotic Susceptibility in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(5):1623-1627. https://doi.org/10.1128/AAC.50.5.1623-1627.2006
  • Zhang H, Liu R, Lu Q. Separation and Characterization of phenolamines and flavonoids from rape bee pollen, and comparison of their antioxidant activities and protective effects against oxidative stress. Molecules. 2020;25(6):1264. https://doi.org/10.3390/molecules25061264
There are 49 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Research Articles
Authors

Hale Gamze Ağalar 0000-0003-4826-5975

Gözde Öztürk 0000-0002-3998-8859

Neşe Kırımer 0000-0001-7866-7719

Project Number 1206S100
Publication Date February 28, 2023
Submission Date July 27, 2022
Published in Issue Year 2022

Cite

Vancouver Ağalar HG, Öztürk G, Kırımer N. Arum italicum Miller tuber extracts: evaluation of synergistic activities with ciprofloxacin against some pathogens. Eur J Life Sci. 2023;1(3):97-106.