Review Article
BibTex RIS Cite

The role of immunotherapy in lung cancer: Actual scenery

Year 2023, Volume: 2 Issue: 1, 45 - 51, 24.04.2023
https://doi.org/10.55971/EJLS.1267898

Abstract

More than half of those who succumb to cancer each year also lose their battle with the disease, making cancer a leading cause of death worldwide. After surgery, hormonal therapy, radiotherapy and chemotherapy, which are preferred in cancer management, immunotherapy has revolutionized. In this mini-review, we cover the various immunotherapeutic approaches used in contemporary cancer immunotherapies. These are immune checkpoint blockade, an attemp planned to ‘unleash’ robust T cell responses, and adaptive cellular therapies connected on the infusion of tumor-struggling immune cells into the body. One of these attemps, Nivolumab, became the first ICI to be approved to treat lung cancer in 2014. To date, different ICIs, such as pembrolizumab, atezolizumab, and durvalumab, have been in a row introduced into clinical medicine and have shown significant effect. Therefore, in this mini-review, we present some emerging goals and attemps in cancer immunotherapy.

References

  • Krishna CT, Adam B, Kalyan S, John SA, Alexander B. Epidemiology of lung cancer Contemp Oncol (Pozn). (2021); 25(1):45-52. https://doi.org/10.5114/wo.2021.103829
  • Wenwen G, Tianyun Q, Tian L. The role of stem cells in small-cell lung cancer: Evidence from chemoresistance to immunotherapy. Semin Cancer Biol. (2022);87,160-169. https://doi.org/10.1016/j.semcancer.2022.11.006
  • Tanoue LT, Tanner NT, Gould Michael K and Silvestri Gerard A. Lung Cancer Screening. Am J Respir Crit Care Med. (2015); 191(1):1-118. https://doi.org/10.1164/rccm.201410-1777CI.
  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global Cancer Statistics. 2012 Ca Cancer J Clin. (2015); 65:87-108. https://doi.org/10.3322/caac.21262
  • Thai A, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. (2021); 398(10299), 535-554. https://doi.org/10.1016/S0140-6736(21)00312-3.
  • Ju MH, Kim HR, Kim JB, Kim YH, Kim DK, Park SI. Surgical outcomes in small cell lung cancer. Korean J Thorac Cardiovasc Surg. (2012);45(1):40-4. https://doi.org/10.5090/kjtcs.2012.45.1.40
  • Global monitoring report on financial protection in health 2019. Geneva: World Health Organization/World Bank. (2019); ISBN 978-92-4-000396-5
  • Siegel R, Miller K, Fuchs H, Jemal A. Cancer Statistic. Ca cancer J Clin. (2021); 71(1) 7-33. https://doi.org/10.3322/caac.21654
  • Jayan AP, Anandu KR, Madhu K, Saiprabha VN. A pharmacological exploration of targeted drug therapy in non‑small cell lung cancer. Med Oncol. (2022); 39:147 https://doi.org/10.1007/s12032-022-01744-6
  • Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu Y-L, Ares LP. Lung cancer: Current therapies and new targeted treatments. Lancet. (2017); 389: 299–311. https://doi.org/10.1016/S0140-6736(16)30958-8
  • Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. (2018); 25;9(2):117.. https://doi.org/10.1038/s41419-017-0063-y
  • Mithoowani H, and Febbraro M. Non-Small-Cell Lung Cancer in 2022: A Review for General Practitioners in Oncology, Curr Oncol. (2022); 29,1828–1839 https://doi.org/10.3390/curroncol29030150
  • Zarogoulidis K, Zarogoulidis P, Darwiche K, Boutsikou E, Machairiotis N, Tsakiridis K, Katsikogiannis N, Kougioumtzi I, Karapantzos I, Huang H, Spyratos D. Treatment of non-small cell lung cancer (NSCLC). J Thorac Dis. (2013); 5(S4):S389-S396. https://doi.org/10.3978/j.issn.2072-1439.2013.07.10
  • Key J, Kim YS, Tatulli F, Palange AL, O’Neill B, Aryal S, Ramirez M,Liu X, Ferrari M, Munden R, Decuzzi P. Opportunities for nanotheranosis in lung cancer and pulmonary metastasis. Clin Transl Imaging. (2014); 2:427–437. https://doi.org/10.1007/s40336-014-0078-7
  • Yingjiao X, Shenda H, Hongbin J, Xiangkun H. Evolution from genetics to phenotype:reinterpretation of NSCLC plasticity, heterogeneity, and drug resistance Protein Cell (2017); 8(3):178–190. https://doi.org/10.1007/s13238-016-0330-1
  • Crino L, Weder W, van Meerbeeck J, Felip E. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. (2010); 21,103-15. https://doi.org/10.1093/annonc/mdq207
  • Aritraa L, Avik M, Pravin DP, Navneet S, Purvish P, Bharti B, Anubhab M and Manash KP. Lung cancer immunotherapy: progress, pitfalls, and promises. Molecular Cancer (2023); 22:40. https://doi.org/10.1186/s12943-023-01740-y
  • Ahmed A. Mostafa and Don G. Morris. Immunotherapy for Lung Cancer: Has it Finally Arrived? Front Oncol. (2014); 4: 288. https://doi.org/10.3389/fonc.2014.00288
  • Ping L, Yifei M, Jindan K, Jun W, Zhucheng Y, Hongli X, Xinying L, Xin L, Shaozhong W and Xinjun L. A Low Advanced Lung Cancer Inflammation Index Predicts a Poor Prognosis in Patients With Metastatic Non–Small Cell Lung Cancer Front Mol Biosci. (2022); (8) https://doi.org/10.3389/fmolb.2021.784667
  • Sanmamed MF and Chen L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell. (2018); 04:175(2):313–326. https://doi.org/10.1016/j.cell.2018.09.035.
  • Karla A. Ruiz-Cejaa, Yolanda I. Chirino, Current FDA-approved treatments for non-small cell lung cancer and potential biomarkers for its detection. Biomedicine & Pharmacotherapy (2017); 90 24–37. https://doi.org/10.1016/j.biopha.2017.03.018
  • Yuanyuan Z and Zemin Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications Cellular & Molecular Immunology (2020); 17:807–821; https://doi.org/10.1038/s41423-020-0488-6
  • Libin G, Ran W, Yao L and Hang FK. Clinical and Recent Patents Applications of PD-1/PD-L1 Targeting Immunotherapy in Cancer Treatment-Current Progress, Strategy, and Future Perspective. Front Immunol. (2020); 11. https://doi.org/10.3389/fimmu.2020.01508
  • Rachel S. Riley, Carl H. June, Robert Langer, and Michael J. Mitchell. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. (2019); 18(3): 175–196. https://doi.org/10.1038/s41573-018-0006-z
  • Bondhopadhyay B, Sisodiya S, Chikara A, Khan A, Tanwar P, Afroze,Di, Singh N, Agrawal U, Mehrotra R and Hussain S. Cancer immunotherapy: a promising dawn in cancer research. Am J Blood Res. (2020); 10(6):375-385
  • Gupta S, Gupta SC, Hunter KD, and Pant AB. Immunotherapy: A New Hope for Cancer Patients. J Oncol. (2020) https://doi.org/10.1155/2020/3548603
  • Miliotou AN, Papadopoulou LC. CAR T-cell Therapy: A New Era in Cancer Immunotherapy Curr Pharm Biotechnol. (2018); 19,5-18. https://doi.org/10.2174/1389201019666180418095526.
  • Maakaron JE, Hu Marie, Jurdi NE. Chimeric antigen receptor T cell therapy for cancer: clinical applications and practical considerations. BMJ (2022); 378 https://doi.org/10.1136/bmj-2021-068956
  • Fischer JW and Bhattarai. N. CAR-T Cell Therapy: Mechanism, Management, and Mitigation of Inflammatory Toxicities Front. Immunol. (2021); 12 https://doi.org/10.3389/fimmu.(2021).693016
  • Zhang C, Durer S, Thandra KC, Kasi A, Chimeric Antigen Receptor T-Cell Therapy StatPearls Publishing. (2023)
  • Ribas A. Adaptive immune resistance: How cancer protects from immune attack Cancer Discov. (2015); 5(9): 915–919. https://doi.org/10.1158/2159-8290.CD-15-0563.
  • Yin L, Huseby E, Scott-Browne J, Rubtsova K, Pinilla C, Crawford F, Marrack P, Dai S and Kappler. JW. A single T cell receptor bound to major histocompatibility complex class I and class II glycoproteins reveals switchable TCR conformers. Immunity. (2011); 35(1):23-33. https://doi.org/10.1016/j.immuni.2011.04.017.
  • Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. (2020); 20,651–668. https://doi.org/10.1038/s41577-020-0306-5.
  • Steven A, Fisher SA, Robinson BW. Lung Cancer Practice, Implementing evidence from around the world. Respirology. (2016); 21, 821–833. https://doi.org/10.1111/resp.12789
  • Topalian SL, Drake CG, and Pardoll DM. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell. (2015); 27(4):450-461. https://doi.org/10.1016/j.ccell.2015.03.001
  • Kim GR and Choi JM. Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy. Mol. Cells (2022); 45(8): 513-521. https://doi.org/10.14348/molcells.2022.2056
  • Baksh K. & Weber, J. Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Semin Oncol. (2015); 42, 363-377 https://doi.org/10.1053/j.seminoncol.2015.02.015.
  • Esensten JH, Helou YA, Chopra G, Weiss A and Bluestone JA. CD28 costimulation: from mechanism to therapy. Immunity. (2016); 17;44(5):973–988. https://doi.org/10.1016/j.immuni.(2016);04.020
  • Ramagopal UA, Liu W, Garrett-Thomson SC, Bonanno JB, Yan Q, Srinivasan M, Wong SC, Bell A, Mankikar S, Rangan VS, Deshpande S, Korman AJ, Almo SC. Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proc. Natl. Acad. Sci. (2017); (21):114. https://doi.org/10.1073/pnas.1617941114.
  • Navid S, Dana Rae TC, Aram D, Daniele G, Raheleh R and Yong L. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers (2021); 13, 1440. https://doi.org/10.3390/cancers13061440
  • Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. (2020); 10:727–42.
  • Kamphorst A, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, Sica GL, Sharpe AH, Freeman GJ, Blazar BR, Turka LA, K Owonikoko T, Pillai RN, Ramalingam SS , Araki K, Ahmed R. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science (2017); 355, 1423–1427. https://doi.org/10.1126/science.aaf0683
  • HaiXia L, Chao Z, Jinming H, Jie Z, Shan L and Tao J. PD-1/PD-L1 Axis as a Potential Therapeutic Target for Multiple Sclerosis: A T Cell Perspective. Front. Cell. Neurosci. (2021); 15. https://doi.org/10.3389/fncel (2021).716747
  • Edouard D, Nicolas P, Mathieu S, Luc T and Florian G. Anti-PD1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer with Actionable Oncogenic Driver Mutations. Int J Mol Sci. (2021); 22, 6288. https:// doi.org/10.3390/ijms22126288
  • Mengke N, Ming Y, Ning L, Suxia L and Kongming W. Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC. Exp Hematol Oncol (2021); 10:18 https:// doi.org/10.1186/s40164-021-00211-8
  • Weiting Q, Lipeng H, Xueli Z, Shuheng J, Jun L, Zhigang Z and Xu W. The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front. Immunol (2019); 10. https:// doi.org/10.3389/fimmu.(2019);02298
  • Acúrcio RC, Pozzi S, Carreira, B, Pojo M, Gómez-Cebrián N, Casimiro S, Fernandes, A, Barateiro A, Farricha V, Brito J, Leandro AP, Salvador JAR, Graça L, Puchades-Carrasco L, Costa,L, Satchi-Fainaro R, Guedes RC, Florindo HF. Therapeutic targeting of PD-1/PD-L1 blockade by novel small-molecule inhibitors recruits cytotoxic T cells into solid tumor microenvironment. J Immunother Cancer (2022); https://doi.org/10.1136/jitc-2022-004695
  • Cinzia S, Marco A, Esdy R, Matteo L, Karen WG, Edoardo M. Programmed cell death-ligand 2: A neglected but important target in the immune response to cancer? Transl Oncology (2020); 13:(10). https://doi.org/10.1016/j.tranon.2020.100811.
  • Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases, Nat Rev Immunol.(2018); 18.91-104. https://doi.org/10.1038/nri.2017.112
  • Shalom L, Anna S. Tocheva, Shoiab Bukhari, Kieran Adam, and Adam Mor. PD-1-stimulated T cell subsets are transcriptionally and functionally distinct. iScience 24, (2021); https://doi.org/10.1016/j.isci.(2021); 103020
  • Reetu M, Dipanjan D, Marion LH and Marcus S. Noel The Role of Immunotherapy in Pancreatic Cancer. Curr Oncol. (2022); 29, 6864–6892. https://doi.org/10.3390/curroncol29100541
  • Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, Ladwa R, O’Byrne K, Kulasinghe A. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. (2022); 29(5):3044-3060. https://doi.org/10.3390/curroncol29050247
  • Imfinzi. Prescribing information. AstraZeneca; Accessed (2022); https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761069s018lbl.pdf
  • Neelapu SS, Tummala,S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, Komanduri KV, Lin Y, Jain N, Daver N, Westin J, Gulbis AM, Loghin ME, Groot JF, Adkins S, Davis SE, Rezvani K, Hwu P, Shpall EJ. Chimeric antigen receptor T cell therapy-assessment and management of toxicities: Nat Rev Clin Oncol. (2018); 15:47-62. https://doi.org/10.1038/nrclinonc.2017.148.
  • Jingjing Q, Quanhui M, Lijun C, Jianying Z. Chimeric antigen receptor (CAR)‑T‑cell therapy in non‑small‑cell lung cancer (NSCLC): current status and future perspectives: Cancer Immunology, Immunotherapy (2021); 70: 619–631, https://doi.org/10.1007/s00262-020-02735-0
  • Shengnan Y, Anping L, Qian L, Tengfei L, Xun Y, Xinwei H and Kongming W. Chimeric antigen receptor T cells: a novel therapy for solid tumors: Journal of Hematology & Oncology (2017); 10:78. https://doi.org/10.1186/s13045-017-0444-9
  • Xu C, Ju D and Zhang X. Chimeric antigen receptor T-cell therapy: challenges and opportunities in lung cancer. Antib Ther (2022); 5:1, 73–83 https://doi.org/10.1093/abt/tbac006
  • Sadelain M. Chimeric Antigen Receptors: A Paradigm Shift in Immunotherapy. Annu Rev Cancer Biol. (2017); 1:447–66 https://doi.org/10.1146/annurev-cancerbio-050216-034351
  • Kaichao F, Yelei G, Hanren D, Yao W, Xiang L, Hejin J & Weidong H. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer: Science China Life Science (2018); 59 (5); 468-479: https://doi.org/10.1007/s11427-016-5023-8
  • Lopez AH, Téllez-Gonzalezz MA. Teran PM and Acosta AM. Chimeric Antigen Receptor-T Cells: A Pharmaceutical Scope. Front Pharmacol. (2021); 12: https://doi.org/10.3389/fphar.2021.720692
  • Xiao B-F, Jing-Tao Z, Yu-Ge Z, Xin-Run C, Zhe-Ming L, Ben-Tong Y and Nan W. Chimeric Antigen Receptor T-Cell Therapy in Lung Cancer: Potential and Challenges Front Immunol (2021); https://doi.org/10.3389/fimmu.2021.782775
Year 2023, Volume: 2 Issue: 1, 45 - 51, 24.04.2023
https://doi.org/10.55971/EJLS.1267898

Abstract

References

  • Krishna CT, Adam B, Kalyan S, John SA, Alexander B. Epidemiology of lung cancer Contemp Oncol (Pozn). (2021); 25(1):45-52. https://doi.org/10.5114/wo.2021.103829
  • Wenwen G, Tianyun Q, Tian L. The role of stem cells in small-cell lung cancer: Evidence from chemoresistance to immunotherapy. Semin Cancer Biol. (2022);87,160-169. https://doi.org/10.1016/j.semcancer.2022.11.006
  • Tanoue LT, Tanner NT, Gould Michael K and Silvestri Gerard A. Lung Cancer Screening. Am J Respir Crit Care Med. (2015); 191(1):1-118. https://doi.org/10.1164/rccm.201410-1777CI.
  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global Cancer Statistics. 2012 Ca Cancer J Clin. (2015); 65:87-108. https://doi.org/10.3322/caac.21262
  • Thai A, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. Lancet. (2021); 398(10299), 535-554. https://doi.org/10.1016/S0140-6736(21)00312-3.
  • Ju MH, Kim HR, Kim JB, Kim YH, Kim DK, Park SI. Surgical outcomes in small cell lung cancer. Korean J Thorac Cardiovasc Surg. (2012);45(1):40-4. https://doi.org/10.5090/kjtcs.2012.45.1.40
  • Global monitoring report on financial protection in health 2019. Geneva: World Health Organization/World Bank. (2019); ISBN 978-92-4-000396-5
  • Siegel R, Miller K, Fuchs H, Jemal A. Cancer Statistic. Ca cancer J Clin. (2021); 71(1) 7-33. https://doi.org/10.3322/caac.21654
  • Jayan AP, Anandu KR, Madhu K, Saiprabha VN. A pharmacological exploration of targeted drug therapy in non‑small cell lung cancer. Med Oncol. (2022); 39:147 https://doi.org/10.1007/s12032-022-01744-6
  • Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ, Wu Y-L, Ares LP. Lung cancer: Current therapies and new targeted treatments. Lancet. (2017); 389: 299–311. https://doi.org/10.1016/S0140-6736(16)30958-8
  • Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma. Cell Death Dis. (2018); 25;9(2):117.. https://doi.org/10.1038/s41419-017-0063-y
  • Mithoowani H, and Febbraro M. Non-Small-Cell Lung Cancer in 2022: A Review for General Practitioners in Oncology, Curr Oncol. (2022); 29,1828–1839 https://doi.org/10.3390/curroncol29030150
  • Zarogoulidis K, Zarogoulidis P, Darwiche K, Boutsikou E, Machairiotis N, Tsakiridis K, Katsikogiannis N, Kougioumtzi I, Karapantzos I, Huang H, Spyratos D. Treatment of non-small cell lung cancer (NSCLC). J Thorac Dis. (2013); 5(S4):S389-S396. https://doi.org/10.3978/j.issn.2072-1439.2013.07.10
  • Key J, Kim YS, Tatulli F, Palange AL, O’Neill B, Aryal S, Ramirez M,Liu X, Ferrari M, Munden R, Decuzzi P. Opportunities for nanotheranosis in lung cancer and pulmonary metastasis. Clin Transl Imaging. (2014); 2:427–437. https://doi.org/10.1007/s40336-014-0078-7
  • Yingjiao X, Shenda H, Hongbin J, Xiangkun H. Evolution from genetics to phenotype:reinterpretation of NSCLC plasticity, heterogeneity, and drug resistance Protein Cell (2017); 8(3):178–190. https://doi.org/10.1007/s13238-016-0330-1
  • Crino L, Weder W, van Meerbeeck J, Felip E. Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. (2010); 21,103-15. https://doi.org/10.1093/annonc/mdq207
  • Aritraa L, Avik M, Pravin DP, Navneet S, Purvish P, Bharti B, Anubhab M and Manash KP. Lung cancer immunotherapy: progress, pitfalls, and promises. Molecular Cancer (2023); 22:40. https://doi.org/10.1186/s12943-023-01740-y
  • Ahmed A. Mostafa and Don G. Morris. Immunotherapy for Lung Cancer: Has it Finally Arrived? Front Oncol. (2014); 4: 288. https://doi.org/10.3389/fonc.2014.00288
  • Ping L, Yifei M, Jindan K, Jun W, Zhucheng Y, Hongli X, Xinying L, Xin L, Shaozhong W and Xinjun L. A Low Advanced Lung Cancer Inflammation Index Predicts a Poor Prognosis in Patients With Metastatic Non–Small Cell Lung Cancer Front Mol Biosci. (2022); (8) https://doi.org/10.3389/fmolb.2021.784667
  • Sanmamed MF and Chen L. A Paradigm Shift in Cancer Immunotherapy: From Enhancement to Normalization. Cell. (2018); 04:175(2):313–326. https://doi.org/10.1016/j.cell.2018.09.035.
  • Karla A. Ruiz-Cejaa, Yolanda I. Chirino, Current FDA-approved treatments for non-small cell lung cancer and potential biomarkers for its detection. Biomedicine & Pharmacotherapy (2017); 90 24–37. https://doi.org/10.1016/j.biopha.2017.03.018
  • Yuanyuan Z and Zemin Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications Cellular & Molecular Immunology (2020); 17:807–821; https://doi.org/10.1038/s41423-020-0488-6
  • Libin G, Ran W, Yao L and Hang FK. Clinical and Recent Patents Applications of PD-1/PD-L1 Targeting Immunotherapy in Cancer Treatment-Current Progress, Strategy, and Future Perspective. Front Immunol. (2020); 11. https://doi.org/10.3389/fimmu.2020.01508
  • Rachel S. Riley, Carl H. June, Robert Langer, and Michael J. Mitchell. Delivery technologies for cancer immunotherapy. Nat Rev Drug Discov. (2019); 18(3): 175–196. https://doi.org/10.1038/s41573-018-0006-z
  • Bondhopadhyay B, Sisodiya S, Chikara A, Khan A, Tanwar P, Afroze,Di, Singh N, Agrawal U, Mehrotra R and Hussain S. Cancer immunotherapy: a promising dawn in cancer research. Am J Blood Res. (2020); 10(6):375-385
  • Gupta S, Gupta SC, Hunter KD, and Pant AB. Immunotherapy: A New Hope for Cancer Patients. J Oncol. (2020) https://doi.org/10.1155/2020/3548603
  • Miliotou AN, Papadopoulou LC. CAR T-cell Therapy: A New Era in Cancer Immunotherapy Curr Pharm Biotechnol. (2018); 19,5-18. https://doi.org/10.2174/1389201019666180418095526.
  • Maakaron JE, Hu Marie, Jurdi NE. Chimeric antigen receptor T cell therapy for cancer: clinical applications and practical considerations. BMJ (2022); 378 https://doi.org/10.1136/bmj-2021-068956
  • Fischer JW and Bhattarai. N. CAR-T Cell Therapy: Mechanism, Management, and Mitigation of Inflammatory Toxicities Front. Immunol. (2021); 12 https://doi.org/10.3389/fimmu.(2021).693016
  • Zhang C, Durer S, Thandra KC, Kasi A, Chimeric Antigen Receptor T-Cell Therapy StatPearls Publishing. (2023)
  • Ribas A. Adaptive immune resistance: How cancer protects from immune attack Cancer Discov. (2015); 5(9): 915–919. https://doi.org/10.1158/2159-8290.CD-15-0563.
  • Yin L, Huseby E, Scott-Browne J, Rubtsova K, Pinilla C, Crawford F, Marrack P, Dai S and Kappler. JW. A single T cell receptor bound to major histocompatibility complex class I and class II glycoproteins reveals switchable TCR conformers. Immunity. (2011); 35(1):23-33. https://doi.org/10.1016/j.immuni.2011.04.017.
  • Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. (2020); 20,651–668. https://doi.org/10.1038/s41577-020-0306-5.
  • Steven A, Fisher SA, Robinson BW. Lung Cancer Practice, Implementing evidence from around the world. Respirology. (2016); 21, 821–833. https://doi.org/10.1111/resp.12789
  • Topalian SL, Drake CG, and Pardoll DM. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell. (2015); 27(4):450-461. https://doi.org/10.1016/j.ccell.2015.03.001
  • Kim GR and Choi JM. Current Understanding of Cytotoxic T Lymphocyte Antigen-4 (CTLA-4) Signaling in T-Cell Biology and Disease Therapy. Mol. Cells (2022); 45(8): 513-521. https://doi.org/10.14348/molcells.2022.2056
  • Baksh K. & Weber, J. Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Semin Oncol. (2015); 42, 363-377 https://doi.org/10.1053/j.seminoncol.2015.02.015.
  • Esensten JH, Helou YA, Chopra G, Weiss A and Bluestone JA. CD28 costimulation: from mechanism to therapy. Immunity. (2016); 17;44(5):973–988. https://doi.org/10.1016/j.immuni.(2016);04.020
  • Ramagopal UA, Liu W, Garrett-Thomson SC, Bonanno JB, Yan Q, Srinivasan M, Wong SC, Bell A, Mankikar S, Rangan VS, Deshpande S, Korman AJ, Almo SC. Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proc. Natl. Acad. Sci. (2017); (21):114. https://doi.org/10.1073/pnas.1617941114.
  • Navid S, Dana Rae TC, Aram D, Daniele G, Raheleh R and Yong L. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers (2021); 13, 1440. https://doi.org/10.3390/cancers13061440
  • Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. (2020); 10:727–42.
  • Kamphorst A, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, Sica GL, Sharpe AH, Freeman GJ, Blazar BR, Turka LA, K Owonikoko T, Pillai RN, Ramalingam SS , Araki K, Ahmed R. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science (2017); 355, 1423–1427. https://doi.org/10.1126/science.aaf0683
  • HaiXia L, Chao Z, Jinming H, Jie Z, Shan L and Tao J. PD-1/PD-L1 Axis as a Potential Therapeutic Target for Multiple Sclerosis: A T Cell Perspective. Front. Cell. Neurosci. (2021); 15. https://doi.org/10.3389/fncel (2021).716747
  • Edouard D, Nicolas P, Mathieu S, Luc T and Florian G. Anti-PD1/PD-L1 Immunotherapy for Non-Small Cell Lung Cancer with Actionable Oncogenic Driver Mutations. Int J Mol Sci. (2021); 22, 6288. https:// doi.org/10.3390/ijms22126288
  • Mengke N, Ming Y, Ning L, Suxia L and Kongming W. Predictive biomarkers of anti-PD-1/PD-L1 therapy in NSCLC. Exp Hematol Oncol (2021); 10:18 https:// doi.org/10.1186/s40164-021-00211-8
  • Weiting Q, Lipeng H, Xueli Z, Shuheng J, Jun L, Zhigang Z and Xu W. The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front. Immunol (2019); 10. https:// doi.org/10.3389/fimmu.(2019);02298
  • Acúrcio RC, Pozzi S, Carreira, B, Pojo M, Gómez-Cebrián N, Casimiro S, Fernandes, A, Barateiro A, Farricha V, Brito J, Leandro AP, Salvador JAR, Graça L, Puchades-Carrasco L, Costa,L, Satchi-Fainaro R, Guedes RC, Florindo HF. Therapeutic targeting of PD-1/PD-L1 blockade by novel small-molecule inhibitors recruits cytotoxic T cells into solid tumor microenvironment. J Immunother Cancer (2022); https://doi.org/10.1136/jitc-2022-004695
  • Cinzia S, Marco A, Esdy R, Matteo L, Karen WG, Edoardo M. Programmed cell death-ligand 2: A neglected but important target in the immune response to cancer? Transl Oncology (2020); 13:(10). https://doi.org/10.1016/j.tranon.2020.100811.
  • Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases, Nat Rev Immunol.(2018); 18.91-104. https://doi.org/10.1038/nri.2017.112
  • Shalom L, Anna S. Tocheva, Shoiab Bukhari, Kieran Adam, and Adam Mor. PD-1-stimulated T cell subsets are transcriptionally and functionally distinct. iScience 24, (2021); https://doi.org/10.1016/j.isci.(2021); 103020
  • Reetu M, Dipanjan D, Marion LH and Marcus S. Noel The Role of Immunotherapy in Pancreatic Cancer. Curr Oncol. (2022); 29, 6864–6892. https://doi.org/10.3390/curroncol29100541
  • Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S, Sadeghirad H, Ladwa R, O’Byrne K, Kulasinghe A. Immune checkpoint inhibitors in cancer therapy. Curr Oncol. (2022); 29(5):3044-3060. https://doi.org/10.3390/curroncol29050247
  • Imfinzi. Prescribing information. AstraZeneca; Accessed (2022); https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/761069s018lbl.pdf
  • Neelapu SS, Tummala,S, Kebriaei P, Wierda W, Gutierrez C, Locke FL, Komanduri KV, Lin Y, Jain N, Daver N, Westin J, Gulbis AM, Loghin ME, Groot JF, Adkins S, Davis SE, Rezvani K, Hwu P, Shpall EJ. Chimeric antigen receptor T cell therapy-assessment and management of toxicities: Nat Rev Clin Oncol. (2018); 15:47-62. https://doi.org/10.1038/nrclinonc.2017.148.
  • Jingjing Q, Quanhui M, Lijun C, Jianying Z. Chimeric antigen receptor (CAR)‑T‑cell therapy in non‑small‑cell lung cancer (NSCLC): current status and future perspectives: Cancer Immunology, Immunotherapy (2021); 70: 619–631, https://doi.org/10.1007/s00262-020-02735-0
  • Shengnan Y, Anping L, Qian L, Tengfei L, Xun Y, Xinwei H and Kongming W. Chimeric antigen receptor T cells: a novel therapy for solid tumors: Journal of Hematology & Oncology (2017); 10:78. https://doi.org/10.1186/s13045-017-0444-9
  • Xu C, Ju D and Zhang X. Chimeric antigen receptor T-cell therapy: challenges and opportunities in lung cancer. Antib Ther (2022); 5:1, 73–83 https://doi.org/10.1093/abt/tbac006
  • Sadelain M. Chimeric Antigen Receptors: A Paradigm Shift in Immunotherapy. Annu Rev Cancer Biol. (2017); 1:447–66 https://doi.org/10.1146/annurev-cancerbio-050216-034351
  • Kaichao F, Yelei G, Hanren D, Yao W, Xiang L, Hejin J & Weidong H. Chimeric antigen receptor-modified T cells for the immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer: Science China Life Science (2018); 59 (5); 468-479: https://doi.org/10.1007/s11427-016-5023-8
  • Lopez AH, Téllez-Gonzalezz MA. Teran PM and Acosta AM. Chimeric Antigen Receptor-T Cells: A Pharmaceutical Scope. Front Pharmacol. (2021); 12: https://doi.org/10.3389/fphar.2021.720692
  • Xiao B-F, Jing-Tao Z, Yu-Ge Z, Xin-Run C, Zhe-Ming L, Ben-Tong Y and Nan W. Chimeric Antigen Receptor T-Cell Therapy in Lung Cancer: Potential and Challenges Front Immunol (2021); https://doi.org/10.3389/fimmu.2021.782775
There are 61 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Reviews
Authors

Ipek Ertorun 0000-0001-8328-4157

Aydan Huseynli 0000-0002-9104-5313

Sevinc Nursena Ertekın 0009-0003-7311-6434

Gülşen Akalın Çiftçi 0000-0001-9535-2508

Publication Date April 24, 2023
Submission Date March 20, 2023
Published in Issue Year 2023 Volume: 2 Issue: 1

Cite

Vancouver Ertorun I, Huseynli A, Ertekın SN, Akalın Çiftçi G. The role of immunotherapy in lung cancer: Actual scenery. Eur J Life Sci. 2023;2(1):45-51.