Synthesis of A New Thiadiazole-Benzodioxole Derivative, Investigation of Acetylcholinesterase Inhibition with In Vitro and In Silico Studies
Year 2024,
Volume: 3 Issue: 2, 82 - 92, 30.08.2024
Sare Peçe Göktaş
,
Derya Osmaniye
,
Serkan Levent
,
Begüm Nurpelin Sağlık Özkan
,
Bünyamin Göktaş
,
Harun Uslu
,
Yusuf Özkay
Abstract
Alzheimer’s disease is a progressive and degenerative brain disease that negatively affects people’s lives and reduces cognitive and sensory human functions. Today, there are active ingredients that work on Alzheimer’s disease, containing benzodioxole and thiadiazole rings. Acetylcholinesterase terminates neurotransmission in the nervous system and leads to the accumulation of acetylcholine, overstimulation of various receptors and consequent impairment of neurotransmission. Thiadiazole and benzodioxole rings are compounds that exhibit a wide range of biological activities, especially known to be effective on acetylcholinesterase. A new compound containing benzodioxole and thiadiazole rings was designed, synthesized and its chemical structure was revealed using spectroscopic methods such as HRMS, 13C-NMR and 1H-NMR. Acetylcholinesterase inhibition activities were investigated using in vitro methods. To elucidate the acetylcholinesterase inhibition of compound 4a, it was subjected to in silico insertion procedure with 4EY7. Compound 4a exhibited 0.114±0.005 µM against AChE. The above data is compared with data for donepezil (0.0201±0.0014 µM), the reference compound in our study.
References
- Zou D, Liu R, Lv Y, Guo J, Zhang C, Xie Y. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer’s disease. J Enzyme Inhib Med Chem. (2023); 38(1):2270781. https://doi.org/10.1080/14756366.2023.2270781
- Talesa VN. Acetylcholinesterase in Alzheimer’s disease. Mechanisms of ageing and development. (2001);122:1961-1969. https://doi.org/10.1016/S0047-6374(01)00309-8
- Wilson IB, Nachmansohn D. Ion transport across membranes. Acedemic Pres Inc. New York, (1954); 35. https://doi.org/10.3390/molecules26237119
- Osmaniye D, Kaplancıklı ZA. Synthesis and evaluation of biological activities of new piperazine derivatives against Alzheimer’s Disease. J Health Sci. (2022);31:330-335. https://doi.org/10.34108/eujhs.979093
- Demir Z, Türkan F. Association of acetylcholinesterase and butyrylcholinesterase enzymes with Alzheimer’s disease. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. (2022); 12(4): 2386-2395. https://doi.org/10.21597/jist.1161271
- Massoulié J, Sussman J, Bon S, Silman I. Structure and functions of acetylcholinesterase and butyrylcholinesterase. Prog Brain Res. 1993;98:139-146. https://doi.org/10.1016/S0079-6123(08)62391-2
- Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase Inhibitors: Pharmacology and toxicology. Curr Neuropharmacol. (2013);11:315-335. https://doi.org/10.2174/1570159X11311030006
- Conger N, Osmaniye D, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Design, synthesis, biological activities, and evaluation of molecular docking-dynamics studies of new thiosemicarbazones that may be effective against Alzheimer’s disease. J Mol Recognit. (2023);36(12):e3059. https://doi.org/10.1002/jmr.3059
- Kemal A, Şaik EB, Reddy GN, Kumar CG, Joseph J, Kumar GB, Purushotham U, Sastry GN. Synthesis, biological evaluation, and molecular modeling of (E)-2-aryl-5-styryl-1,3,4-oxadiazole derivatives as acetylcholine esterase inhibitors. Med Chem Res. (2014); 23:2080-2092. https://doi.org/10.1007/s00044-013-0786-y
- Yıldırım ER, Güzeldemirci NU. Recent advances of cholinesterase inhibitors playing a critical role in the treatment of Alzheimer’s disease. Istanbul University Press. (2023);6(2):197-209. https://doi.org/10.26650/JARHS2023-1197992
- Jeong GS, Kaipakasseri S, Lee SR, Marraiki N, Batiha GES, Dev S, Kim H. Selected 1,3‐benzodioxine‐containing chalcones as multipotent oxidase and acetylcholinesterase inhibitors. Chem Med Chem. (2020);15(23):2257-2263. https://doi.org/10.1002/cmdc.202000491
- Fernandes TB, Cunha MR, Sakata RP, Candido TM, Baby AR, Tavares MT, Parise FR. Synthesis, molecular modeling, and evaluation of novel sulfonylhydrazones as acetylcholinesterase inhibitors for Alzheimer’s disease. Archiv der Pharmazie. (2017);350(11):1700163. https://doi.org/10.1002/ardp.201700163
- Lotfi S, Rahmani T, Hatami M, Pouramiri B, Kermani ET, Rezvannejad E, Zahedifar M. Design, synthesis and biological assessment of acridine derivatives containing 1,3,4-thiadiazole moiety as novel selective acetylcholinesterase inhibitors. Bioorg Chem. (2020);105:104457. https://doi.org/10.1016/j.bioorg.2020.104457
- Altıntop MD, Temel HE, Sever B, Akalın Çiftçi G, Kaplancıklı ZA. Synthesis and evaluation of new benzodioxole-based thiosemicarbazone derivatives as potential antitumor agents. Molecules. (2016);21(11):1598. https://doi.org/10.3390/molecules21111598
- Özdemir A, Sever B, Altıntop MD. New benzodioxole-based pyrazoline derivatives: Synthesis and anticandidal, in silico ADME, molecular docking studies. Lett Drug Des Discov. (2019);16(1):82-92. https://doi.org/10.2174/1570180815666180326152726
- Koçak EA, Sağlık NB, Özkay Y, Palaska E. Synthesis and biological evaluation of benzoxazolone-thiosemicarbazide, 1,2,4‐triazole, 1,3,4‐thiadiazole derivatives as cholinesterase inhibitors. Chemistry Select. (2023); 8(35):e202302069. https://doi.org/10.1002/slct.202302069
- Altıntop MD, Özdemir A, Zitouni GT, Ilgın S, Atlı Ö, Demirci F, Kaplancıklı ZA. Synthesis and in vitro evaluation of thiadiazole derivatives as AChE, Bu-ChE and LOX inhibitors. Lett Drug Des Discov. (2014);11(9):1062-1069. https://doi.org/10.3390/moleküller190914809
- Sağlık BN, Ilgın S, Özkay Y. Synthesis of new donepezil analogues and investigation of their effects on cholinesterase enzymes. Eur J Med Chem. (2016);124:1026-1040. https://doi.org/10.1016/j.ejmech.2016.10.042
- Özkay ÜD, Can ÖD, Sağlık NP, Çevik UA, Levent S, Özkay Y. Design, synthesis, and AChE inhibitory activity of new benzothiazole–piperazines. Bioorg Med Chem Lett. (2016);26(22):5387-5394. https://doi.org/10.1016/j.bmcl.2016.10.041
- Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. (2017);7:42717. https://doi.org/10.1038/srep42717
- Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Height JJ. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. (2012); 55(22):10282-10286. https://doi.org/10.1021/jm300871x
- Taslimi P, Işık M, Türkan F, Durgun M, Türkeş C, Gülçin İ, Beydemir Ş. Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: Biological evaluation and molecular docking studies. J Biomol Struct Dyn. (2021);39(15):5449-5460. https://doi.org/10.1080/07391102.2020.1790422
- Lolak N, Akocak S, Türkeş C, Taslimi P, Işık M, Beydemir Ş, Durgun M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg Chem. (2020);100:103897. https://doi.org/10.1016/j.bioorg.2020.103897
- Yaşar Ü, Gönül İ, Türkeş C, Demir Y, Beydemir Ş. Transition‐metal complexes of bidentate schiff‐base ligands: in vitro and in silico evaluation as non‐classical carbonic anhydrase and potential acetylcholinesterase inhibitors. ChemistrySelect. (2021);6(29):7278-7284. https://doi.org/10.1002/slct.202102082
- Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. (2009);30(16):2785-2791. https://doi.org/10.1002/jcc.21256
- Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. (2010);31(2):455-461. https://doi.org/10.1002/jcc.21334
- Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. (2012);64:4-17. https://doi.org/10.1016/S0169-409X(00)00129-0
- Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model. (2014);54(12):3284-3301. https://doi.org/10.1016/s0169-409x(00)00129-0
Year 2024,
Volume: 3 Issue: 2, 82 - 92, 30.08.2024
Sare Peçe Göktaş
,
Derya Osmaniye
,
Serkan Levent
,
Begüm Nurpelin Sağlık Özkan
,
Bünyamin Göktaş
,
Harun Uslu
,
Yusuf Özkay
References
- Zou D, Liu R, Lv Y, Guo J, Zhang C, Xie Y. Latest advances in dual inhibitors of acetylcholinesterase and monoamine oxidase B against Alzheimer’s disease. J Enzyme Inhib Med Chem. (2023); 38(1):2270781. https://doi.org/10.1080/14756366.2023.2270781
- Talesa VN. Acetylcholinesterase in Alzheimer’s disease. Mechanisms of ageing and development. (2001);122:1961-1969. https://doi.org/10.1016/S0047-6374(01)00309-8
- Wilson IB, Nachmansohn D. Ion transport across membranes. Acedemic Pres Inc. New York, (1954); 35. https://doi.org/10.3390/molecules26237119
- Osmaniye D, Kaplancıklı ZA. Synthesis and evaluation of biological activities of new piperazine derivatives against Alzheimer’s Disease. J Health Sci. (2022);31:330-335. https://doi.org/10.34108/eujhs.979093
- Demir Z, Türkan F. Association of acetylcholinesterase and butyrylcholinesterase enzymes with Alzheimer’s disease. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. (2022); 12(4): 2386-2395. https://doi.org/10.21597/jist.1161271
- Massoulié J, Sussman J, Bon S, Silman I. Structure and functions of acetylcholinesterase and butyrylcholinesterase. Prog Brain Res. 1993;98:139-146. https://doi.org/10.1016/S0079-6123(08)62391-2
- Colović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase Inhibitors: Pharmacology and toxicology. Curr Neuropharmacol. (2013);11:315-335. https://doi.org/10.2174/1570159X11311030006
- Conger N, Osmaniye D, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Design, synthesis, biological activities, and evaluation of molecular docking-dynamics studies of new thiosemicarbazones that may be effective against Alzheimer’s disease. J Mol Recognit. (2023);36(12):e3059. https://doi.org/10.1002/jmr.3059
- Kemal A, Şaik EB, Reddy GN, Kumar CG, Joseph J, Kumar GB, Purushotham U, Sastry GN. Synthesis, biological evaluation, and molecular modeling of (E)-2-aryl-5-styryl-1,3,4-oxadiazole derivatives as acetylcholine esterase inhibitors. Med Chem Res. (2014); 23:2080-2092. https://doi.org/10.1007/s00044-013-0786-y
- Yıldırım ER, Güzeldemirci NU. Recent advances of cholinesterase inhibitors playing a critical role in the treatment of Alzheimer’s disease. Istanbul University Press. (2023);6(2):197-209. https://doi.org/10.26650/JARHS2023-1197992
- Jeong GS, Kaipakasseri S, Lee SR, Marraiki N, Batiha GES, Dev S, Kim H. Selected 1,3‐benzodioxine‐containing chalcones as multipotent oxidase and acetylcholinesterase inhibitors. Chem Med Chem. (2020);15(23):2257-2263. https://doi.org/10.1002/cmdc.202000491
- Fernandes TB, Cunha MR, Sakata RP, Candido TM, Baby AR, Tavares MT, Parise FR. Synthesis, molecular modeling, and evaluation of novel sulfonylhydrazones as acetylcholinesterase inhibitors for Alzheimer’s disease. Archiv der Pharmazie. (2017);350(11):1700163. https://doi.org/10.1002/ardp.201700163
- Lotfi S, Rahmani T, Hatami M, Pouramiri B, Kermani ET, Rezvannejad E, Zahedifar M. Design, synthesis and biological assessment of acridine derivatives containing 1,3,4-thiadiazole moiety as novel selective acetylcholinesterase inhibitors. Bioorg Chem. (2020);105:104457. https://doi.org/10.1016/j.bioorg.2020.104457
- Altıntop MD, Temel HE, Sever B, Akalın Çiftçi G, Kaplancıklı ZA. Synthesis and evaluation of new benzodioxole-based thiosemicarbazone derivatives as potential antitumor agents. Molecules. (2016);21(11):1598. https://doi.org/10.3390/molecules21111598
- Özdemir A, Sever B, Altıntop MD. New benzodioxole-based pyrazoline derivatives: Synthesis and anticandidal, in silico ADME, molecular docking studies. Lett Drug Des Discov. (2019);16(1):82-92. https://doi.org/10.2174/1570180815666180326152726
- Koçak EA, Sağlık NB, Özkay Y, Palaska E. Synthesis and biological evaluation of benzoxazolone-thiosemicarbazide, 1,2,4‐triazole, 1,3,4‐thiadiazole derivatives as cholinesterase inhibitors. Chemistry Select. (2023); 8(35):e202302069. https://doi.org/10.1002/slct.202302069
- Altıntop MD, Özdemir A, Zitouni GT, Ilgın S, Atlı Ö, Demirci F, Kaplancıklı ZA. Synthesis and in vitro evaluation of thiadiazole derivatives as AChE, Bu-ChE and LOX inhibitors. Lett Drug Des Discov. (2014);11(9):1062-1069. https://doi.org/10.3390/moleküller190914809
- Sağlık BN, Ilgın S, Özkay Y. Synthesis of new donepezil analogues and investigation of their effects on cholinesterase enzymes. Eur J Med Chem. (2016);124:1026-1040. https://doi.org/10.1016/j.ejmech.2016.10.042
- Özkay ÜD, Can ÖD, Sağlık NP, Çevik UA, Levent S, Özkay Y. Design, synthesis, and AChE inhibitory activity of new benzothiazole–piperazines. Bioorg Med Chem Lett. (2016);26(22):5387-5394. https://doi.org/10.1016/j.bmcl.2016.10.041
- Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. (2017);7:42717. https://doi.org/10.1038/srep42717
- Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Height JJ. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. (2012); 55(22):10282-10286. https://doi.org/10.1021/jm300871x
- Taslimi P, Işık M, Türkan F, Durgun M, Türkeş C, Gülçin İ, Beydemir Ş. Benzenesulfonamide derivatives as potent acetylcholinesterase, α-glycosidase, and glutathione S-transferase inhibitors: Biological evaluation and molecular docking studies. J Biomol Struct Dyn. (2021);39(15):5449-5460. https://doi.org/10.1080/07391102.2020.1790422
- Lolak N, Akocak S, Türkeş C, Taslimi P, Işık M, Beydemir Ş, Durgun M. Synthesis, characterization, inhibition effects, and molecular docking studies as acetylcholinesterase, α-glycosidase, and carbonic anhydrase inhibitors of novel benzenesulfonamides incorporating 1,3,5-triazine structural motifs. Bioorg Chem. (2020);100:103897. https://doi.org/10.1016/j.bioorg.2020.103897
- Yaşar Ü, Gönül İ, Türkeş C, Demir Y, Beydemir Ş. Transition‐metal complexes of bidentate schiff‐base ligands: in vitro and in silico evaluation as non‐classical carbonic anhydrase and potential acetylcholinesterase inhibitors. ChemistrySelect. (2021);6(29):7278-7284. https://doi.org/10.1002/slct.202102082
- Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem. (2009);30(16):2785-2791. https://doi.org/10.1002/jcc.21256
- Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. (2010);31(2):455-461. https://doi.org/10.1002/jcc.21334
- Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. (2012);64:4-17. https://doi.org/10.1016/S0169-409X(00)00129-0
- Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. iLOGP: a simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. J Chem Inf Model. (2014);54(12):3284-3301. https://doi.org/10.1016/s0169-409x(00)00129-0