Year 2025,
Volume: 4 Issue: 2, 55 - 63, 31.08.2025
Aydan Terzioğlu
,
Rabia Nur Aksu
,
Tufan Can Ulu
,
Filiz Randa Zelyüt
Project Number
2019-01.BŞEÜ.06-02
References
-
1. Campos-Herrera R, Vicente-Díez I, Blanco-Pérez R,
Chelkha M, González-Trujillo MDM, Puelles M, Čepulitė
R, Pou A. Positioning entomopathogenic nematodes
for the future viticulture: Exploring their use against
biotic threats and as bioindicators of soil health. Turk J
Zool. (2021);45 (Special issue 1):335–346. https://doi.
org/10.3906/ZOO-2106-40
-
2. Manochaya S, Udikeri S, Srinath BS, Sairam M,
Bandlamori SV, Ramakrishna K. In vivo culturing of
entomopathogenic nematodes for biological control of
insect pests: A review. J Nat Pest Res (2022);1:100005.
https://doi.org/10.1016/j.napere.2022.100005
-
3. Koppenhöfer AM, Shapiro-Ilan DI, Hiltpold I.
Entomopathogenic nematodes in sustainable food
production. Front Sustain Food Syst. (2020);4(125):1–14.
https://doi.org/10.3389/fsufs.2020.00125
-
4. Poinar GO, Grewal P. History of entomopathogenic
nematology. J Nematol. (2012);44(2):153–61. PMID:
23482453
-
5. Kaya HK, Gaugler R. Entomopathogenic nematodes.
Ann Rev Entomol. (1993);38(1):181–206. https://doi.
org/10.1146/annurev.en.38.010193.001145
-
6. Peters A. The natural host range of Steinernema
and Heterorhabditis spp. and their impact on insect
populations. Biocontrol Sci Techn. (1996);6(3):389–402.
https://doi.org/10.1080/09583159631361
-
7. Ehlers R-U. Mass production of entomopathogenic
nematodes for plant protection. Appl Microbiol
Biotechnol. (2001);56(5–6):623–633. https://doi.
org/10.1007/s002530100711
-
8. Shapiro-Ilan DI, Han R, Dolinksi C. Entomopathogenic
nematode production and application technology. J
Nematol. (2012);44(2):206–217. PMID: 23482883
-
9. Dunn MD, Belur PD, Malan AP. A review of the in vitro
liquid mass culture of entomopathogenic nematodes.
Biocontrol Sci Techn. (2021);31(1):1–21. https://doi.org
/10.1080/09583157.2020.1837072
-
10. Erdoğan H, Ünal H, Susurluk İA, Lewis EE. Precision
application of the entomopathogenic nematode
Heterorhabditis bacteriophora as a biological control
agent through the Nemabot. Crop Prot. (2023);174:106429.
https://doi.org/10.1016/j.cropro.2023.106429
-
11. Metwally HMS, Saleh MME, Abonaem M. Formulation
for foliar and soil application of entomopathogenic
nematodes for controlling the onion thrips Thrips tabaci
Lindeman (Thysanoptera: Thripidae). Egypt J Biological
Pest Cont. (2025);35(1):4. https://doi.org/10.1186/
s41938-025-00841-8
-
12. Askary TH, Abd-Elgawad MMM. Opportunities and
challenges of entomopathogenic nematodes as biocontrol
agents in their tripartite interactions. Egypt J Biological
Pest Cont. (2021);31(1):42. https://doi.org/10.1186/
s41938-021-00391-9
-
13. Peters A. Application and commercialization of nematodes.
Appl Microbiol Biotechnol. (2013);97(14):6181–6188.
https://doi.org/10.1007/s00253-013-4941-7
-
14. Kapranas A, Malone B, Quinn S, O’Tuama P, Peters
A, Griffin CT. Optimizing the application method of
entomopathogenic nematode suspension for biological
control of large pine weevil Hylobius abietis. BioControl.
(2017);62(5):659–667. https://doi.org/10.1007/s10526-
017-9824-x
-
15. Nxitywa A, Malan AP. Formulation of Steinernema
yirgalemense in gel for long-term storage at room
temperature. J Plant Dis Prot. (2023);130(4):809–816.
https://doi.org/10.1007/s41348-023-00764-2
-
16. Lalitha K, Nithya K, Bharathi BG, Venkatesan S,
Shivakumar MS. Long-term storage does not affect the
infectivity of entomopathogenic nematodes on insect
hosts. Appl Microbiol Biotechnol. (2022);107(1):419-
431. https://doi.org/10.1007/s00253-022-12309-y.
-
17. Flores P, Alvarado A, Lankin G, Lax P, Prodan S,
Aballay E. Morphological, molecular and ecological
characterization of a native isolate of Steinernema feltiae
(Rhabditida: Steinernematidae) from southern Chile.
Parasites and Vectors. (2021);14(1):45. https://doi.
org/10.1186/s13071-020-04548-7
-
18. Bruno P, Machado RAR, Glauser G, Köhler A, CamposHerrera R, Bernal J, Toepfer S, Erb M, Robert CAM, Arce
CCM, Turlings TCJ. Entomopathogenic nematodes from
Mexico that can overcome the resistance mechanisms of
the western corn rootworm. Sci Rep. (2020);10(1):8257.
https://doi.org/10.1038/s41598-020-64945-x
-
19. Susurluk A, Dix I, Stackebrandt E, Strauch O, Wyss U,
Ehlers RU. Identification and ecological characterisation
of three entomopathogenic nematode-bacterium
complexes from Turkey. Nematology. (2001);3(8):833–
841. https://doi.org/10.1163/156854101753625326
-
20. Hsieh FC, Tzeng CY, Tseng JT, Tsai YS, Meng
M, Kao SS. Isolation and characterization of the
native entomopathogenic nematode, Heterorhabditis
brevicaudis, and its symbiotic bacteria from Taiwan.
Curr Microbiol. (2009);58(6):564–570. https://doi.
org/10.1007/s00284-009-9371-5
-
21. Morton A, García-del-Pino F. Ecological characterization
of entomopathogenic nematodes isolated in stone fruit
orchard soils of Mediterranean areas. J Invertebr Pathol.
(2009);102(3):203–213. https://doi.org/10.1016/j.
jip.2009.08.002
-
22. Yuksel E, Canhilal R. Isolation, identification, and
pathogenicity of entomopathogenic nematodes occurring
in Cappadocia region, central Turkey. Egypt J Biological
Pest Cont. (2019);29(1):1–7. https://doi.org/10.1186/
s41938-019-0141-9
-
23. Levy N, Faigenboim A, Salame L, Molina C, Ehlers RU,
Glazer I, Ment D. Characterization of the phenotypic
and genotypic tolerance to abiotic stresses of natural
populations of Heterorhabditis bacteriophora. Sci Rep.
(2020);10(1):1–16. https://doi.org/10.1038/s41598-020-
67097-0
-
24. Raja RK, Sivaramakrishnan S, Hazir S. Ecological
characterisation of Steinernema siamkayai (Rhabditida:
Steinernematidae), a warm-adapted entomopathogenic
nematode isolate from India. BioControl.
(2011);56(5):789–798. https://doi.org/10.1007/s10526-
011-9345-y
-
25. Glazer I, Salame L. Osmotic survival of the
entomopathogenic nematode Steinernema carpocapsae.
Biological Cont. (2000);18(3):251–257. https://doi.
org/10.1006/bcon.2000.0814
-
26. Hunt DJ, Nguyen KB. Tabular keys to species of
Steinernema and Heterorhabditis. In: Hunt DJ,
Nguyen KB, editors. Advances in Entomopathogenic
Nematode Taxonomy and Phylogeny. (2017).p.
59–109. Leiden, The Netherlands: Brill. https://doi.
org/10.1163/9789004285347. ISBN: 978-90-04-28534-7
-
27. Susurluk IA, Ulu TC, Kongu Y. Tolerances of
hybridized entomopathogenic nematode Heterorhabditis
bacteriophora (Rhabditida: Heterorhabditidae) strains to
heat and desiccation. Turk J Entomol. (2013);37(2):221–
228. https://doi.org/10.16970/ted.96639
-
28. White GF. A method for obtaining infective nematode
larvae from cultures. Science. (1927);66(1709):302–303.
https://doi.org/10.1126/science.66.1709.302.b
-
29. Rasmann S, Turlings TC. First insights into specificity
of belowground tritrophic interactions. Oikos.
(2008);117(3):362–369. https://doi.org/10.1111/
j.2007.0030-1299.16204.x
-
30. Kour S, Khurma U, Brodie G. Ecological Characterisation
of Native Isolates of Heterorhabditis indica from Viti
Levu, Fiji Islands. J Nematol. (2021);53(1):1–20. https://
doi.org/10.21307/jofnem-2021-085
-
31. Ulu TC, Susurluk IA. In vitro liquid culture production
and post-production pathogenicity of the hybrid
Heterorhabditis bacteriophora HBH strain. Crop Prot.
(2024);175(106443):1–7. https://doi.org/10.1016/j.
cropro.2023.106443
-
32. Yamanaka S, Tanabe H, Takeuchi K. Vertical Dispersal
and Infectivity of Steinernema glaseri, S. anomali and
S. kushidai (Nematoda: Steinernematidae). Nematol
Res (Jap J Nematol). (1995);25(1):24–32. https://doi.
org/10.3725/jjn1993.25.1_24
-
33. Bal HK, Michel AP, Grewal PS. Genetic selection of
the ambush foraging entomopathogenic nematode,
Steinernema carpocapsae for enhanced dispersal and
its associated trade-offs. Evolutionary Ecology. (2014);
28(5):923–939. https://doi.org/10.1007/s10682-014-
9706-y
-
34. Wu S-Y, Duncan LW. Entomopathogenic nematode
species combinations alter rates of dispersal, host
encounter and insecticidal efficiency. J Pest Sci. (2022);
95(3):1111–1119. https://doi.org/10.1007/s10340-021-
01475-z
-
35. Bal HK, Grewal PS. Lateral Dispersal and Foraging
Behavior of Entomopathogenic Nematodes in the Absence
and Presence of Mobile and Non-Mobile Hosts. PLOS
ONE. (2015); 10(6):e0129887. https://doi.org/10.1371/
journal.pone.0129887
-
36. Rolston AN, Griffin CT, Downes MJ. Emergence
and Dispersal Patterns of Two Isolates of the
Entomopathogenic Nematode Steinernema feltiae. J
Nematol. (2006); 38(2):221–228. PMID: 19259450
-
37. Ulu TC, Susurluk IA. Heat and desiccation tolerances of
Heterorhabditis bacteriophora strains and relationships
between their tolerances and some bioecological
characteristics. Invertebr Surv J. (2014); 11(1):4–10.
https://www.isj.unimore.it/index.php/ISJ/article/
view/300/214. ISSN 1824-307X
-
38. Fallet P, De Gianni L, Machado RAR, Bruno P, Bernal JS,
Karangwa P, Kajuga J, Waweru B, Bazagwira D, Degen
T, Toepfer S, Turlings TCJ. Comparative Screening of
Mexican, Rwandan and Commercial Entomopathogenic
Nematodes to Be Used against Invasive Fall Armyworm,
Spodoptera frugiperda. Insects. (2022); 13(2):205. https://
doi.org/10.3390/insects13020205
-
39. Odendaal D, Addison MF, Malan AP. Entomopathogenic
nematodes for the control of the codling moth (Cydia
pomonella L.) in field and laboratory trials. J Helminth.
(2016); 90(5):615–623. https://doi.org/10.1017/
S0022149X15000887
-
40. Ferreira T, Malan AP. Potential of entomopathogenic
nematodes for the control of the banded fruit weevil,
Phlyctinus callosus (Schönherr) (Coleoptera:
Curculionidae). J Helminth. (2014); 88(3):293–301.
https://doi.org/10.1017/S0022149X13000175
-
41. Susurluk IA, Kumral NA, Peters A, Bilgili U, Açıkgöz E.
Pathogenicity, reproduction and foraging behaviours of
some entomopathogenic nematodes on a new turf pest,
Dorcadion pseudopreissi (Coleoptera: Cerambycidae).
Biocontrol Sci Techn. (2009); 19(6):585–594. https://doi.
org/10.1080/09583150902957348
-
42. Özdemir E, Bayram Ş, Susurluk İA. First record of
the entomopathogenic nematode Steinernema litorale
(filipjev) (Rhabditida: Steinernematidae) and its symbiotic
bacterium from Turkey, and its efficacy capability.
Insects. (2020); 11(3):144. https://doi.org/10.3390/
insects11030144
-
43. Wang J, Cao L, Huang Z, Gu X, Cui Y, Li J, Li Y, Xu C,
Han R. Influence of the ascarosides on the recovery, yield
and dispersal of entomopathogenic nematodes. J Invertebr
Pathol. (2022); 188:107717. https://doi.org/10.1016/j.
jip.2022.107717
Characterization of Native Entomopathogenic Nematode Isolates from Bilecik, Türkiye: Heat Tolerance, Dispersal, and Pathogenicity
Year 2025,
Volume: 4 Issue: 2, 55 - 63, 31.08.2025
Aydan Terzioğlu
,
Rabia Nur Aksu
,
Tufan Can Ulu
,
Filiz Randa Zelyüt
Abstract
This study aimed to evaluate the biological and ecological characteristics of entomopathogenic nematode isolates collected from soil samples in Bilecik, Türkiye, to assess their potential for use in biological pest control. The isolates were tested for their dispersal ability in olfactometers, pathogenicity against greater wax moth larvae, and tolerance to elevated temperatures. A commercial strain and a hybrid strain were included as references for comparison. The experiments revealed significant variability among the isolates. One local isolate exhibited strong dispersal capacity and heat tolerance, outperforming the reference strains in some parameters. Conversely, certain isolates showed lower levels of virulence, indicating limited pest control potential. Lethal dose assays demonstrated that pathogenicity varied substantially, with some local isolates matching or exceeding the performance of commercial strains under laboratory conditions. Mortality assessments across increasing temperature levels revealed that sensitivity to heat stress was not uniform and differed considerably among isolates. The findings confirm that biological performance is highly isolate-dependent and influenced by multiple interacting traits. While some local isolates showed promise in one or more evaluated traits, no single isolate combined superior performance in all parameters. Therefore, the results provide a valuable foundation for further characterization studies involving additional traits such as reproductive capacity, storage potential, and field efficacy. Overall, this study emphasizes the importance of locally adapted isolates in developing effective and environmentally sustainable pest management strategies. Selecting and improving such isolates may contribute to the broader adoption of biological control practices and reduce dependency on chemical pesticides.
Ethical Statement
Not applicable, because this article does not contain any studies with human or animal subjects.
Supporting Institution
Bilecik Seyh Edebali University
Project Number
2019-01.BŞEÜ.06-02
Thanks
The authors would like to thank Zahide Uygun and Merve Yazkan for their support.
References
-
1. Campos-Herrera R, Vicente-Díez I, Blanco-Pérez R,
Chelkha M, González-Trujillo MDM, Puelles M, Čepulitė
R, Pou A. Positioning entomopathogenic nematodes
for the future viticulture: Exploring their use against
biotic threats and as bioindicators of soil health. Turk J
Zool. (2021);45 (Special issue 1):335–346. https://doi.
org/10.3906/ZOO-2106-40
-
2. Manochaya S, Udikeri S, Srinath BS, Sairam M,
Bandlamori SV, Ramakrishna K. In vivo culturing of
entomopathogenic nematodes for biological control of
insect pests: A review. J Nat Pest Res (2022);1:100005.
https://doi.org/10.1016/j.napere.2022.100005
-
3. Koppenhöfer AM, Shapiro-Ilan DI, Hiltpold I.
Entomopathogenic nematodes in sustainable food
production. Front Sustain Food Syst. (2020);4(125):1–14.
https://doi.org/10.3389/fsufs.2020.00125
-
4. Poinar GO, Grewal P. History of entomopathogenic
nematology. J Nematol. (2012);44(2):153–61. PMID:
23482453
-
5. Kaya HK, Gaugler R. Entomopathogenic nematodes.
Ann Rev Entomol. (1993);38(1):181–206. https://doi.
org/10.1146/annurev.en.38.010193.001145
-
6. Peters A. The natural host range of Steinernema
and Heterorhabditis spp. and their impact on insect
populations. Biocontrol Sci Techn. (1996);6(3):389–402.
https://doi.org/10.1080/09583159631361
-
7. Ehlers R-U. Mass production of entomopathogenic
nematodes for plant protection. Appl Microbiol
Biotechnol. (2001);56(5–6):623–633. https://doi.
org/10.1007/s002530100711
-
8. Shapiro-Ilan DI, Han R, Dolinksi C. Entomopathogenic
nematode production and application technology. J
Nematol. (2012);44(2):206–217. PMID: 23482883
-
9. Dunn MD, Belur PD, Malan AP. A review of the in vitro
liquid mass culture of entomopathogenic nematodes.
Biocontrol Sci Techn. (2021);31(1):1–21. https://doi.org
/10.1080/09583157.2020.1837072
-
10. Erdoğan H, Ünal H, Susurluk İA, Lewis EE. Precision
application of the entomopathogenic nematode
Heterorhabditis bacteriophora as a biological control
agent through the Nemabot. Crop Prot. (2023);174:106429.
https://doi.org/10.1016/j.cropro.2023.106429
-
11. Metwally HMS, Saleh MME, Abonaem M. Formulation
for foliar and soil application of entomopathogenic
nematodes for controlling the onion thrips Thrips tabaci
Lindeman (Thysanoptera: Thripidae). Egypt J Biological
Pest Cont. (2025);35(1):4. https://doi.org/10.1186/
s41938-025-00841-8
-
12. Askary TH, Abd-Elgawad MMM. Opportunities and
challenges of entomopathogenic nematodes as biocontrol
agents in their tripartite interactions. Egypt J Biological
Pest Cont. (2021);31(1):42. https://doi.org/10.1186/
s41938-021-00391-9
-
13. Peters A. Application and commercialization of nematodes.
Appl Microbiol Biotechnol. (2013);97(14):6181–6188.
https://doi.org/10.1007/s00253-013-4941-7
-
14. Kapranas A, Malone B, Quinn S, O’Tuama P, Peters
A, Griffin CT. Optimizing the application method of
entomopathogenic nematode suspension for biological
control of large pine weevil Hylobius abietis. BioControl.
(2017);62(5):659–667. https://doi.org/10.1007/s10526-
017-9824-x
-
15. Nxitywa A, Malan AP. Formulation of Steinernema
yirgalemense in gel for long-term storage at room
temperature. J Plant Dis Prot. (2023);130(4):809–816.
https://doi.org/10.1007/s41348-023-00764-2
-
16. Lalitha K, Nithya K, Bharathi BG, Venkatesan S,
Shivakumar MS. Long-term storage does not affect the
infectivity of entomopathogenic nematodes on insect
hosts. Appl Microbiol Biotechnol. (2022);107(1):419-
431. https://doi.org/10.1007/s00253-022-12309-y.
-
17. Flores P, Alvarado A, Lankin G, Lax P, Prodan S,
Aballay E. Morphological, molecular and ecological
characterization of a native isolate of Steinernema feltiae
(Rhabditida: Steinernematidae) from southern Chile.
Parasites and Vectors. (2021);14(1):45. https://doi.
org/10.1186/s13071-020-04548-7
-
18. Bruno P, Machado RAR, Glauser G, Köhler A, CamposHerrera R, Bernal J, Toepfer S, Erb M, Robert CAM, Arce
CCM, Turlings TCJ. Entomopathogenic nematodes from
Mexico that can overcome the resistance mechanisms of
the western corn rootworm. Sci Rep. (2020);10(1):8257.
https://doi.org/10.1038/s41598-020-64945-x
-
19. Susurluk A, Dix I, Stackebrandt E, Strauch O, Wyss U,
Ehlers RU. Identification and ecological characterisation
of three entomopathogenic nematode-bacterium
complexes from Turkey. Nematology. (2001);3(8):833–
841. https://doi.org/10.1163/156854101753625326
-
20. Hsieh FC, Tzeng CY, Tseng JT, Tsai YS, Meng
M, Kao SS. Isolation and characterization of the
native entomopathogenic nematode, Heterorhabditis
brevicaudis, and its symbiotic bacteria from Taiwan.
Curr Microbiol. (2009);58(6):564–570. https://doi.
org/10.1007/s00284-009-9371-5
-
21. Morton A, García-del-Pino F. Ecological characterization
of entomopathogenic nematodes isolated in stone fruit
orchard soils of Mediterranean areas. J Invertebr Pathol.
(2009);102(3):203–213. https://doi.org/10.1016/j.
jip.2009.08.002
-
22. Yuksel E, Canhilal R. Isolation, identification, and
pathogenicity of entomopathogenic nematodes occurring
in Cappadocia region, central Turkey. Egypt J Biological
Pest Cont. (2019);29(1):1–7. https://doi.org/10.1186/
s41938-019-0141-9
-
23. Levy N, Faigenboim A, Salame L, Molina C, Ehlers RU,
Glazer I, Ment D. Characterization of the phenotypic
and genotypic tolerance to abiotic stresses of natural
populations of Heterorhabditis bacteriophora. Sci Rep.
(2020);10(1):1–16. https://doi.org/10.1038/s41598-020-
67097-0
-
24. Raja RK, Sivaramakrishnan S, Hazir S. Ecological
characterisation of Steinernema siamkayai (Rhabditida:
Steinernematidae), a warm-adapted entomopathogenic
nematode isolate from India. BioControl.
(2011);56(5):789–798. https://doi.org/10.1007/s10526-
011-9345-y
-
25. Glazer I, Salame L. Osmotic survival of the
entomopathogenic nematode Steinernema carpocapsae.
Biological Cont. (2000);18(3):251–257. https://doi.
org/10.1006/bcon.2000.0814
-
26. Hunt DJ, Nguyen KB. Tabular keys to species of
Steinernema and Heterorhabditis. In: Hunt DJ,
Nguyen KB, editors. Advances in Entomopathogenic
Nematode Taxonomy and Phylogeny. (2017).p.
59–109. Leiden, The Netherlands: Brill. https://doi.
org/10.1163/9789004285347. ISBN: 978-90-04-28534-7
-
27. Susurluk IA, Ulu TC, Kongu Y. Tolerances of
hybridized entomopathogenic nematode Heterorhabditis
bacteriophora (Rhabditida: Heterorhabditidae) strains to
heat and desiccation. Turk J Entomol. (2013);37(2):221–
228. https://doi.org/10.16970/ted.96639
-
28. White GF. A method for obtaining infective nematode
larvae from cultures. Science. (1927);66(1709):302–303.
https://doi.org/10.1126/science.66.1709.302.b
-
29. Rasmann S, Turlings TC. First insights into specificity
of belowground tritrophic interactions. Oikos.
(2008);117(3):362–369. https://doi.org/10.1111/
j.2007.0030-1299.16204.x
-
30. Kour S, Khurma U, Brodie G. Ecological Characterisation
of Native Isolates of Heterorhabditis indica from Viti
Levu, Fiji Islands. J Nematol. (2021);53(1):1–20. https://
doi.org/10.21307/jofnem-2021-085
-
31. Ulu TC, Susurluk IA. In vitro liquid culture production
and post-production pathogenicity of the hybrid
Heterorhabditis bacteriophora HBH strain. Crop Prot.
(2024);175(106443):1–7. https://doi.org/10.1016/j.
cropro.2023.106443
-
32. Yamanaka S, Tanabe H, Takeuchi K. Vertical Dispersal
and Infectivity of Steinernema glaseri, S. anomali and
S. kushidai (Nematoda: Steinernematidae). Nematol
Res (Jap J Nematol). (1995);25(1):24–32. https://doi.
org/10.3725/jjn1993.25.1_24
-
33. Bal HK, Michel AP, Grewal PS. Genetic selection of
the ambush foraging entomopathogenic nematode,
Steinernema carpocapsae for enhanced dispersal and
its associated trade-offs. Evolutionary Ecology. (2014);
28(5):923–939. https://doi.org/10.1007/s10682-014-
9706-y
-
34. Wu S-Y, Duncan LW. Entomopathogenic nematode
species combinations alter rates of dispersal, host
encounter and insecticidal efficiency. J Pest Sci. (2022);
95(3):1111–1119. https://doi.org/10.1007/s10340-021-
01475-z
-
35. Bal HK, Grewal PS. Lateral Dispersal and Foraging
Behavior of Entomopathogenic Nematodes in the Absence
and Presence of Mobile and Non-Mobile Hosts. PLOS
ONE. (2015); 10(6):e0129887. https://doi.org/10.1371/
journal.pone.0129887
-
36. Rolston AN, Griffin CT, Downes MJ. Emergence
and Dispersal Patterns of Two Isolates of the
Entomopathogenic Nematode Steinernema feltiae. J
Nematol. (2006); 38(2):221–228. PMID: 19259450
-
37. Ulu TC, Susurluk IA. Heat and desiccation tolerances of
Heterorhabditis bacteriophora strains and relationships
between their tolerances and some bioecological
characteristics. Invertebr Surv J. (2014); 11(1):4–10.
https://www.isj.unimore.it/index.php/ISJ/article/
view/300/214. ISSN 1824-307X
-
38. Fallet P, De Gianni L, Machado RAR, Bruno P, Bernal JS,
Karangwa P, Kajuga J, Waweru B, Bazagwira D, Degen
T, Toepfer S, Turlings TCJ. Comparative Screening of
Mexican, Rwandan and Commercial Entomopathogenic
Nematodes to Be Used against Invasive Fall Armyworm,
Spodoptera frugiperda. Insects. (2022); 13(2):205. https://
doi.org/10.3390/insects13020205
-
39. Odendaal D, Addison MF, Malan AP. Entomopathogenic
nematodes for the control of the codling moth (Cydia
pomonella L.) in field and laboratory trials. J Helminth.
(2016); 90(5):615–623. https://doi.org/10.1017/
S0022149X15000887
-
40. Ferreira T, Malan AP. Potential of entomopathogenic
nematodes for the control of the banded fruit weevil,
Phlyctinus callosus (Schönherr) (Coleoptera:
Curculionidae). J Helminth. (2014); 88(3):293–301.
https://doi.org/10.1017/S0022149X13000175
-
41. Susurluk IA, Kumral NA, Peters A, Bilgili U, Açıkgöz E.
Pathogenicity, reproduction and foraging behaviours of
some entomopathogenic nematodes on a new turf pest,
Dorcadion pseudopreissi (Coleoptera: Cerambycidae).
Biocontrol Sci Techn. (2009); 19(6):585–594. https://doi.
org/10.1080/09583150902957348
-
42. Özdemir E, Bayram Ş, Susurluk İA. First record of
the entomopathogenic nematode Steinernema litorale
(filipjev) (Rhabditida: Steinernematidae) and its symbiotic
bacterium from Turkey, and its efficacy capability.
Insects. (2020); 11(3):144. https://doi.org/10.3390/
insects11030144
-
43. Wang J, Cao L, Huang Z, Gu X, Cui Y, Li J, Li Y, Xu C,
Han R. Influence of the ascarosides on the recovery, yield
and dispersal of entomopathogenic nematodes. J Invertebr
Pathol. (2022); 188:107717. https://doi.org/10.1016/j.
jip.2022.107717