Research Article
BibTex RIS Cite

Electrochemical paracetamol detection using disposable pencil graphite electrodes

Year 2025, Volume: 4 Issue: 3, 1 - 8

Abstract

Paracetamol (Par) is a widely consumed antipyretic and analgesic drug. Its global use to reduce or prevent fever is increasing day by day, especially after the pandemic era. It has been detected in natural water resources and has emerged as a potential water contaminant.Therefore, the development of miniaturized detection platforms for the detection of Par has become an attractive topic. Herein, a disposable pencil graphite electrode (PGE) was used in combination with the differential pulse voltammetry (DPV) technique for the detection of Par. A passive adsorption strategy was implemented for the immobilization of Par molecules prepared in phosphate buffer solution (PBS, pH 7.40) on the PGE surface. Then, voltammetric measurements were performed. The experimental parameters were optimized according to the changes in the Par oxidation signal observed at +0.325V. The limit of detection (LOD) and limit of quantification (LOQ) values were calculated as 7.06 µg/mL and 23.56 µg/mL, respectively, in the linear concentration range as 10-40 µg/mL using electrochemically pre-treated PGEs and a 30 min immobilization time. Finally, the greenness level of the proposed method was calculated as 0.77 using Analytical GREEnness Metric Approach and Software (AGREE). The voltammetric detection of Par could be performed using just 100 µL Par sample for < 30 s.

References

  • Dear JW. Poisoning by paracetamol. Medicine. (2024);52:383-385. https://doi.org/10.1016/j.mpmed.2024.03.013
  • Isbister G, Chiew A, Buckley N, Harris K, Berling I, Downes M, Page C, Isoardi, K. A non-inferiority randomised controlled trial of a Shorter Acetylcysteine Regimen for Paracetamol Overdose – the SARPO trial. J Hepatol. (2025) in press. https://doi.org/10.1016/j.jhep.2025.05.008
  • Teixeira CD, Barbosa PO, Lima WG, Breguez GS, Fagundes MMA, Costa DC, Magalhães CLB, Amaral CF, Souza MO. Preventive treatment with guarana powder (Paullinia cupana) mitigates acute paracetamol-induced hepatotoxicity by modulating oxidative stress. Toxicol Report. (2025);14:101946. https://doi.org/10.1016/j.toxrep.2025.101946
  • Parolini M, Binelli A, Cogni D, Provini A. Multi-biomarker approach for the evaluation of the cyto-genotoxicity of paracetamol on the zebra mussel (Dreissena polymorpha). Chemosphere. (2010);79:489-498. https://doi.org/10.1016/j.chemosphere.2010.02.053
  • Tong HY, Medrano N, Borobia AM, Martínez AM, Martín J, Ruiz JA, García S, Quintana M, Carcas AJ, Frías J, Ramírez E. Hepatotoxicity induced by acute and chronic paracetamol overdose in adults. Where do we stand?. Regul Toxicol Pharm. (2015);72: 370-378. https://doi.org/10.1016/j.yrtph.2015.05.011
  • Gotardi J, Júnior ACS, Gnoatto SCB, Malfatti CF, Pilger DA. Electrochemical biosensors based on niobium-containing oxides: A review. Anal Chim Acta. (2025);1363:344239. https://doi.org/10.1016/j.aca.2025.344239
  • Karimian N, Hashemi P, Khanmohammadi A, Afkhami A, Bagheri H, The principles and recent applications of bioelectrocatalysis. Anal Bioanal Chem. Res. (2020);7:281-301.
  • Alamdari H, Lu NK, Pourmadadi M, Yazdian F, Rashedi H. Electrochemical biosensors for biomarker monitoring, with a specific focus on colorectal cancer: Toward innovative primary screening approaches. Microchem J. (2025);214:113976. https://doi.org/10.1016/j.microc.2025.113976
  • Lima HRS, Silva JS, Farias EAO, Teixeira PRS, Eiras C, Nunes LCC. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens Bioelectron. (2018);108:27-37. https://doi.org/10.1016/j.bios.2018.02.034
  • Asadi A, Ferdosi F, Anoosheh S, Kaveh M, Dadgostar E, Ehtiati S, Movahedpour A, Khanifari A, Haghighi MM, Khatami SH. Electrochemical biosensors for depression: Diagnosis and therapeutic monitoring. Clin. Chim Acta. (2025);567:120091. https://doi.org/10.1016/j.cca.2024.120091
  • Lahcen AA, Slaughter G. Nanomaterial-based electrochemical sensors for anti-HIV drug monitoring: Innovations, challenges, and prospects. J Pharm Biomed Anal. (2025);258:116727. https://doi.org/10.1016/j.jpba.2025.116727
  • Theyagarajan K, Sruthi VP, Satija J, Senthilkumar S, Kim Y. Materials and design strategies for the electrochemical detection of antineoplastic drugs: Progress and perspectives. Mater Sci Eng R. (2024);161:100840. https://doi.org/10.1016/j.mser.2024.100840
  • İslamoğlu N, Mülazımoğlu IE, Mülazımoğlu, AD. Sensitive and selective determination of paracetamol in antipyretic children’s syrup with a polyglycine modified glassy carbon electrode. Anal Methods. (2023);15:4149-4158. DOI https://doi.org/10.1039/D3AY00789H
  • http-1-https://www.webofscience.com/wos/woscc/citation-report/a0c828b5-4d3e-4e70-b468-386a0564e88e-0166f40dc6 Accession date: 06.06.2025
  • Korkmaz S, Sharifi H, Mulazimoglu IE et al. Highly sensitive electrochemical detection of paracetamol using a reduced gamma-aminobutyric acid modified pencil graphite electrode via differential pulse voltammetry. Microchem J. (2025);214:114089. https://doi.org/10.1016/j.microc.2025.114089
  • Torrinha A, Amorim CG, Montenegro MCSBM, Araújo AN, Biosensing based on pencil graphite electrodes. Talanta. (2018);190:235-247. https://doi.org/10.1016/j.talanta.2018.07.086
  • Stoytcheva M, Velkova Z, Gochev V, Valdez B, Curiel M. Advances in electrochemical sensors for paracetamol detection: Electrode materials, modifications, and analytical applications. Int J Electrochem Sci. (2025);20:100924. https://doi.org/10.1016/j.ijoes.2024.100924
  • Congur G, Efe E. Development of hydroxyapatite nanoparticles modified pencil graphite electrodes for voltammetric detection of paracetamol and phenol and greenness assessment of the sensor platform. Microchem J. (2025);208:112545. https://doi.org/10.1016/j.microc.2024.112545
  • Çongur G. Electrochemical investigation of the interaction of 2,4-D and double stranded DNA using pencil graphite electrodes. Turk J Chem. (2021);45:600-615. doi:10.3906/kim-2011-56
  • Ozcan L, Sahin Y. Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sens Act B. (2007);127:362–369. https://doi.org/10.1016/j.snb.2007.04.034
  • Yarman A, Scheller F. MIP-esterase/tyrosinase combinations for paracetamol and phenacetin. Electroanalysis. (2016);28:2222–2227. https://doi.org/10.1002/elan.201600042
  • Keskin E, Ertürk S. Electrochemical determination of paracetamol in pharmaceutical tablet by a novel oxidative pretreated pencil graphite electrode. Ionics. (2018);24:4043–4054. https://doi.org/10.1007/s11581-018-2532-4
  • Pinyou P, Blay V, Chansaenpak K, Lisnund, S. Paracetamol sensing with a pencil lead electrode modified with carbon nanotubes and polyvinylpyrrolidone. Chemosensors. (2020);8:133. doi:10.3390/chemosensors8040133
  • Zeng JM, Zhang J, Liu YP, Liu GC, Jiang XY, Yu JG. A novel electrochemical sensor based on mixed cubic and spherical Cu2O composited with MWCNTs-COOH for sensitive determination of acetaminophen. Talanta. (2025);295:128341. https://doi.org/10.1016/j.talanta.2025.128341
  • Pena-Pereira F, Wojnowski W, Tobiszewski M, AGREE:Analytical GREEnness Metric Approach and Software. Anal Chem. (2020);92:10076–10082. https://doi. org/10.1021/acs.analchem.0c01887.
  • Miller JN, Miller JC. Statistics and chemometrics for analytical chemistry, sixth ed., Pearson Education, Essex (2005.) pp. 121–123.
  • Magerusan L, Pogacean F, Pruneanu S, Enhanced acetaminophen electrochemical sensing based on nitrogen-doped graphene. Int J Mol Sci. (2022);23:14866. https://doi.org/10.3390/ijms232314866.
  • Pollap A, Baran K, Kuszewska N, Kochana J. Electrochemical sensing of ciprofloxacin and paracetamol in environmental water using titanium sol based sensor. J Electroanal Chem. (2020);878:114574. https://doi.org/10.1016/j.jelechem.2020.114574
  • Bosnali W, Korkmaz Ş, Mülazımoğlu AD, Mülazımoğlu İE. Leather shaving waste extract as an electrochemical modifier at a pencil graphite electrode for paracetamol determination in pharmaceuticals. ACS Omega. (2025);10:18270−18282. https://doi.org/10.1021/acsomega.4c08502
  • Engin C, Yilmaz S, Saglikoglu G, Yagmur S, Sadikoglu M. Electroanalytical investigation of paracetamol on glassy carbon electrode by voltammetry. Int J Electrochem Sci. (2015);10:1916-1925. https://doi.org/10.1016/S1452-3981(23)05122-2
  • Ambika, AV, Navya, N, Kiran Kumar, SR. et al. Electrochemical determination of paracetamol by SWCNT-modified carbon paste electrode: A cyclic voltammetric study. Carbon Lett. (2022);32:1287–1295. https://doi.org/10.1007/s42823-022-00354-6
  • El-Said WA, Nasr O, Soliman AIA. et al. Fabrication of polypyrrole/Au nanoflowers modified gold electrode for highly sensitive sensing of paracetamol in pharmaceutical formulation. App Surf Sci Adv. (2021);4:100065. https://doi.org/10.1016/j.apsadv.2021.100065
  • Goyal RN, Gupta VK, Oyama M, Bachheti N. Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode. Electrochem Commun. (2005);7:803-807. https://doi.org/10.1016/j.elecom.2005.05.005
There are 33 citations in total.

Details

Primary Language English
Subjects Analytical Chemistry (Other)
Journal Section Research Articles
Authors

Gülşah Çongur 0000-0002-0599-0993

Early Pub Date October 23, 2025
Publication Date October 27, 2025
Submission Date June 9, 2025
Acceptance Date August 18, 2025
Published in Issue Year 2025 Volume: 4 Issue: 3

Cite

Vancouver Çongur G. Electrochemical paracetamol detection using disposable pencil graphite electrodes. Eur J Life Sci. 2025;4(3):1-8.