Synergistic Anticancer Effects of Low-Frequency Magnetic Field and Doxorubicin on Glioblastoma Cell Line
Year 2025,
Volume: 4 Issue: 1, 25 - 36, 13.07.2025
Hilal Ergene
,
Murat Aydemir
,
Mehmet Enes Arslan
,
Gürkan Berber
,
Dilara Esra Men
,
Hatice Karataş
,
Elif Arslan
,
Cihat Aksakal
,
Hasan Türkez
Abstract
Glioblastoma (GBM) is one of the most aggressive primary brain tumors of the central nervous system, with a limited median survival of approximately 15 months despite current treatment options. In this study, the effects of a low-frequency magnetic field (LF-MF) in combination with the chemotherapeutic agent doxorubicin (DOX) on the glioblastoma cell line (U87MG) were investigated. In the experimental design, U87MG cells were exposed to LF-MF at intensity of 1 mT and treated with different concentrations of DOX (5 µg/ml and 10 µg/ml). Cell viability was assessed using the MTT assay, nuclear morphological changes were analyzed with Hoechst 33258 staining, and apoptotic and necrotic cell percentages were determined by flow cytometry. The results showed that DOX alone reduced cell viability in a dose-dependent manner (IC₅₀= 3.22 µg/ml). However, in the presence of LF-MF, DOX's cytotoxic effect increased, leading to a decrease in the IC₅₀ value to 2.18 µg/ml. Flow cytometry analyses revealed that while 5 µg/ml and 10 µg/ml DOX alone increased apoptotic cell percentages to 23.4% and 38.7%, respectively, these rates increased to 37.2% and 52.5% when combined with LF-MF. Compared to the control group, LF-MF did not alter toxicity in the healthy fibroblast cell line (HDFa) and had no additional effect on DOX-induced cell death. However, in glioblastoma cells, LF-MF-supported DOX treatment significantly enhanced cell death, suggesting that LF-MF may improve DOX efficacy by increasing cell membrane permeability and reactive oxygen species (ROS) production. This study demonstrates that the combination of LF-MF and DOX exerts a synergistic effect on glioblastoma cells by enhancing cell death. LF-MF-assisted chemotherapy strategies could be a potential alternative in glioblastoma treatment, but further molecular and biochemical studies are needed to elucidate the underlying mechanisms.
Supporting Institution
TUBİTAK
Project Number
1919B012317274
References
-
1. Türkiye Klinikleri. (2018). Biyofilm nedir? Türkiye Klinikleri. Erişim tarihi: 9 Aralık 2024, https://www.turkiyeklinikleri.com/article/en-what-is-biofilm--83796.html
-
2. Kartal, M., & Ekinci, M. (2021). Biyofilm yapısı ve önlenmesi. Akademik Gıda, Erişim tarihi: 9 Aralık 2024, https://dergipark.org.tr/en/pub/akademik-gida/article/1011231
3.
Jefferson, K. K. (2004). What drives bacteria to produce a biofilm? FEMS Microbiology Letters, 236(2), 163–173. https://doi.org/10.1016/j.femsle.2004.06.005
-
4. Erkihun, M., Asmare, Z., Endalamew, K., Getie, B., Kiros, T., & Berhan, A. (2024). Medical scope of biofilm and quorum sensing during biofilm formation: Systematic review. Bacteria, 3(3), 118–135. https://doi.org/10.3390/bacteria3030008
-
5. Mirzaei, R., Abdi, M., & Gholami, H. (2020). The host metabolism following bacterial biofilm: What is the mechanism of action? Reviews and Research in Medical Microbiology, 31(4), 175–182. https://doi.org/10.1097/MRM.0000000000000216
-
6. Tarım ve Yaban Hayatı Bilimleri Dergisi. (2019). Güneydoğu Anadolu Bölgesinin farklı lokasyonlarından toplanan Boynuzlu Geven (Astragalus hamosus L.) otunun bazı kalite özelliklerinin belirlenmesi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 5(2), 346–354. https://doi.org/10.24180/IJAWS.594960
-
7. Ekiz, G., Yılmaz, S., Yusufoglu, H., Kırmızıbayrak, P. B., & Bedir, E. (2019). Microbial transformation of cycloastragenol and astragenol by endophytic fungi isolated from Astragalus species. Journal of Natural Products, 82(11), 2979–2985. https://doi.org/10.1021/acs.jnatprod.9b00336
-
8. Li, X., et al. (2014). A review of recent research progress on the Astragalus genus. Molecules, 19(11), 18850–18880. https://doi.org/10.3390/molecules191118850
-
9. Abd Elkader, H. T. A. E., Essawy, A. E., & Al-Shami, A. S. (2022). Astragalus species: Phytochemistry, biological actions and molecular mechanisms underlying their potential neuroprotective effects on neurological diseases. Phytochemistry, 202, 113293. https://doi.org/10.1016/j.phytochem.2022.113293
-
10. Lavecchia, T., Rea, G., Antonacci, A., & Giardi, M. T. (2012). Healthy and adverse effects of plant-derived functional metabolites: The need of revealing their content and bioactivity in a complex food matrix. Critical Reviews in Food Science and Nutrition, 53(2), 198. https://doi.org/10.1080/10408398.2010.520829
-
11. Türkiye Florasında Yer Alan Endemik Astragalus Taksonları (Endemic Astragalus Taxa Found in Flora of Turkey). (2025, April 4). Erişim adresi: https://www.google.com/search?q=T%C3%BCrkiye+Floras%C4%B1nda+Yer+Alan+Endemik+Astragalus+Taksonlar%C4%B1+(...)
-
12. Li, Z., Qi, J., Guo, T., & Li, J. (2023). Research progress of Astragalus membranaceus in treating peritoneal metastatic cancer. Journal of Ethnopharmacology, 305, 116086. https://doi.org/10.1016/j.jep.2022.116086
-
13. Nafti, K., Giacinti, G., Marghali, S., & Raynaud, C. D. (2022). Screening for Astragalus hamosus triterpenoid saponins using HPTLC methods: Prior identification of azukisaponin isomers. Molecules, 27(17). https://doi.org/10.3390/molecules27175376
-
14. Li, X., et al. (2023). Regulation and mechanism of Astragalus polysaccharide on ameliorating aging in Drosophila melanogaster. International Journal of Biological Macromolecules, 234, 123632. https://doi.org/10.1016/j.ijbiomac.2023.123632
-
15. Piryaei, M., & Azimi, S. (2024). Preparation and evaluation of smart food packaging films with anthocyanin Sardasht black grape based on Astragalus gummifer and chitosan nanoparticles. International Journal of Biological Macromolecules, 254, 127974. https://doi.org/10.1016/j.ijbiomac.2023.127974
-
16. Risslegger, B., Lass-Flörl, C., Blum, G., & Lackner, M. (2015). Evaluation of a modified EUCAST fragmented-mycelium inoculum method for in vitro susceptibility testing of dermatophytes and the activity of novel antifungal agents. Antimicrobial Agents and Chemotherapy. https://doi.org/10.1128/AAC.04381-14
-
17. Haney, E. F., Trimble, M. J., Cheng, J. T., Vallé, Q., & Hancock, R. E. W. (2018). Critical assessment of methods to quantify biofilm growth and evaluate antibiofilm activity of host defence peptides. Biomolecules, 8(2), 29. https://doi.org/10.3390/biom8020029.
-
18. Makalesi, A., et al. (2021). Antimicrobial activity of pigments extracted from Auxenochlorella protothecoides SC3 against Pseudomonas aeruginosa. Tarım ve Doğa Dergisi, 10(2), 163–167. https://doi.org/10.46810/tdfd.930388
-
19. Schultz, A. W., Wang, J., Zhu, Z.-J., Johnson, C. H., Patti, G. J., & Siuzdak, G. (2013). Liquid chromatography quadrupole time-of-flight characterization of metabolites guided by the METLIN database. Nature Protocols, 8(3), 451–460. https://doi.org/10.1038/nprot.2013.004
-
20. Kumar, S. S., Manoj, P., & Giridhar, P. (2016). Fourier transform infrared spectroscopy (FTIR) analysis, chlorophyll content and antioxidant properties of native and defatted foliage of green leafy vegetables. Journal of Food Science and Technology, 53(4), 1874–1882. https://doi.org/10.1007/s13197-015-1959-0
-
21. Huang, W., et al. (2023). Integrating HPLC-Q-TOF-MS/MS, network pharmacology and experimental validation to decipher the chemical substances and mechanism of modified Gui-shao-liu-jun-zi decoction against gastric cancer. Journal of Traditional Chinese Medical Sciences, 13, 245–262. https://doi.org/10.1016/j.jtcme.2023.01.002
22. Bitki doku kültürlerinde sekonder metabolit sentezi. (Yıl yok). Gıda Dergisi. https://doi.org/10.15237/gida.GD13060
-
23. Salam, U., et al. (2023). Plant metabolomics: An overview of the role of primary and secondary metabolites against different environmental stress factors. Life, 13(3), 706. https://doi.org/10.3390/life13030706
-
24. Elshafie, H. S., Camele, I., & Mohamed, A. A. (2023). A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. International Journal of Molecular Sciences, 24(4), 3266. https://doi.org/10.3390/ijms24043266
-
25. Kandar, C. C. (2021). Secondary metabolites from plant sources. In Advanced Structured Materials (Vol. 140, pp. 329–377). https://doi.org/10.1007/978-3-030-54027-2_10
26. Bhatla, S. C., & Lal, M. A. (2023). Secondary metabolites. In Plant Physiology, Development and Metabolism (pp. 765–808). https://doi.org/10.1007/978-981-99-5736-1_33
-
27. Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Microorganisms towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 9(10), 2041.
-
28. Bocso, N., & Butnariu, M. (2022). The biological role of primary and secondary plants metabolites. Journal of Nutritional and Food Processing.
-
29. Zandavar, H., & Borhani, M. (2023). Secondary metabolites: Alkaloids and flavonoids in medicinal plants. IntechOpen.
-
30. Sharma, A., Sharma, S., Kumar, A., & Kaushik, V. K. (2022). Plant secondary metabolites: An introduction of their chemistry and biological significance with physicochemical aspect. In Springer Book Series.
-
31. Crozier, A., Clifford, M. N., & Ashihara, H. (2006). Plant secondary metabolites. Wiley. https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470988558
32. Cui, L., Ma, Z., Li, W., Ma, H., Guo, S., Wang, D., & Niu, Y. (2023). Inhibitory activity of flavonoids fraction from Astragalus membranaceus Fisch. ex Bunge stems and leaves on Bacillus cereus and its separation and purification. Frontiers in Pharmacology, 14, 1183393.