Systematic Reviews and Meta Analysis
BibTex RIS Cite

Densovirinae: An Eco-Friendly Alternative in Biological Control

Year 2025, Volume: 4 Issue: 1, 45 - 55, 13.07.2025

Abstract

Entomopathogenic viruses are among the most important biological control agents due to their narrow host spectrum, low in vivo production costs and environmentally friendly properties. In particular, asymptomatic viruses with the potential to cause oral infection are seen as an environmentally sustainable alternative to chemical pesticides in the control of harmful insects. The fact that these viruses do not harm non-target organisms and their ability to protect the natural balance of the ecosystem offer significant advantages in the field of biological control. In addition, their minimal environmental impact contributes to the implementation of sustainable approaches to agricultural pest management. Densoviruses are non-enveloped, single-stranded, linear DNA genome viruses of very small size in the subfamily Densovirinae of the family Parvoviridae that infect only invertebrates. These viruses have been isolated from many insect orders including Blattodea, Diptera, Hemiptera, Hymenoptera, Coleoptera, Lepidoptera and Orthoptera. They have also been reported to infect decapod crustaceans and echinoderms. Although the discovery of densoviruses dates back some sixty years, their use as biological control agents was not seriously considered until it was demonstrated that these viruses do not infect vertebrates. However, in vivo and in vitro studies in mammals have shown that densoviruses do not infect vertebrates, and this has accelerated research into their potential use in biological control over the last two decades. In this review, the general characteristics of densoviruses and their potential use in biological control are discussed in detail.

References

  • 1. Kılınçer N, Yiğit A, Kazak C, Er MK, Kurtuluş A, Uygun N. Teoriden pratiğe zararlılarla biyolojik mücadele. Türkiye biyolojik mücadele dergisi. 2010:1(1);15-60.
  • 2. Pattanakitsakul SN, Boonnak K, Auethavornanan K, Jairungsri A, Duangjinda T, Puttatesk P, Malasit P. A new densovirus isolated from the mosquito Toxorhynchites splendens (Wiedemann) (Diptera: Culicidae). Southeast Asian journal of tropical medicine and public health. 2007:38(2);283.
  • 3. DeBach P, Schlinger EI. Biological control of insect pests and weeds. 1964.
  • 4. Azizoğlu U, Bulut S, Yılmaz S. Organik tarımda biyolojik mücadele; entomopatojen biyoinsektisitler. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2012:28(5);375-381.
  • 5. Jehle JA, Blissard GW, Bonning BC, Cory JS, Herniou EA, Rohrmann GF. On the classification and nomenclature of baculoviruses: a proposal for revision. Arch. Virol. 2006:151:1257–1266.
  • 6. Harish S, Murugan M, Kannan M, Parthasarathy S, Prabhukarthikeyan SR, Elango K. Entomopathogenic viruses. Microbial approaches for insect pest management. 2021:1-57.
  • 7. Tokarev YS, Malysh SM, Volodartseva YV, Gerus AV, Berezin MV. Molecular identification of a densovirus in healthy and diseased Zophobas morio (Coleoptera, Tenebrionidae). Intervirology. 2020:62(5-6);222-226.
  • 8. Penzes JJ, Kaelber JT. Identification by cryoEM of a densovirus causing mass mortality in mass-reared larval darkling beetles (Zophobas morio). bioRxiv. 2022:05.
  • 9. Armien AG, Polon R, Rejmanek D, Moeller RB, Crossley BM. Outbreak of densovirus with high mortality in a commercial mealworm (Tenebrio molitor) farm: a molecular, bright-field, and electron microscopic characterization. Veterinary Pathology. 2023:60(5);689-703.
  • 10. Aş Y, Selvitopi Z, Eroğlu GB. Two novel densoviruses from storage pests insects (Zophobas morio and Tenebrio molitor) in Türkiye: Genomic and ultrastructural comparison. Journal of Stored Products Research. 2025:111;102549.
  • 11. Afanasiev B, Carlson J. Densovirinae as gene transfer vehicles. Contributions to microbiology. 2000:4;33-58.
  • 12. Johnson RM, Rasgon JL. Densonucleosis viruses (‘densoviruses’) for mosquito and pathogen control. Current opinion in insect science. 2018:28;90-97.
  • 13. Federici BA. Viral pathogens of mosquito larvae. Bull Am Mosq Control Assoc. 1985: 6;62–74.
  • 14. Cotmore SF, Agbandje-McKenna M, Canuti M, Chiorini JA, Eis-Hubinger AM, Hughes J. ICTV Report Consortium. ICTV virus taxonomy profile: Parvoviridae. Journal of General Virology. 2019:100(3);367-368.
  • 15. Kim E, Koo HJ, Kim JY, Baek JH, Kim CO, Park K, Yoon JS. Crisis in South Korean cricket farms: Occurrence of Gryllus bimaculatus densovirus and its spread. Journal of Insects as Food and Feed. 2024:1;1-12.
  • 16. Pigeyre L, Schatz M, Ravallec M, Gasmi L, Negre N, Clouet C, Ogliastro M. Interaction of a densovirus with glycans of the peritrophic matrix mediates oral infection of the lepidopteran pest Spodoptera frugiperda. Viruses. 2019:11(9);870.
  • 17. Reuter G, Boros A, Delwart E, Pankovics P. Novel circular single-stranded DNA virus from turkey faeces. Archives of virology. 2014:159;2161-2164.
  • 18. Palinski RM, Mitra N, Hause BM. Discovery of a novel Parvovirinae virus, porcine parvovirus 7, by metagenomic sequencing of porcine rectal swabs. Virus genes. 2016:52(4); 564-567.
  • 19. Siqueira JD, Terry F, Miller M, Li L, Deng X, Dodd E, Delwart E. Endemic infection of stranded southern sea otters (Enhydra lutris nereis) with novel parvovirus, polyomavirus, and adenovirus. Journal of Wildlife Diseases. 2017:53(3);532-542.
  • 20. Roediger B, Lee Q, Tikoo S, Cobbin JC, Henderson JM, Jormakka M, Weninger W. An atypical parvovirus drives chronic tubulointerstitial nephropathy and kidney fibrosis. Cell. 2018:175(2);530-543.
  • 21. Williams SH, Che X, Garcia JA, Klena JD, Lee B, Muller D, Lipkin WI. Viral diversity of house mice in New York City. MBio. 2018:9(2);10-1128.
  • 22. Fahsbender E, Altan E, Seguin MA, Young P, Estrada M, Leutenegger C, Delwart E. Chapparvovirus DNA Found in 4% of dogs with diarrhea. Viruses. 2019:11;398.
  • 23. Lima DA, Cibulski SP, Tochetto C, Varela APM, Finkler F, Teixeira TF, Roehe PM. The intestinal virome of malabsorption syndrome-affected and unaffected broilers through shotgun metagenomics. Virus research. 2019:261;9-20.
  • 24. Mietzsch M, Penzes JJ, Agbandje-McKenna M. Twenty-five years of structural parvovirology. Viruses. 2019:11(4);362.
  • 25. Penzes JJ, de Souza WM, Agbandje-McKenna M, Gifford RJ. An ancient lineage of highly divergent parvoviruses infects both vertebrate and invertebrate hosts. Viruses. 2019:11(6);525.
  • 26. Penzes JJ, Söderlund-Venermo M, Canuti M, Eis-Hübinger AM, Hughes J, Cotmore SF, & Harrach B. Reorganizing the family Parvoviridae: a revised taxonomy independent of the canonical approach based on host association. Archives of Virology. 2020:165;2133-2146.
  • 27. El-Far M, Li Y, Fediere G, Abol-Ela S, Tijssen P. Lack of infection of vertebrate cells by the densovirus from the maize worm Mythimna loreyi (MlDNV). Virus research. 2004:99(1); 17-24.
  • 28. Kapelinskaya TV, Martynova EU, Schal C, Mukha DV. Expression strategy of densonucleosis virus from the German cockroach, Blattella germanica. Journal of virology. 2011:85(22);11855-11870.
  • 29. Cotmore S, Tattersall, P. A rolling-hairpin strategy: basic mechanisms of DNA replication in the parvoviruses. In: Kerr JR, Cotmorre S, Bloom M (eds.). Parvoviruses. London (GB): Hodder Arnold. 2006:171-88.
  • 30. Cotmore SF, Tattersall P. Parvoviruses: small does not mean simple. Annual review of virology. 2014:1(1);517-537. 31. Grenet ASG, Salasc F, Francois S, Mutuel D, Dupressoir T, Multeau C, Ogliastro M. (2015). Les densovirus: une massive attaque chez les arthropodes. Virologie. 2015:19(1);19-31.
  • 32. Penzes JJ, Pham HT, Chipman P, Bhattacharya N, McKenna R, Agbandje-McKenna M, Tijssen P. Molecular biology and structure of a novel penaeid shrimp densovirus elucidate convergent parvoviral host capsid evolution. Proceedings of the National Academy of Sciences. 2020:117(33);20211-20222.
  • 33. Vanacker JM, Rommelaere J. Non-structural proteins of autonomous parvoviruses: from cellular effects to molecular mechanisms. Seminars in Virology. 1995:6;291-297.
  • 34. Liu PW, Xu JB, Dong YQ, Chen XG, Gu JB. Use of a recombinant mosquito densovirus as a gene delivery vector for the functional analysis of genes in mosquito larvae. Journal of Visualized Experiments. 2017:128;56121.
  • 35. Vendeville A, Ravallec M, Jousset FX, Devise M, Mutuel D, Lopez-Ferber M, Ogliastro M. Densovirus infectious pathway requires clathrin-mediated endocytosis followed by trafficking to the nucleus. Journal of virology. 2009:83(9);4678-4689.
  • 36. De Beeck AO, Caillet-Fauquet P. Viruses and the cell cycle. Progress in cell cycle research. 1997:1-19. 37. Cotmore SF, Tattersall P. Parvoviral host range and cell entry mechanisms. Advances in virus research. 2007:70;183-232.
  • 38. Harbison CE, Chiorini JA, Parrish CR. The parvovirus capsid odyssey: from the cell surface to the nucleus. Trends in microbiology. 2008:16(5);208-214.
  • 39. Farr GA, Zhang LG, Tattersall P. Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc. Natl Acad. Sci. 2005:102;17148–53.
  • 40. El-Far M, Szelei J, Yu Q, Fediere G, Bergoin M, Tijssen P. Organization of the ambisense genome of the Helicoverpa armigera densovirus. J Virol. 2012:86.
  • 41. Eberle KE, Wennmann JT, Kleespies RG, Jehle JA. Basic techniques in insect virology. In: Lacey, L.A. (ed.) Manual of techniques in invertebrate pathology, 2nd edition. Academic Press, San Diego, CA, USA. 2012:15-74.
  • 42. Penzes JJ, Holm M, Yost SA, Kaelber JT. Cryo-EM-based discovery of a pathogenic parvovirus causing epidemic mortality by black wasting disease in farmed beetles. Cell. 2024:187(20);5604-5619.
  • 43. Wang Y, Gosselin Grenet AS, Castelli I, Cermenati G, Ravallec M, Fiandra L, Ogliastro M. Densovirus crosses the insect midgut by transcytosis and disturbs the epithelial barrier function. Journal of virology. 2013:87(22);12380-12391.
  • 44. Huber J. Western Europe, p 201–215. In Hunter-Fujita FR, Entwistle PF, Evans HF, Crook NE (ed), Insect viruses and pest management. John Wiley & Sons, Inc, New York, Chichester. 1998.
  • 45. Ibarra JE, Del Rincon-Castro MC. Insect viruses diversity, biology, and use as bioinsecticides. Tropical biology and conservation management. 2008:5;1-10.
  • 46. Beas-Catena A, Sanchez-Miron A, Garcia-Camacho F, Contreras-Gomez A, Molina-Grima E. Baculovirus biopesticides: an overview. JAPS: Journal of Animal & Plant Sciences. 2014:24(2).
  • 47. Szewczyk B, de Souza ML, de Castro MEB, Moscardi ML, Moscardi F. Baculovirus biopesticides. In Pesticides-formulations, effects, fate. IntechOpen. 2011.
  • 48. Jiang H, Zhang JM, Wang JP, Yang B, Liu CF, Lu J, Hu YY. Genetic engineering of Periplaneta fuliginosa densovirus as an improved biopesticide. Archives of Virology. 2007:152;383-394.
  • 49. Batool K, Xiao J, Xu Y, Yang T, Tao P, Zhao S, Chen X. Densovirus oil suspension significantly improves the efficacy and duration of larvicidal activity against Aedes albopictus. Viruses. 2022:14(3);475.
  • 50. Parry R, Bishop C, De Hayr L, Asgari S. Density-dependent enhanced replication of a densovirus in Wolbachia-infected Aedes cells is associated with production of piRNAs and higher virus-derived siRNAs. Virology. 2019:528;89-100.
  • 51. Huang DY, Qin JS, Dong RK, Liu SN, Chen N, Yuan DW, Xia X. Ben‐JNK signaling is required for host mortality during Periplaneta fuliginosa densovirus infection. Pest Management Science. 2024:80(9);4495-4504
  • 52. Simpson AA, Chipman PR, Baker TS, Tijssen P, Rossmann MG. The structure of an insect parvovirus (Galleria mellonella densovirus) at 3.7 Å resolution. Structure. 1998:6;1355-1367.
  • 53. Zhai YG, Lv XJ, Sun XH, Fu SH, Gong ZD, Fen Y, Liang GD. Isolation and characterization of the full coding sequence of a novel densovirus from the mosquito Culex pipiens pallens. Journal of General Virology. 2008:89(1);195-199.
  • 54. Lebedeva OP, Zelenko AP, Kuznetsova MO. The detection of viral infection in larvae of Aedes aegypti. Mikrobiol Zh. 1972:34(1);70–73.
  • 55. Hu Y, Zheng J, Iizuka T, Bando H. A densovirus newly isolated from the smoky-brown cockroach Periplaneta fuliginosa. Archives of virology. 1994:138;365-372.
  • 56. Mukha DV, Chumachenko AG, Dykstra MJ, Kurtti TJ, Schal C. Characterization of a new densovirus infecting the German cockroach, Blattella germanica. Journal of general virology. 2006:87(6);1567-1575.
  • 57. Jiang H, Zhou L, Zhang JM, Dong HF, Hu YY, Jiang MS. Potential of Periplaneta fuliginosa densovirus as a biocontrol agent for smoky-brown cockroach, P. fuliginosa. Biological Control. 2008:46(2);94-100.
  • 58. Chao YC, Young III SY, Kim KS, Scott HA. A newly isolated densonucleosis virus from Pseudoplusia includens (Lepidoptera: Noctuidae). Journal of Invertebrate Pathology. 1985:46(1);70-82.
  • 59. Fediere G, El-Sheikh MAK, Abol-Ela S, Salah M, Massri M, Veyrunes JC. Isolation of a new Densonucleosis virus from Mythimna loreyi Dup. (Lep. Noctuidae) in Egypt. Bull Fac Agric Cairo. 1995:46(4);693–702.
  • 60. Fediere G, Salah M, El-Mergawy R, Masri M, El-Sheikh M, Abol-Ela S, ... Tijssen P. A new Densovirus isolated from the African cotton bollworm Helicoverpa armigera Hbn. (Lepidoptera: Noctuidae) in Egypt. Arab J. Biotech. 2004:7(2);289-298.
  • 61. Da Silva LA, de Camargo BR, Fisch AA, Santos B, Ardisson-Araujo DM, Ribeiro BM. Identification and detection of known and new viruses in larvae of laboratory-reared fall armyworm, Spodoptera frugiperda. Journal of Invertebrate Pathology. 2025:210;108290.
  • 62. Wang D, Wang YM, Wei CX, Zhang Z, Zheng X. Review of environmental-friendly public health insecticides. Chin. J. Vector Biol. Control. 2012:23;485-488.
  • 63. Giran F. Etude de la densonucleose des Lepidopteres par la methode immunologique de la diffusion en gel. Entomophaga. 1968:13(4);271-279.
  • 64. Jousset FX, Compagnon B, Bergoin M. Comparison of the restriction map and infectivity of the genome of three densoviruses; in Samson RA, Vlak JM, Peters D (eds): Fundamental and Applied Aspects of Invertebrate Pathology. Wageningen, Foundation IVth Int Colloq Invertebr. Pathol. 1986:121.
  • 65. Fediere G, Lery X, Quiot JM, Monsarrat P. Replication of the densovirus of Casphalia extranea (Lepidoptera Limacodidae) on an established cell line. J. Invertebr. Pathol. 1990:56;132-134.
  • 66. Seki H. Mode of inheritance of the resistance to the infection with the densonucleosis virus (Yamanashi isolate) in the silkworm, Bombyx mori. The Journal of Sericultural Science of Japan. 1984:53(6);472-475.
  • 67. Kurstak E, Chagnon A, Huon C, Trudel M. Formation de cellules polynucléées dans un système monocellulaire de la souch L de tissue sous-cutané de souris en contact avec virus de la densonucléose. Second international colloquium on invertebrate tissue culture Instituto Lombardo: Fondazione Baselli. 1968:264–271.
  • 68. Kurstak E, Cote J, Belloncik S, Garzon S, Trudel M, Chagnon N. Infection des cellules L de la souris par le virus de la densonucléose. Rev. Can. Biol. 1969:28(139);41.
  • 69. Kurstak E, Belloncik S, Brailovsky C. Transformation de cellules L de souris par un virus d’invertébrés: Le virus de la densonucléose (VDN). CR Acad. Sc. Paris. 1969:269;1716-1719.
There are 67 citations in total.

Details

Primary Language English
Subjects Animal Cell and Molecular Biology
Journal Section Reviews
Authors

Yasemin Aş 0009-0007-4767-7296

Gözde Büşra Eroğlu 0000-0001-8988-1315

Early Pub Date July 21, 2025
Publication Date July 13, 2025
Submission Date March 28, 2025
Acceptance Date April 29, 2025
Published in Issue Year 2025 Volume: 4 Issue: 1

Cite

APA Aş, Y., & Eroğlu, G. B. (2025). Densovirinae: An Eco-Friendly Alternative in Biological Control. Eurasian Journal of Molecular and Biochemical Sciences, 4(1), 45-55.