Technical Brief
BibTex RIS Cite

INTEGRATION OF GRID SCALE BATTERY ENERGY STORAGE SYSTEMS AND APPLICATION SCENARIOS

Year 2024, , 76 - 86, 15.06.2024
https://doi.org/10.55696/ejset.1409774

Abstract

Integration of renewable energy sources (RESs) into the grid has profoundly gained a lot of attention in the energy domain, coupled with an ever-changing generation profile and dependency on weather conditions, RESs are commonly known to pose security of supply challenges and in case they are not monitored they can cause techno-economic losses and even lead to catastrophic failure of the electrical grids. However, their availability and negligible generation cost make them environmentally friendly when compared to conventional energy sources. For seamless connection of renewables to the grid network, battery energy storage system (BESS) has been suggested in literature, the technology has come to the fore recently, and has found application cases in the utility grid with enhanced functions to participate in both reserve and wholesale electricity markets such as day-ahead and intra-day markets. This technical brief presents various energy storage systems (ESSs) potentially used in large-scale grid networks, which are investigated, and their individual properties are compared, where necessary application areas with examples enabled by constituting material properties are outlined, in the same context their general advantages and disadvantages are given in reference to the specific application cases. In addition, the application of large-scale BESS is explained together with the integration solutions such as use of Virtual Power Plant (VPP) and microgrid.

References

  • TEİAŞ, “Aylık Elektrik Üretim-Tüketim Raporları.” Accessed: Sep. 26, 2023. [Online]. Available: https://www.teias.gov.tr/aylik-elektrik-uretim-tuketim-raporlari
  • Enerji ve Tabii Kaynaklar Bakanlığı, “Elektrik - T.C. Enerji ve Tabii Kaynaklar Bakanlığı.” Accessed: Sep. 26, 2023. [Online]. Available: https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  • Dışişleri Bakanlığı, “Paris Anlaşması / T.C. Dışişleri Bakanlığı.” Accessed: Sep. 26, 2023. [Online]. Available: https://www.mfa.gov.tr/paris-anlasmasi.tr.mfa
  • PVMagazine, “EU raises renewables target to 45% by 2030,” PVMagazine. Accessed: Sep. 26, 2023. [Online]. Available: https://www.pv-magazine.com/2023/06/20/eu-raises-renewables-target-to-45-by-2030/?utm_source=dlvr.it&utm_medium=linkedin
  • Z. Wang, “Electronic and Electrical Engineering . A grid-tied large-scale battery energy storage system : modelling from the pack level to the cell level,” no. May, 2022.
  • A. Nieto, V. Vita, and T. I. Maris, “Power Quality Improvement in Power Grids with the Integration of Energy Storage Systems,” Int. J. Eng. Res. Technol., vol. 5, no. 7, Jul. 2016, doi: 10.17577/IJERTV5IS070361.
  • I. Chernyakhovskiy, M. Joshi, D. Palchak, and A. Rose, “Energy Storage in South Asia: Understanding the Role of Grid-Connected Energy Storage in South Asia’s Power Sector Transformation,” NREL/TP--5C00-79915, 1811299, MainId:39133, Jul. 2021. doi: 10.2172/1811299.
  • T. Chen et al., “Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems,” Trans. Tianjin Univ., vol. 26, no. 3, pp. 208–217, Jun. 2020, doi: 10.1007/s12209-020-00236-w.
  • A. Castillo and D. F. Gayme, “Grid-scale energy storage applications in renewable energy integration: A survey,” Energy Convers. Manag., vol. 87, pp. 885–894, Nov. 2014, doi: 10.1016/j.enconman.2014.07.063.
  • M. Haji Bashi, L. De Tommasi, and P. Lyons, “Electricity market integration of utility-scale battery energy storage units in Ireland, the status and future regulatory frameworks,” J. Energy Storage, vol. 55, p. 105442, Nov. 2022, doi: 10.1016/j.est.2022.105442.
  • O. H. Anuta, P. Taylor, D. Jones, T. McEntee, and N. Wade, “An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage,” Renew. Sustain. Energy Rev., vol. 38, pp. 489–508, Oct. 2014, doi: 10.1016/j.rser.2014.06.006.
  • J. Ding, Y. Xu, H. Chen, W. Sun, S. Hu, and S. Sun, “Value and economic estimation model for grid-scale energy storage in monopoly power markets,” Appl. Energy, vol. 240, pp. 986–1002, Apr. 2019, doi: 10.1016/j.apenergy.2019.02.063.
  • M. M. Rana et al., “Applications of energy storage systems in power grids with and without renewable energy integration — A comprehensive review,” J. Energy Storage, vol. 68, no. May, p. 107811, 2023, doi: 10.1016/j.est.2023.107811.
  • A. Özan, “Batarya Enerji Depolama Sistemlerinin Elektrik Dağıtım Sistemine Etkisi ve Sezgisel Algoritmalar ile Faz Dengesizliğinin Giderilmesi,” 2020.
  • C. D. Parker, “Lead–acid battery energy-storage systems for electricity supply networks,” J. Power Sources, vol. 100, no. 1–2, pp. 18–28, Nov. 2001, doi: 10.1016/S0378-7753(01)00880-1.
  • D. Akinyele, J. Belikov, and Y. Levron, “Battery storage technologies for electrical applications: Impact in stand-alone photovoltaic systems,” Energies, vol. 10, no. 11, pp. 1–39, 2017, doi: 10.3390/en10111760.
  • M. S. Guney and Y. Tepe, “Classification and assessment of energy storage systems,” Renew. Sustain. Energy Rev., vol. 75, pp. 1187–1197, Aug. 2017, doi: 10.1016/j.rser.2016.11.102.
  • N. K. C. Nair and N. Garimella, “Battery energy storage systems: Assessment for small-scale renewable energy integration,” Energy Build., vol. 42, no. 11, pp. 2124–2130, 2010, doi: 10.1016/j.enbuild.2010.07.002.
  • V. G. Lacerda, A. B. Mageste, I. J. B. Santos, L. H. M. da Silva, and M. do C. H. da Silva, “Separation of Cd and Ni from Ni–Cd batteries by an environmentally safe methodology employing aqueous two-phase systems,” J. Power Sources, vol. 193, no. 2, pp. 908–913, Sep. 2009, doi: 10.1016/J.JPOWSOUR.2009.05.004.
  • D. Connolly, H. Lund, B. V. Mathiesen, and M. Leahy, “The first step towards a 100% renewable energy-system for Ireland,” Appl. Energy, vol. 88, no. 2, pp. 502–507, Feb. 2011, doi: 10.1016/J.APENERGY.2010.03.006.
  • A. B. Gallo, J. R. Simões-Moreira, H. K. M. Costa, M. M. Santos, and E. Moutinho dos Santos, “Energy storage in the energy transition context: A technology review,” Renew. Sustain. Energy Rev., vol. 65, pp. 800–822, Nov. 2016, doi: 10.1016/J.RSER.2016.07.028.
  • M. C. Argyrou, P. Christodoulides, and S. A. Kalogirou, “Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications,” Renew. Sustain. Energy Rev., vol. 94, no. May, pp. 804–821, 2018, doi: 10.1016/j.rser.2018.06.044.
  • N. Kawakami et al., “Development and field experiences of stabilization system using 34MW NAS batteries for a 51MW wind farm,” in 2010 IEEE International Symposium on Industrial Electronics, 2010, pp. 2371–2376. doi: 10.1109/ISIE.2010.5637487.
  • Y. Yuan, X. Zhang, P. Ju, K. Qian, and Z. Fu, “Applications of battery energy storage system for wind power dispatchability purpose,” Electr. Power Syst. Res., vol. 93, pp. 54–60, Dec. 2012, doi: 10.1016/J.EPSR.2012.07.008.
  • B. Diouf and R. Pode, “Potential of lithium-ion batteries in renewable energy,” Renew. Energy, vol. 76, pp. 375–380, Apr. 2015, doi: 10.1016/J.RENENE.2014.11.058.
  • L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” J. Power Sources, vol. 226, pp. 272–288, Mar. 2013, doi: 10.1016/J.JPOWSOUR.2012.10.060.
  • D. Choi et al., “Li-ion battery technology for grid application,” J. Power Sources, vol. 511, no. September, p. 230419, 2021, doi: 10.1016/j.jpowsour.2021.230419.
  • M. C. Argyrou, P. Christodoulides, and S. A. Kalogirou, “Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications,” Renew. Sustain. Energy Rev., vol. 94, pp. 804–821, Oct. 2018, doi: 10.1016/J.RSER.2018.06.044.
  • S. Koohi-Kamali, V. V. Tyagi, N. A. Rahim, N. L. Panwar, and H. Mokhlis, “Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review,” Renew. Sustain. Energy Rev., vol. 25, pp. 135–165, Sep. 2013, doi: 10.1016/J.RSER.2013.03.056.
  • W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, “Recent Progress in Redox Flow Battery Research and Development,” Adv. Funct. Mater., vol. 23, no. 8, pp. 970–986, 2013, doi: https://doi.org/10.1002/adfm.201200694.
  • M. C. Argyrou, P. Christodoulides, and S. A. Kalogirou, “Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications,” Renew. Sustain. Energy Rev., vol. 94, pp. 804–821, Oct. 2018, doi: 10.1016/J.RSER.2018.06.044.
  • H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, “Progress in electrical energy storage system: A critical review,” Prog. Nat. Sci., vol. 19, no. 3, pp. 291–312, Mar. 2009, doi: 10.1016/J.PNSC.2008.07.014.
  • F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, and R. Villafáfila-Robles, “A review of energy storage technologies for wind power applications,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2154–2171, May 2012, doi: 10.1016/J.RSER.2012.01.029.
  • K. K. Zame, C. A. Brehm, A. T. Nitica, C. L. Richard, and G. D. Schweitzer, “Smart grid and energy storage: Policy recommendations,” Renew. Sustain. Energy Rev., vol. 82, pp. 1646–1654, Feb. 2018, doi: 10.1016/J.RSER.2017.07.011.
  • G. Rancilio et al., “Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis,” Energ. 2019 Vol 12 Page 3312, vol. 12, no. 17, p. 3312, Aug. 2019, doi: 10.3390/EN12173312.
  • IRENA, “Electricity Storage Valuation Framework 2020,” 2020.
  • M. Bragard, N. Soltau, S. Thomas, and R. W. De Doncker, “The balance of renewable sources and user demands in grids: Power electronics for modular battery energy storage systems,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3049–3056, 2010, doi: 10.1109/TPEL.2010.2085455.
  • L. Deguenon, D. Yamegueu, S. Moussa kadri, and A. Gomna, “Overcoming the challenges of integrating variable renewable energy to the grid: A comprehensive review of electrochemical battery storage systems,” J. Power Sources, vol. 580, no. May, p. 233343, 2023, doi: 10.1016/j.jpowsour.2023.233343.
  • G. G. Farivar et al., “Grid-Connected Energy Storage Systems: State-of-the-Art and Emerging Technologies,” Proc. IEEE, vol. 111, no. 4, pp. 397–420, 2023, doi: 10.1109/JPROC.2022.3183289.
  • A. Poullikkas, “A comparative overview of large-scale battery systems for electricity storage,” Renew. Sustain. Energy Rev., vol. 27, pp. 778–788, 2013, doi: 10.1016/j.rser.2013.07.017.
  • K. M. Tan, T. S. Babu, V. K. Ramachandaramurthy, P. Kasinathan, S. G. Solanki, and S. K. Raveendran, “Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration,” J. Energy Storage, vol. 39, no. February, p. 102591, 2021, doi: 10.1016/j.est.2021.102591.
  • A. Oudalov, R. Cherkaoui, and A. Beguin, “Sizing and optimal operation of battery energy storage system for peak shaving application,” 2007 IEEE Lausanne POWERTECH Proc., pp. 621–625, 2007, doi: 10.1109/PCT.2007.4538388.
  • Z. Yang, “Electrochemical energy storage for green grid: Status and Challenges,” Chem. Rev., vol. 111, no. 5, pp. 3577–3613, 2011, doi: 10.1021/cr100290v.
  • A. Pokhriyal, J. L. Domínguez-García, and P. Gómez-Romero, “Impact of Battery Energy System Integration in Frequency Control of an Electrical Grid with Wind Power,” Clean Technol. 2022 Vol 4 Pages 972-986, vol. 4, no. 4, pp. 972–986, Oct. 2022, doi: 10.3390/CLEANTECHNOL4040060.
  • A. Mohd, E. Ortjohann, A. Schmelter, N. Hamsic, and D. Morton, “Challenges in integrating distributed energy storage systems into future smart grid,” IEEE Int. Symp. Ind. Electron., pp. 1627–1632, 2008, doi: 10.1109/ISIE.2008.4676896.
  • Z. Šimić, G. Knežević, D. Topić, and D. Pelin, “Battery energy storage technologies overview,” Int. J. Electr. Comput. Eng. Syst., vol. 12, no. 1, pp. 53–65, 2021, doi: 10.32985/IJECES.12.1.6.
  • T. Chen et al., “Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems,” Trans. Tianjin Univ., vol. 26, no. 3, pp. 208–217, 2020, doi: 10.1007/s12209-020-00236-w.
  • K. Mongird et al., “Energy Storage Technology and Cost Characterization Report 2019,” Report, no. July, pp. 1–120, 2019.
  • H. Saboori, M. Mohammadi, and R. Taghe, “Virtual Power Plant (VPP), Definition, Concept, Components and Types,” in 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China: IEEE, Mar. 2011, pp. 1–4. doi: 10.1109/APPEEC.2011.5749026.
  • M. Cheng, S. S. Sami, and J. Wu, “Benefits of using virtual energy storage system for power system frequency response,” Appl. Energy, vol. 194, pp. 376–385, May 2017, doi: 10.1016/j.apenergy.2016.06.113.
Year 2024, , 76 - 86, 15.06.2024
https://doi.org/10.55696/ejset.1409774

Abstract

References

  • TEİAŞ, “Aylık Elektrik Üretim-Tüketim Raporları.” Accessed: Sep. 26, 2023. [Online]. Available: https://www.teias.gov.tr/aylik-elektrik-uretim-tuketim-raporlari
  • Enerji ve Tabii Kaynaklar Bakanlığı, “Elektrik - T.C. Enerji ve Tabii Kaynaklar Bakanlığı.” Accessed: Sep. 26, 2023. [Online]. Available: https://enerji.gov.tr/bilgi-merkezi-enerji-elektrik
  • Dışişleri Bakanlığı, “Paris Anlaşması / T.C. Dışişleri Bakanlığı.” Accessed: Sep. 26, 2023. [Online]. Available: https://www.mfa.gov.tr/paris-anlasmasi.tr.mfa
  • PVMagazine, “EU raises renewables target to 45% by 2030,” PVMagazine. Accessed: Sep. 26, 2023. [Online]. Available: https://www.pv-magazine.com/2023/06/20/eu-raises-renewables-target-to-45-by-2030/?utm_source=dlvr.it&utm_medium=linkedin
  • Z. Wang, “Electronic and Electrical Engineering . A grid-tied large-scale battery energy storage system : modelling from the pack level to the cell level,” no. May, 2022.
  • A. Nieto, V. Vita, and T. I. Maris, “Power Quality Improvement in Power Grids with the Integration of Energy Storage Systems,” Int. J. Eng. Res. Technol., vol. 5, no. 7, Jul. 2016, doi: 10.17577/IJERTV5IS070361.
  • I. Chernyakhovskiy, M. Joshi, D. Palchak, and A. Rose, “Energy Storage in South Asia: Understanding the Role of Grid-Connected Energy Storage in South Asia’s Power Sector Transformation,” NREL/TP--5C00-79915, 1811299, MainId:39133, Jul. 2021. doi: 10.2172/1811299.
  • T. Chen et al., “Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems,” Trans. Tianjin Univ., vol. 26, no. 3, pp. 208–217, Jun. 2020, doi: 10.1007/s12209-020-00236-w.
  • A. Castillo and D. F. Gayme, “Grid-scale energy storage applications in renewable energy integration: A survey,” Energy Convers. Manag., vol. 87, pp. 885–894, Nov. 2014, doi: 10.1016/j.enconman.2014.07.063.
  • M. Haji Bashi, L. De Tommasi, and P. Lyons, “Electricity market integration of utility-scale battery energy storage units in Ireland, the status and future regulatory frameworks,” J. Energy Storage, vol. 55, p. 105442, Nov. 2022, doi: 10.1016/j.est.2022.105442.
  • O. H. Anuta, P. Taylor, D. Jones, T. McEntee, and N. Wade, “An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage,” Renew. Sustain. Energy Rev., vol. 38, pp. 489–508, Oct. 2014, doi: 10.1016/j.rser.2014.06.006.
  • J. Ding, Y. Xu, H. Chen, W. Sun, S. Hu, and S. Sun, “Value and economic estimation model for grid-scale energy storage in monopoly power markets,” Appl. Energy, vol. 240, pp. 986–1002, Apr. 2019, doi: 10.1016/j.apenergy.2019.02.063.
  • M. M. Rana et al., “Applications of energy storage systems in power grids with and without renewable energy integration — A comprehensive review,” J. Energy Storage, vol. 68, no. May, p. 107811, 2023, doi: 10.1016/j.est.2023.107811.
  • A. Özan, “Batarya Enerji Depolama Sistemlerinin Elektrik Dağıtım Sistemine Etkisi ve Sezgisel Algoritmalar ile Faz Dengesizliğinin Giderilmesi,” 2020.
  • C. D. Parker, “Lead–acid battery energy-storage systems for electricity supply networks,” J. Power Sources, vol. 100, no. 1–2, pp. 18–28, Nov. 2001, doi: 10.1016/S0378-7753(01)00880-1.
  • D. Akinyele, J. Belikov, and Y. Levron, “Battery storage technologies for electrical applications: Impact in stand-alone photovoltaic systems,” Energies, vol. 10, no. 11, pp. 1–39, 2017, doi: 10.3390/en10111760.
  • M. S. Guney and Y. Tepe, “Classification and assessment of energy storage systems,” Renew. Sustain. Energy Rev., vol. 75, pp. 1187–1197, Aug. 2017, doi: 10.1016/j.rser.2016.11.102.
  • N. K. C. Nair and N. Garimella, “Battery energy storage systems: Assessment for small-scale renewable energy integration,” Energy Build., vol. 42, no. 11, pp. 2124–2130, 2010, doi: 10.1016/j.enbuild.2010.07.002.
  • V. G. Lacerda, A. B. Mageste, I. J. B. Santos, L. H. M. da Silva, and M. do C. H. da Silva, “Separation of Cd and Ni from Ni–Cd batteries by an environmentally safe methodology employing aqueous two-phase systems,” J. Power Sources, vol. 193, no. 2, pp. 908–913, Sep. 2009, doi: 10.1016/J.JPOWSOUR.2009.05.004.
  • D. Connolly, H. Lund, B. V. Mathiesen, and M. Leahy, “The first step towards a 100% renewable energy-system for Ireland,” Appl. Energy, vol. 88, no. 2, pp. 502–507, Feb. 2011, doi: 10.1016/J.APENERGY.2010.03.006.
  • A. B. Gallo, J. R. Simões-Moreira, H. K. M. Costa, M. M. Santos, and E. Moutinho dos Santos, “Energy storage in the energy transition context: A technology review,” Renew. Sustain. Energy Rev., vol. 65, pp. 800–822, Nov. 2016, doi: 10.1016/J.RSER.2016.07.028.
  • M. C. Argyrou, P. Christodoulides, and S. A. Kalogirou, “Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications,” Renew. Sustain. Energy Rev., vol. 94, no. May, pp. 804–821, 2018, doi: 10.1016/j.rser.2018.06.044.
  • N. Kawakami et al., “Development and field experiences of stabilization system using 34MW NAS batteries for a 51MW wind farm,” in 2010 IEEE International Symposium on Industrial Electronics, 2010, pp. 2371–2376. doi: 10.1109/ISIE.2010.5637487.
  • Y. Yuan, X. Zhang, P. Ju, K. Qian, and Z. Fu, “Applications of battery energy storage system for wind power dispatchability purpose,” Electr. Power Syst. Res., vol. 93, pp. 54–60, Dec. 2012, doi: 10.1016/J.EPSR.2012.07.008.
  • B. Diouf and R. Pode, “Potential of lithium-ion batteries in renewable energy,” Renew. Energy, vol. 76, pp. 375–380, Apr. 2015, doi: 10.1016/J.RENENE.2014.11.058.
  • L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” J. Power Sources, vol. 226, pp. 272–288, Mar. 2013, doi: 10.1016/J.JPOWSOUR.2012.10.060.
  • D. Choi et al., “Li-ion battery technology for grid application,” J. Power Sources, vol. 511, no. September, p. 230419, 2021, doi: 10.1016/j.jpowsour.2021.230419.
  • M. C. Argyrou, P. Christodoulides, and S. A. Kalogirou, “Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications,” Renew. Sustain. Energy Rev., vol. 94, pp. 804–821, Oct. 2018, doi: 10.1016/J.RSER.2018.06.044.
  • S. Koohi-Kamali, V. V. Tyagi, N. A. Rahim, N. L. Panwar, and H. Mokhlis, “Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review,” Renew. Sustain. Energy Rev., vol. 25, pp. 135–165, Sep. 2013, doi: 10.1016/J.RSER.2013.03.056.
  • W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, “Recent Progress in Redox Flow Battery Research and Development,” Adv. Funct. Mater., vol. 23, no. 8, pp. 970–986, 2013, doi: https://doi.org/10.1002/adfm.201200694.
  • M. C. Argyrou, P. Christodoulides, and S. A. Kalogirou, “Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications,” Renew. Sustain. Energy Rev., vol. 94, pp. 804–821, Oct. 2018, doi: 10.1016/J.RSER.2018.06.044.
  • H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, “Progress in electrical energy storage system: A critical review,” Prog. Nat. Sci., vol. 19, no. 3, pp. 291–312, Mar. 2009, doi: 10.1016/J.PNSC.2008.07.014.
  • F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, and R. Villafáfila-Robles, “A review of energy storage technologies for wind power applications,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 2154–2171, May 2012, doi: 10.1016/J.RSER.2012.01.029.
  • K. K. Zame, C. A. Brehm, A. T. Nitica, C. L. Richard, and G. D. Schweitzer, “Smart grid and energy storage: Policy recommendations,” Renew. Sustain. Energy Rev., vol. 82, pp. 1646–1654, Feb. 2018, doi: 10.1016/J.RSER.2017.07.011.
  • G. Rancilio et al., “Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis,” Energ. 2019 Vol 12 Page 3312, vol. 12, no. 17, p. 3312, Aug. 2019, doi: 10.3390/EN12173312.
  • IRENA, “Electricity Storage Valuation Framework 2020,” 2020.
  • M. Bragard, N. Soltau, S. Thomas, and R. W. De Doncker, “The balance of renewable sources and user demands in grids: Power electronics for modular battery energy storage systems,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3049–3056, 2010, doi: 10.1109/TPEL.2010.2085455.
  • L. Deguenon, D. Yamegueu, S. Moussa kadri, and A. Gomna, “Overcoming the challenges of integrating variable renewable energy to the grid: A comprehensive review of electrochemical battery storage systems,” J. Power Sources, vol. 580, no. May, p. 233343, 2023, doi: 10.1016/j.jpowsour.2023.233343.
  • G. G. Farivar et al., “Grid-Connected Energy Storage Systems: State-of-the-Art and Emerging Technologies,” Proc. IEEE, vol. 111, no. 4, pp. 397–420, 2023, doi: 10.1109/JPROC.2022.3183289.
  • A. Poullikkas, “A comparative overview of large-scale battery systems for electricity storage,” Renew. Sustain. Energy Rev., vol. 27, pp. 778–788, 2013, doi: 10.1016/j.rser.2013.07.017.
  • K. M. Tan, T. S. Babu, V. K. Ramachandaramurthy, P. Kasinathan, S. G. Solanki, and S. K. Raveendran, “Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration,” J. Energy Storage, vol. 39, no. February, p. 102591, 2021, doi: 10.1016/j.est.2021.102591.
  • A. Oudalov, R. Cherkaoui, and A. Beguin, “Sizing and optimal operation of battery energy storage system for peak shaving application,” 2007 IEEE Lausanne POWERTECH Proc., pp. 621–625, 2007, doi: 10.1109/PCT.2007.4538388.
  • Z. Yang, “Electrochemical energy storage for green grid: Status and Challenges,” Chem. Rev., vol. 111, no. 5, pp. 3577–3613, 2011, doi: 10.1021/cr100290v.
  • A. Pokhriyal, J. L. Domínguez-García, and P. Gómez-Romero, “Impact of Battery Energy System Integration in Frequency Control of an Electrical Grid with Wind Power,” Clean Technol. 2022 Vol 4 Pages 972-986, vol. 4, no. 4, pp. 972–986, Oct. 2022, doi: 10.3390/CLEANTECHNOL4040060.
  • A. Mohd, E. Ortjohann, A. Schmelter, N. Hamsic, and D. Morton, “Challenges in integrating distributed energy storage systems into future smart grid,” IEEE Int. Symp. Ind. Electron., pp. 1627–1632, 2008, doi: 10.1109/ISIE.2008.4676896.
  • Z. Šimić, G. Knežević, D. Topić, and D. Pelin, “Battery energy storage technologies overview,” Int. J. Electr. Comput. Eng. Syst., vol. 12, no. 1, pp. 53–65, 2021, doi: 10.32985/IJECES.12.1.6.
  • T. Chen et al., “Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems,” Trans. Tianjin Univ., vol. 26, no. 3, pp. 208–217, 2020, doi: 10.1007/s12209-020-00236-w.
  • K. Mongird et al., “Energy Storage Technology and Cost Characterization Report 2019,” Report, no. July, pp. 1–120, 2019.
  • H. Saboori, M. Mohammadi, and R. Taghe, “Virtual Power Plant (VPP), Definition, Concept, Components and Types,” in 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China: IEEE, Mar. 2011, pp. 1–4. doi: 10.1109/APPEEC.2011.5749026.
  • M. Cheng, S. S. Sami, and J. Wu, “Benefits of using virtual energy storage system for power system frequency response,” Appl. Energy, vol. 194, pp. 376–385, May 2017, doi: 10.1016/j.apenergy.2016.06.113.
There are 50 citations in total.

Details

Primary Language English
Subjects Electrical Energy Storage, Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics)
Journal Section Technical Brief
Authors

Obed Nelson Onsomu 0000-0002-2453-9524

Alper Çetin 0009-0000-0425-0312

Erman Terciyanlı 0009-0000-4940-5912

Bülent Yeşilata 0000-0002-1552-5403

Publication Date June 15, 2024
Submission Date December 25, 2023
Acceptance Date April 2, 2024
Published in Issue Year 2024

Cite

APA Onsomu, O. N., Çetin, A., Terciyanlı, E., Yeşilata, B. (2024). INTEGRATION OF GRID SCALE BATTERY ENERGY STORAGE SYSTEMS AND APPLICATION SCENARIOS. Eurasian Journal of Science Engineering and Technology, 5(1), 76-86. https://doi.org/10.55696/ejset.1409774