Research Article
BibTex RIS Cite

MODELING THERMAL BEHAVIOR IN HIGH-POWER SEMICONDUCTOR DEVICES USING THE MODIFIED OHM’S LAW

Year 2024, , 16 - 43, 15.06.2024
https://doi.org/10.55696/ejset.1463554

Abstract

This paper addresses the challenge of thermal management in high-power semiconductor devices, where increasing power densities and complex operating environments demand more accurate thermal prediction methods. Traditional approaches often rely on simplified models that do not account for the crucial factor of temperature-dependent resistance variations. This limitation leads to inaccurate device temperature predictions, potentially compromising device reliability. This work proposes a novel approach for thermal management by introducing the first empirical application of a Modified Ohm’s Law. This modified law incorporates an exponential term to account for the non-linear relationship between temperature, current, and resistance. The paper demonstrates through simulations and empirical validation that the Modified Ohm’s Law offers a more accurate representation of thermal behavior compared to the standard version. This translates to more precise predictions of device temperature, especially during periods of rapid temperature changes. The validation process goes beyond simply establishing the Modified Ohm’s Law. It provides valuable insights into the thermal dynamics of the device, allowing for the refinement of simulation parameters used to assess various cooling strategies. These strategies include simulating different heat sink geometries and materials, modifying airflow rates over the device’s surface, and exploring the impact of Thermal Interface Materials (TIMs) between the device and the heat sink. By incorporating these elements, the simulations provide a more comprehensive picture of the device’s thermal behavior under various operating conditions and cooling configurations. Ultimately, this paper not only advances the theoretical understanding of thermal management but also offers practical benefits. Through enabling more accurate thermal predictions, the Modified Ohm’s Law model paves the way for informed decision-making in device design and optimization.

References

  • N. Hossain et al., “Advances and significances of nanoparticles in semiconductor applications – A review,” Results Eng., vol. 19, p. 101347, Sep. 2023, doi: 10.1016/j.rineng.2023.101347.
  • B. K. Bose, “Global Energy Scenario and Impact of Power Electronics in 21st Century,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2638–2651, Jul. 2013, doi: 10.1109/TIE.2012.2203771.
  • R. Singh, S. V. Akram, A. Gehlot, D. Buddhi, N. Priyadarshi, and B. Twala, “Energy System 4.0: Digitalization of the Energy Sector with Inclination towards Sustainability,” Sensors, vol. 22, no. 17, p. 6619, Sep. 2022, doi: 10.3390/s22176619.
  • M. Kumar, K. P. Panda, R. T. Naayagi, R. Thakur, and G. Panda, “Comprehensive Review of Electric Vehicle Technology and Its Impacts: Detailed Investigation of Charging Infrastructure, Power Management, and Control Techniques,” Appl. Sci., vol. 13, no. 15, Art. no. 15, Jan. 2023, doi: 10.3390/app13158919.
  • M. Schulz, “Thermal management details and their influence on the aging of power semiconductors,” in 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland: IEEE, Aug. 2014, pp. 1–6. doi: 10.1109/EPE.2014.6910898.
  • T. Zhan et al., “Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review,” Micromachines, vol. 14, no. 11, p. 2076, Nov. 2023, doi: 10.3390/mi14112076.
  • Kim, Kwang-Seok, Choi, Don-Hyun, and Jung, Seung-Boo, “Overview on Thermal Management Technology for High Power Device Packaging,” J. Microelectron. Packag. Soc., vol. 21, no. 2, pp. 13–21, Jun. 2014, doi: 10.6117/KMEPS.2014.21.2.013.
  • Thermal and Power Management of Integrated Circuits. in Series on Integrated Circuits and Systems. Boston: Kluwer Academic Publishers, 2006. doi: 10.1007/0-387-29749-9.
  • V. Bianco, M. De Rosa, and K. Vafai, “Phase-change materials for thermal management of electronic devices,” Appl. Therm. Eng., vol. 214, p. 118839, Sep. 2022, doi: 10.1016/j.applthermaleng.2022.118839.
  • S. Rafin, R. Ahmed, Md. Haque, Md. Hossain, Md. Haque, and O. Mohammed, “Power Electronics Revolutionized: A Comprehensive Analysis of Emerging Wide and Ultrawide Bandgap Devices,” Micromachines, vol. 14, no. 11, p. 2045, Oct. 2023, doi: 10.3390/mi14112045.
  • T. Van Do, J. P. F. Trovão, K. Li, and L. Boulon, “Wide-Bandgap Power Semiconductors for Electric Vehicle Systems: Challenges and Trends,” IEEE Veh. Technol. Mag., vol. 16, no. 4, pp. 89–98, Dec. 2021, doi: 10.1109/MVT.2021.3112943.
  • J. R. Celaya, P. Wysocki, V. Vashchenko, S. Saha, and K. Goebel, “Accelerated aging system for prognostics of power semiconductor devices,” in 2010 IEEE AUTOTESTCON, Orlando, FL, USA: IEEE, Sep. 2010, pp. 1–6. doi: 10.1109/AUTEST.2010.5613564.
  • J. Jaguemont and J. Van Mierlo, “A comprehensive review of future thermal management systems for battery-electrified vehicles,” J. Energy Storage, vol. 31, p. 101551, Oct. 2020, doi: 10.1016/j.est.2020.101551.
  • M. Uzair, G. Abbas, and S. Hosain, “Characteristics of Battery Management Systems of Electric Vehicles with Consideration of the Active and Passive Cell Balancing Process,” World Electr. Veh. J., vol. 12, no. 3, p. 120, Aug. 2021, doi: 10.3390/wevj12030120.
  • S. S. Madani, C. Ziebert, and M. Marzband, “Thermal Behavior Modeling of Lithium-Ion Batteries: A Comprehensive Review,” Symmetry, vol. 15, no. 8, p. 1597, Aug. 2023, doi: 10.3390/sym15081597.
  • K. Gorecki and J. Zarebski, “Nonlinear Compact Thermal Model of Power Semiconductor Devices,” IEEE Trans. Compon. Packag. Technol., vol. 33, no. 3, pp. 643–647, Sep. 2010, doi: 10.1109/TCAPT.2010.2052052.
  • A. M. Darwish, A. J. Bayba, A. Khorshid, A. Rajaie, and H. A. Hung, “Calculation of the Nonlinear Junction Temperature for Semiconductor Devices Using Linear Temperature Values,” IEEE Trans. Electron Devices, vol. 59, no. 8, pp. 2123–2128, Aug. 2012, doi: 10.1109/TED.2012.2200040.
  • M. Janicki, Z. Sarkany, and A. Napieralski, “Impact of nonlinearities on electronic device transient thermal responses,” Microelectron. J., vol. 45, no. 12, pp. 1721–1725, Dec. 2014, doi: 10.1016/j.mejo.2014.04.043.
  • O. Yamashita, “Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency,” Energy Convers. Manag., vol. 50, no. 8, pp. 1968–1975, Aug. 2009, doi: 10.1016/j.enconman.2009.04.019.
  • J. L. Smoyer and P. M. Norris, “Brief Historical Perspective in Thermal Management and the Shift Toward Management at the Nanoscale,” Heat Transf. Eng., vol. 40, no. 3–4, pp. 269–282, Feb. 2019, doi: 10.1080/01457632.2018.1426265.
  • D. Bandhu, M. D. Khadir, A. Kaushik, S. Sharma, H. A. Ali, and A. Jain, “Innovative Approaches to Thermal Management in Next-Generation Electronics,” E3S Web Conf., vol. 430, p. 01139, 2023, doi: 10.1051/e3sconf/202343001139.
  • Z. He, Y. Yan, and Z. Zhang, “Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review,” Energy, vol. 216, p. 119223, Feb. 2021, doi: 10.1016/j.energy.2020.119223.
  • N. A. Pambudi, A. Sarifudin, R. A. Firdaus, D. K. Ulfa, I. M. Gandidi, and R. Romadhon, “The immersion cooling technology: Current and future development in energy saving,” Alex. Eng. J., vol. 61, no. 12, pp. 9509–9527, Dec. 2022, doi: 10.1016/j.aej.2022.02.059.
  • M. Ekpu, R. Bhatti, N. Ekere, S. Mallik, E. Amalu, and K. Otiaba, “Investigation of effects of heat sinks on thermal performance of microelectronic package,” in 3rd IEEE International Conference on Adaptive Science and Technology (ICAST 2011), Abuja, Nigeria: IEEE, Nov. 2011, pp. 127–132. doi: 10.1109/ICASTech.2011.6145164.
  • M. C. Shaw et al., “Enhanced thermal management by direct water spray of high-voltage, high power devices in a three-phase, 18-hp AC motor drive demonstration,” in ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258), San Diego, CA, USA: IEEE, 2002, pp. 1007–1014. doi: 10.1109/ITHERM.2002.1012567.
  • L. He, H. Jing, Y. Zhang, P. Li, and Z. Gu, “Review of thermal management system for battery electric vehicle,” J. Energy Storage, vol. 59, p. 106443, Mar. 2023, doi: 10.1016/j.est.2022.106443.
  • R. S. Longchamps, X.-G. Yang, and C.-Y. Wang, “Fundamental Insights into Battery Thermal Management and Safety,” ACS Energy Lett., vol. 7, no. 3, pp. 1103–1111, Mar. 2022, doi: 10.1021/acsenergylett.2c00077.
  • W. Wang, X. Zhang, C. Xin, and Z. Rao, “An experimental study on thermal management of lithium ion battery packs using an improved passive method,” Appl. Therm. Eng., vol. 134, pp. 163–170, Apr. 2018, doi: 10.1016/j.applthermaleng.2018.02.011.
  • J. Cho and J. Woo, “Development and experimental study of an independent row-based cooling system for improving thermal performance of a data center,” Appl. Therm. Eng., vol. 169, p. 114857, Mar. 2020, doi: 10.1016/j.applthermaleng.2019.114857.
  • Xingsheng Liu, M. H. Hu, C. G. Caneau, R. Bhat, L. C. Hughes, and Chung-En Zah, “Thermal management strategies for high power semiconductor pump lasers,” in The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543), Las Vegas, NV, USA: IEEE, 2004, pp. 493–500. doi: 10.1109/ITHERM.2004.1318324.
  • L. Maguire, M. Behnia, and G. Morrison, “An Experimental and Computational Study of Heat Transfer in High Power Amplifiers,” Heat Transf. Eng., vol. 26, no. 2, pp. 81–92, Mar. 2005, doi: 10.1080/01457630590897295.
  • T. Zhang, “Analytical Solution of Nonlinear Thermoelectric Heat Transport Equation Using Homotopy Perturbation Method,” J. Comput. Intell. Electron. Syst., vol. 4, no. 1, pp. 59–66, Mar. 2015, doi: 10.1166/jcies.2015.1115.
  • Z. Hu, M. Cui, and X. Wu, “Real-Time Temperature Prediction of Power Devices Using an Improved Thermal Equivalent Circuit Model and Application in Power Electronics,” Micromachines, vol. 15, no. 1, p. 63, Dec. 2023, doi: 10.3390/mi15010063.
  • A. Ibrahim, M. Salem, M. Kamarol, M. Delgado, and M. K. Mat Desa, “Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends,” IEEE Open J. Power Electron., vol. 5, pp. 414–435, Apr. 2024, doi: 10.1109/OJPEL.2024.3376086.
  • M. Baumann, W. Wondrak, and J. Lutz, Insight into thermal management concepts for power electronics modules in automotive application. 2023.
  • M. Sofwan, M. Z. Abdullah, and M. K. Abdullah, “Experimental study on the cooling performance of high power LED arrays under natural convection,” IOP Conf. Ser. Mater. Sci. Eng., vol. 50, Dec. 2013, doi: 10.1088/1757-899X/50/1/012030.
  • A. Kimuya, “THE MODIFIED OHM’S LAW AND ITS IMPLICATIONS FOR ELECTRICAL CIRCUIT ANALYSIS,” Eurasian J. Sci. Eng. Technol., vol. 4, no. 2, pp. 59–70, Dec. 2023, doi: 10.55696/ejset.1373552.
  • M. Thorsell, K. Andersson, M. Fagerlind, M. Sudow, P.-A. Nilsson, and N. Rorsman, “Thermal Study of the High-Frequency Noise in GaN HEMTs,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 19–26, Jan. 2009, doi: 10.1109/TMTT.2008.2009084.
  • M. Tounsi, A. Oukaour, B. Tala-Ighil, H. Gualous, B. Boudart, and D. Aissani, “Characterization of high-voltage IGBT module degradations under PWM power cycling test at high ambient temperature,” Microelectron. Reliab., vol. 50, no. 9–11, pp. 1810–1814, Sep. 2010, doi: 10.1016/j.microrel.2010.07.059.
  • W.-H. Chi, T.-L. Chou, C.-N. Han, and K.-N. Chiang, “Analysis of Thermal Performance of High Power Light Emitting Diodes Package,” in 2008 10th Electronics Packaging Technology Conference, Singapore, Singapore: IEEE, Dec. 2008, pp. 533–538. doi: 10.1109/EPTC.2008.4763488.
  • Z. Zhang, X. Wang, and Y. Yan, “A review of the state-of-the-art in electronic cooling,” E-Prime - Adv. Electr. Eng. Electron. Energy, vol. 1, p. 100009, 2021, doi: 10.1016/j.prime.2021.100009.
  • S. Rashidi, N. Karimi, B. Sunden, K. C. Kim, A. G. Olabi, and O. Mahian, “Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolysers, and supercapacitors,” Prog. Energy Combust. Sci., vol. 88, p. 100966, Jan. 2022, doi: 10.1016/j.pecs.2021.100966.
  • B. Kumanek and D. Janas, “Thermal conductivity of carbon nanotube networks: a review,” J. Mater. Sci., vol. 54, no. 10, pp. 7397–7427, May 2019, doi: 10.1007/s10853-019-03368-0.
  • W. Yu, C. Liu, and S. Fan, “Advances of CNT-based systems in thermal management,” Nano Res., vol. 14, no. 8, pp. 2471–2490, Aug. 2021, doi: 10.1007/s12274-020-3255-1.
  • S. Huang et al., The effects of graphene-based films as heat spreaders for thermal management in electronic packaging. 2016, p. 892. doi: 10.1109/ICEPT.2016.7583272.
  • P. Huang et al., “Graphene film for thermal management: A review,” Nano Mater. Sci., vol. 3, Sep. 2020, doi: 10.1016/j.nanoms.2020.09.001.
  • Q. Chen et al., “Recent advances in thermal-conductive insulating polymer composites with various fillers,” Compos. Part Appl. Sci. Manuf., vol. 178, p. 107998, Mar. 2024, doi: 10.1016/j.compositesa.2023.107998.
  • Y.-H. Zhao, Y.-F. Zhang, and S.-L. Bai, “High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam,” Compos. Part Appl. Sci. Manuf., vol. 85, pp. 148–155, Jun. 2016, doi: 10.1016/j.compositesa.2016.03.021.
  • Z. Sun, J. W. Chew, N. J. Hills, K. N. Volkov, and C. J. Barnes, “Efficient FEA/CFD Thermal Coupling for Engineering Applications,” in Volume 4: Heat Transfer, Parts A and B, Berlin, Germany: ASMEDC, Jan. 2008, pp. 1505–1515. doi: 10.1115/GT2008-50638.
  • Z. Sun, J. W. Chew, N. J. Hills, K. N. Volkov, and C. J. Barnes, “Efficient Finite Element Analysis/Computational Fluid Dynamics Thermal Coupling for Engineering Applications,” J. Turbomach., vol. 132, no. 3, p. 031016, Jul. 2010, doi: 10.1115/1.3147105.
  • L. Yuan, S. Liu, M. Chen, and X. Luo, “Thermal Analysis of High Power LED Array Packaging with Microchannel Cooler,” in 2006 7th International Conference on Electronic Packaging Technology, Shanghai, China: IEEE, Aug. 2006, pp. 1–5. doi: 10.1109/ICEPT.2006.359826.
  • S. Kochupurackal Rajan, B. Ramakrishnan, H. Alissa, W. Kim, C. Belady, and M. Bakir, “Integrated Silicon Microfluidic Cooling of a High-Power Overclocked CPU for Efficient Thermal Management,” IEEE Access, vol. 10, pp. 1–1, Jan. 2022, doi: 10.1109/ACCESS.2022.3179387.
  • A. Usman, F. Xiong, W. Aftab, M. Qin, and R. Zou, “Emerging Solid‐to‐Solid Phase‐Change Materials for Thermal‐Energy Harvesting, Storage, and Utilization,” Adv. Mater., vol. 34, no. 41, p. 2202457, Oct. 2022, doi: 10.1002/adma.202202457.
  • K. Venkateswarlu and K. Ramakrishna, “Recent advances in phase change materials for thermal energy storage-a review,” J. Braz. Soc. Mech. Sci. Eng., vol. 44, no. 1, p. 6, Jan. 2022, doi: 10.1007/s40430-021-03308-7.
  • Z.-Q. Yu, M.-T. Li, and B.-Y. Cao, “A comprehensive review on microchannel heat sinks for electronics cooling,” Int. J. Extreme Manuf., vol. 6, no. 2, p. 022005, Apr. 2024, doi: 10.1088/2631-7990/ad12d4.
  • A. Bar-Cohen, J. J. Maurer, and A. Sivananthan, “Near-Junction Microfluidic Cooling for Wide Bandgap Devices,” MRS Adv., vol. 1, no. 2, pp. 181–195, Jan. 2016, doi: 10.1557/adv.2016.120.
  • M. I. Davidzon, “Newton’s law of cooling and its interpretation,” Int. J. Heat Mass Transf., vol. 55, no. 21–22, pp. 5397–5402, Oct. 2012, doi: 10.1016/j.ijheatmasstransfer.2012.03.035.
  • H.-P. Hsu, T.-W. Tu, and J.-R. Chang, “An Analytic Solution for 2D Heat Conduction Problems with General Dirichlet Boundary Conditions,” Axioms, vol. 12, no. 5, p. 416, Apr. 2023, doi: 10.3390/axioms12050416.
  • G. Feltrin, “Dirichlet Boundary Conditions,” in Positive Solutions to Indefinite Problems, in Frontiers in Mathematics. , Cham: Springer International Publishing, 2018, pp. 3–37. doi: 10.1007/978-3-319-94238-4_1.
  • B. N. Biswas, S. Chatterjee, S. Mukherjee, and S. Pal, “A DISCUSSION ON EULER METHOD: A REVIEW,” Electron. J. Math. Anal. Appl., vol. 1, pp. 294–317, Jun. 2013.
  • J. Liu and Y. Hao, “Crank–Nicolson method for solving uncertain heat equation,” Soft Comput., vol. 26, no. 3, pp. 937–945, Feb. 2022, doi: 10.1007/s00500-021-06565-9.
  • E. Hairer and G. Wanner, “Stiff differential equations solved by Radau methods,” J. Comput. Appl. Math., vol. 111, no. 1–2, pp. 93–111, Nov. 1999, doi: 10.1016/S0377-0427(99)00134-X.
  • C. Milici, J. Tenreiro Machado, and G. Drăgănescu, “Application of the Euler and Runge–Kutta Generalized Methods for FDE and Symbolic Packages in the Analysis of Some Fractional Attractors,” Int. J. Nonlinear Sci. Numer. Simul., vol. 21, no. 2, pp. 159–170, Apr. 2020, doi: 10.1515/ijnsns-2018-0248.
  • R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, 1st ed. in Wiley Series in Probability and Statistics. Wiley, 2007. doi: 10.1002/9780470230381.
  • M. A. Rahman, “A Review on Semiconductors Including Applications and Temperature Effects in Semiconductors,” Am. Sci. Res. J. Eng. Technol. Sci., vol. 7, no. 1, Art. no. 1, Apr. 2014, Accessed: Mar. 29, 2024. [Online]. Available: https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/693
  • Y. Wu et al., “Lattice Strain Advances Thermoelectrics,” Joule, vol. 3, no. 5, pp. 1276–1288, May 2019, doi: 10.1016/j.joule.2019.02.008.
  • M. R. Hajmohammadi, M. Ahmadian, and S. S. Nourazar, “Introducing highly conductive materials into a fin for heat transfer enhancement,” Int. J. Mech. Sci., vol. 150, pp. 420–426, Jan. 2019, doi: 10.1016/j.ijmecsci.2018.10.048.
  • Á. Lakatos and A. Trník, “Thermal Diffusion in Fibrous Aerogel Blankets,” Energies, vol. 13, no. 4, p. 823, Feb. 2020, doi: 10.3390/en13040823.
Year 2024, , 16 - 43, 15.06.2024
https://doi.org/10.55696/ejset.1463554

Abstract

References

  • N. Hossain et al., “Advances and significances of nanoparticles in semiconductor applications – A review,” Results Eng., vol. 19, p. 101347, Sep. 2023, doi: 10.1016/j.rineng.2023.101347.
  • B. K. Bose, “Global Energy Scenario and Impact of Power Electronics in 21st Century,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2638–2651, Jul. 2013, doi: 10.1109/TIE.2012.2203771.
  • R. Singh, S. V. Akram, A. Gehlot, D. Buddhi, N. Priyadarshi, and B. Twala, “Energy System 4.0: Digitalization of the Energy Sector with Inclination towards Sustainability,” Sensors, vol. 22, no. 17, p. 6619, Sep. 2022, doi: 10.3390/s22176619.
  • M. Kumar, K. P. Panda, R. T. Naayagi, R. Thakur, and G. Panda, “Comprehensive Review of Electric Vehicle Technology and Its Impacts: Detailed Investigation of Charging Infrastructure, Power Management, and Control Techniques,” Appl. Sci., vol. 13, no. 15, Art. no. 15, Jan. 2023, doi: 10.3390/app13158919.
  • M. Schulz, “Thermal management details and their influence on the aging of power semiconductors,” in 2014 16th European Conference on Power Electronics and Applications, Lappeenranta, Finland: IEEE, Aug. 2014, pp. 1–6. doi: 10.1109/EPE.2014.6910898.
  • T. Zhan et al., “Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review,” Micromachines, vol. 14, no. 11, p. 2076, Nov. 2023, doi: 10.3390/mi14112076.
  • Kim, Kwang-Seok, Choi, Don-Hyun, and Jung, Seung-Boo, “Overview on Thermal Management Technology for High Power Device Packaging,” J. Microelectron. Packag. Soc., vol. 21, no. 2, pp. 13–21, Jun. 2014, doi: 10.6117/KMEPS.2014.21.2.013.
  • Thermal and Power Management of Integrated Circuits. in Series on Integrated Circuits and Systems. Boston: Kluwer Academic Publishers, 2006. doi: 10.1007/0-387-29749-9.
  • V. Bianco, M. De Rosa, and K. Vafai, “Phase-change materials for thermal management of electronic devices,” Appl. Therm. Eng., vol. 214, p. 118839, Sep. 2022, doi: 10.1016/j.applthermaleng.2022.118839.
  • S. Rafin, R. Ahmed, Md. Haque, Md. Hossain, Md. Haque, and O. Mohammed, “Power Electronics Revolutionized: A Comprehensive Analysis of Emerging Wide and Ultrawide Bandgap Devices,” Micromachines, vol. 14, no. 11, p. 2045, Oct. 2023, doi: 10.3390/mi14112045.
  • T. Van Do, J. P. F. Trovão, K. Li, and L. Boulon, “Wide-Bandgap Power Semiconductors for Electric Vehicle Systems: Challenges and Trends,” IEEE Veh. Technol. Mag., vol. 16, no. 4, pp. 89–98, Dec. 2021, doi: 10.1109/MVT.2021.3112943.
  • J. R. Celaya, P. Wysocki, V. Vashchenko, S. Saha, and K. Goebel, “Accelerated aging system for prognostics of power semiconductor devices,” in 2010 IEEE AUTOTESTCON, Orlando, FL, USA: IEEE, Sep. 2010, pp. 1–6. doi: 10.1109/AUTEST.2010.5613564.
  • J. Jaguemont and J. Van Mierlo, “A comprehensive review of future thermal management systems for battery-electrified vehicles,” J. Energy Storage, vol. 31, p. 101551, Oct. 2020, doi: 10.1016/j.est.2020.101551.
  • M. Uzair, G. Abbas, and S. Hosain, “Characteristics of Battery Management Systems of Electric Vehicles with Consideration of the Active and Passive Cell Balancing Process,” World Electr. Veh. J., vol. 12, no. 3, p. 120, Aug. 2021, doi: 10.3390/wevj12030120.
  • S. S. Madani, C. Ziebert, and M. Marzband, “Thermal Behavior Modeling of Lithium-Ion Batteries: A Comprehensive Review,” Symmetry, vol. 15, no. 8, p. 1597, Aug. 2023, doi: 10.3390/sym15081597.
  • K. Gorecki and J. Zarebski, “Nonlinear Compact Thermal Model of Power Semiconductor Devices,” IEEE Trans. Compon. Packag. Technol., vol. 33, no. 3, pp. 643–647, Sep. 2010, doi: 10.1109/TCAPT.2010.2052052.
  • A. M. Darwish, A. J. Bayba, A. Khorshid, A. Rajaie, and H. A. Hung, “Calculation of the Nonlinear Junction Temperature for Semiconductor Devices Using Linear Temperature Values,” IEEE Trans. Electron Devices, vol. 59, no. 8, pp. 2123–2128, Aug. 2012, doi: 10.1109/TED.2012.2200040.
  • M. Janicki, Z. Sarkany, and A. Napieralski, “Impact of nonlinearities on electronic device transient thermal responses,” Microelectron. J., vol. 45, no. 12, pp. 1721–1725, Dec. 2014, doi: 10.1016/j.mejo.2014.04.043.
  • O. Yamashita, “Effect of linear and non-linear components in the temperature dependences of thermoelectric properties on the energy conversion efficiency,” Energy Convers. Manag., vol. 50, no. 8, pp. 1968–1975, Aug. 2009, doi: 10.1016/j.enconman.2009.04.019.
  • J. L. Smoyer and P. M. Norris, “Brief Historical Perspective in Thermal Management and the Shift Toward Management at the Nanoscale,” Heat Transf. Eng., vol. 40, no. 3–4, pp. 269–282, Feb. 2019, doi: 10.1080/01457632.2018.1426265.
  • D. Bandhu, M. D. Khadir, A. Kaushik, S. Sharma, H. A. Ali, and A. Jain, “Innovative Approaches to Thermal Management in Next-Generation Electronics,” E3S Web Conf., vol. 430, p. 01139, 2023, doi: 10.1051/e3sconf/202343001139.
  • Z. He, Y. Yan, and Z. Zhang, “Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review,” Energy, vol. 216, p. 119223, Feb. 2021, doi: 10.1016/j.energy.2020.119223.
  • N. A. Pambudi, A. Sarifudin, R. A. Firdaus, D. K. Ulfa, I. M. Gandidi, and R. Romadhon, “The immersion cooling technology: Current and future development in energy saving,” Alex. Eng. J., vol. 61, no. 12, pp. 9509–9527, Dec. 2022, doi: 10.1016/j.aej.2022.02.059.
  • M. Ekpu, R. Bhatti, N. Ekere, S. Mallik, E. Amalu, and K. Otiaba, “Investigation of effects of heat sinks on thermal performance of microelectronic package,” in 3rd IEEE International Conference on Adaptive Science and Technology (ICAST 2011), Abuja, Nigeria: IEEE, Nov. 2011, pp. 127–132. doi: 10.1109/ICASTech.2011.6145164.
  • M. C. Shaw et al., “Enhanced thermal management by direct water spray of high-voltage, high power devices in a three-phase, 18-hp AC motor drive demonstration,” in ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No.02CH37258), San Diego, CA, USA: IEEE, 2002, pp. 1007–1014. doi: 10.1109/ITHERM.2002.1012567.
  • L. He, H. Jing, Y. Zhang, P. Li, and Z. Gu, “Review of thermal management system for battery electric vehicle,” J. Energy Storage, vol. 59, p. 106443, Mar. 2023, doi: 10.1016/j.est.2022.106443.
  • R. S. Longchamps, X.-G. Yang, and C.-Y. Wang, “Fundamental Insights into Battery Thermal Management and Safety,” ACS Energy Lett., vol. 7, no. 3, pp. 1103–1111, Mar. 2022, doi: 10.1021/acsenergylett.2c00077.
  • W. Wang, X. Zhang, C. Xin, and Z. Rao, “An experimental study on thermal management of lithium ion battery packs using an improved passive method,” Appl. Therm. Eng., vol. 134, pp. 163–170, Apr. 2018, doi: 10.1016/j.applthermaleng.2018.02.011.
  • J. Cho and J. Woo, “Development and experimental study of an independent row-based cooling system for improving thermal performance of a data center,” Appl. Therm. Eng., vol. 169, p. 114857, Mar. 2020, doi: 10.1016/j.applthermaleng.2019.114857.
  • Xingsheng Liu, M. H. Hu, C. G. Caneau, R. Bhat, L. C. Hughes, and Chung-En Zah, “Thermal management strategies for high power semiconductor pump lasers,” in The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No.04CH37543), Las Vegas, NV, USA: IEEE, 2004, pp. 493–500. doi: 10.1109/ITHERM.2004.1318324.
  • L. Maguire, M. Behnia, and G. Morrison, “An Experimental and Computational Study of Heat Transfer in High Power Amplifiers,” Heat Transf. Eng., vol. 26, no. 2, pp. 81–92, Mar. 2005, doi: 10.1080/01457630590897295.
  • T. Zhang, “Analytical Solution of Nonlinear Thermoelectric Heat Transport Equation Using Homotopy Perturbation Method,” J. Comput. Intell. Electron. Syst., vol. 4, no. 1, pp. 59–66, Mar. 2015, doi: 10.1166/jcies.2015.1115.
  • Z. Hu, M. Cui, and X. Wu, “Real-Time Temperature Prediction of Power Devices Using an Improved Thermal Equivalent Circuit Model and Application in Power Electronics,” Micromachines, vol. 15, no. 1, p. 63, Dec. 2023, doi: 10.3390/mi15010063.
  • A. Ibrahim, M. Salem, M. Kamarol, M. Delgado, and M. K. Mat Desa, “Review of Active Thermal Control for Power Electronics: Potentials, Limitations, and Future Trends,” IEEE Open J. Power Electron., vol. 5, pp. 414–435, Apr. 2024, doi: 10.1109/OJPEL.2024.3376086.
  • M. Baumann, W. Wondrak, and J. Lutz, Insight into thermal management concepts for power electronics modules in automotive application. 2023.
  • M. Sofwan, M. Z. Abdullah, and M. K. Abdullah, “Experimental study on the cooling performance of high power LED arrays under natural convection,” IOP Conf. Ser. Mater. Sci. Eng., vol. 50, Dec. 2013, doi: 10.1088/1757-899X/50/1/012030.
  • A. Kimuya, “THE MODIFIED OHM’S LAW AND ITS IMPLICATIONS FOR ELECTRICAL CIRCUIT ANALYSIS,” Eurasian J. Sci. Eng. Technol., vol. 4, no. 2, pp. 59–70, Dec. 2023, doi: 10.55696/ejset.1373552.
  • M. Thorsell, K. Andersson, M. Fagerlind, M. Sudow, P.-A. Nilsson, and N. Rorsman, “Thermal Study of the High-Frequency Noise in GaN HEMTs,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 19–26, Jan. 2009, doi: 10.1109/TMTT.2008.2009084.
  • M. Tounsi, A. Oukaour, B. Tala-Ighil, H. Gualous, B. Boudart, and D. Aissani, “Characterization of high-voltage IGBT module degradations under PWM power cycling test at high ambient temperature,” Microelectron. Reliab., vol. 50, no. 9–11, pp. 1810–1814, Sep. 2010, doi: 10.1016/j.microrel.2010.07.059.
  • W.-H. Chi, T.-L. Chou, C.-N. Han, and K.-N. Chiang, “Analysis of Thermal Performance of High Power Light Emitting Diodes Package,” in 2008 10th Electronics Packaging Technology Conference, Singapore, Singapore: IEEE, Dec. 2008, pp. 533–538. doi: 10.1109/EPTC.2008.4763488.
  • Z. Zhang, X. Wang, and Y. Yan, “A review of the state-of-the-art in electronic cooling,” E-Prime - Adv. Electr. Eng. Electron. Energy, vol. 1, p. 100009, 2021, doi: 10.1016/j.prime.2021.100009.
  • S. Rashidi, N. Karimi, B. Sunden, K. C. Kim, A. G. Olabi, and O. Mahian, “Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolysers, and supercapacitors,” Prog. Energy Combust. Sci., vol. 88, p. 100966, Jan. 2022, doi: 10.1016/j.pecs.2021.100966.
  • B. Kumanek and D. Janas, “Thermal conductivity of carbon nanotube networks: a review,” J. Mater. Sci., vol. 54, no. 10, pp. 7397–7427, May 2019, doi: 10.1007/s10853-019-03368-0.
  • W. Yu, C. Liu, and S. Fan, “Advances of CNT-based systems in thermal management,” Nano Res., vol. 14, no. 8, pp. 2471–2490, Aug. 2021, doi: 10.1007/s12274-020-3255-1.
  • S. Huang et al., The effects of graphene-based films as heat spreaders for thermal management in electronic packaging. 2016, p. 892. doi: 10.1109/ICEPT.2016.7583272.
  • P. Huang et al., “Graphene film for thermal management: A review,” Nano Mater. Sci., vol. 3, Sep. 2020, doi: 10.1016/j.nanoms.2020.09.001.
  • Q. Chen et al., “Recent advances in thermal-conductive insulating polymer composites with various fillers,” Compos. Part Appl. Sci. Manuf., vol. 178, p. 107998, Mar. 2024, doi: 10.1016/j.compositesa.2023.107998.
  • Y.-H. Zhao, Y.-F. Zhang, and S.-L. Bai, “High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam,” Compos. Part Appl. Sci. Manuf., vol. 85, pp. 148–155, Jun. 2016, doi: 10.1016/j.compositesa.2016.03.021.
  • Z. Sun, J. W. Chew, N. J. Hills, K. N. Volkov, and C. J. Barnes, “Efficient FEA/CFD Thermal Coupling for Engineering Applications,” in Volume 4: Heat Transfer, Parts A and B, Berlin, Germany: ASMEDC, Jan. 2008, pp. 1505–1515. doi: 10.1115/GT2008-50638.
  • Z. Sun, J. W. Chew, N. J. Hills, K. N. Volkov, and C. J. Barnes, “Efficient Finite Element Analysis/Computational Fluid Dynamics Thermal Coupling for Engineering Applications,” J. Turbomach., vol. 132, no. 3, p. 031016, Jul. 2010, doi: 10.1115/1.3147105.
  • L. Yuan, S. Liu, M. Chen, and X. Luo, “Thermal Analysis of High Power LED Array Packaging with Microchannel Cooler,” in 2006 7th International Conference on Electronic Packaging Technology, Shanghai, China: IEEE, Aug. 2006, pp. 1–5. doi: 10.1109/ICEPT.2006.359826.
  • S. Kochupurackal Rajan, B. Ramakrishnan, H. Alissa, W. Kim, C. Belady, and M. Bakir, “Integrated Silicon Microfluidic Cooling of a High-Power Overclocked CPU for Efficient Thermal Management,” IEEE Access, vol. 10, pp. 1–1, Jan. 2022, doi: 10.1109/ACCESS.2022.3179387.
  • A. Usman, F. Xiong, W. Aftab, M. Qin, and R. Zou, “Emerging Solid‐to‐Solid Phase‐Change Materials for Thermal‐Energy Harvesting, Storage, and Utilization,” Adv. Mater., vol. 34, no. 41, p. 2202457, Oct. 2022, doi: 10.1002/adma.202202457.
  • K. Venkateswarlu and K. Ramakrishna, “Recent advances in phase change materials for thermal energy storage-a review,” J. Braz. Soc. Mech. Sci. Eng., vol. 44, no. 1, p. 6, Jan. 2022, doi: 10.1007/s40430-021-03308-7.
  • Z.-Q. Yu, M.-T. Li, and B.-Y. Cao, “A comprehensive review on microchannel heat sinks for electronics cooling,” Int. J. Extreme Manuf., vol. 6, no. 2, p. 022005, Apr. 2024, doi: 10.1088/2631-7990/ad12d4.
  • A. Bar-Cohen, J. J. Maurer, and A. Sivananthan, “Near-Junction Microfluidic Cooling for Wide Bandgap Devices,” MRS Adv., vol. 1, no. 2, pp. 181–195, Jan. 2016, doi: 10.1557/adv.2016.120.
  • M. I. Davidzon, “Newton’s law of cooling and its interpretation,” Int. J. Heat Mass Transf., vol. 55, no. 21–22, pp. 5397–5402, Oct. 2012, doi: 10.1016/j.ijheatmasstransfer.2012.03.035.
  • H.-P. Hsu, T.-W. Tu, and J.-R. Chang, “An Analytic Solution for 2D Heat Conduction Problems with General Dirichlet Boundary Conditions,” Axioms, vol. 12, no. 5, p. 416, Apr. 2023, doi: 10.3390/axioms12050416.
  • G. Feltrin, “Dirichlet Boundary Conditions,” in Positive Solutions to Indefinite Problems, in Frontiers in Mathematics. , Cham: Springer International Publishing, 2018, pp. 3–37. doi: 10.1007/978-3-319-94238-4_1.
  • B. N. Biswas, S. Chatterjee, S. Mukherjee, and S. Pal, “A DISCUSSION ON EULER METHOD: A REVIEW,” Electron. J. Math. Anal. Appl., vol. 1, pp. 294–317, Jun. 2013.
  • J. Liu and Y. Hao, “Crank–Nicolson method for solving uncertain heat equation,” Soft Comput., vol. 26, no. 3, pp. 937–945, Feb. 2022, doi: 10.1007/s00500-021-06565-9.
  • E. Hairer and G. Wanner, “Stiff differential equations solved by Radau methods,” J. Comput. Appl. Math., vol. 111, no. 1–2, pp. 93–111, Nov. 1999, doi: 10.1016/S0377-0427(99)00134-X.
  • C. Milici, J. Tenreiro Machado, and G. Drăgănescu, “Application of the Euler and Runge–Kutta Generalized Methods for FDE and Symbolic Packages in the Analysis of Some Fractional Attractors,” Int. J. Nonlinear Sci. Numer. Simul., vol. 21, no. 2, pp. 159–170, Apr. 2020, doi: 10.1515/ijnsns-2018-0248.
  • R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo Method, 1st ed. in Wiley Series in Probability and Statistics. Wiley, 2007. doi: 10.1002/9780470230381.
  • M. A. Rahman, “A Review on Semiconductors Including Applications and Temperature Effects in Semiconductors,” Am. Sci. Res. J. Eng. Technol. Sci., vol. 7, no. 1, Art. no. 1, Apr. 2014, Accessed: Mar. 29, 2024. [Online]. Available: https://asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/693
  • Y. Wu et al., “Lattice Strain Advances Thermoelectrics,” Joule, vol. 3, no. 5, pp. 1276–1288, May 2019, doi: 10.1016/j.joule.2019.02.008.
  • M. R. Hajmohammadi, M. Ahmadian, and S. S. Nourazar, “Introducing highly conductive materials into a fin for heat transfer enhancement,” Int. J. Mech. Sci., vol. 150, pp. 420–426, Jan. 2019, doi: 10.1016/j.ijmecsci.2018.10.048.
  • Á. Lakatos and A. Trník, “Thermal Diffusion in Fibrous Aerogel Blankets,” Energies, vol. 13, no. 4, p. 823, Feb. 2020, doi: 10.3390/en13040823.
There are 68 citations in total.

Details

Primary Language English
Subjects General Physics, Material Physics, Electrical Circuits and Systems, High Voltage
Journal Section Research Articles
Authors

Alex Kımuya 0000-0002-1433-3186

Publication Date June 15, 2024
Submission Date April 2, 2024
Acceptance Date May 24, 2024
Published in Issue Year 2024

Cite

APA Kımuya, A. (2024). MODELING THERMAL BEHAVIOR IN HIGH-POWER SEMICONDUCTOR DEVICES USING THE MODIFIED OHM’S LAW. Eurasian Journal of Science Engineering and Technology, 5(1), 16-43. https://doi.org/10.55696/ejset.1463554