Research Article
BibTex RIS Cite

Year 2025, Volume: 6 Issue: 2, 72 - 81, 30.07.2025
https://doi.org/10.55696/ejset.1714339

Abstract

References

  • Londhe, Abhijit, and Vivek H. Yadav, ‘‘Design and optimization of crankshaft torsional vibration damper for a 4-cylinder 4-stroke engine,’’ No. 2008-01-1213, SAE Technical Paper, 2008. https://doi.org/10.4271/2008 01 1213.
  • W. Homik, ‘‘Damping of torsional vibrations of ship engine crankshafts-general selection methods of viscous vibration damper’’, Polish Maritime Research 18(3), 43-47, 2011. https://doi.org/10.2478/v10012-011-0016-9.
  • G. Nerubenko, ‘‘Torsional Vibration Damper with Micro-channel Tuners’’, No. 2014-01-1691, SAE Technical Paper, 2014. https://doi.org/10.4271/2014-01-1691.
  • C. Silva, L Manin, R Rinaldi, E. Besnier and D. Remond, ‘‘Dynamics of Torsional Vibration Damper (TVD) pulley, implementation of a rubber elastomeric behavior, simulations and experiments’’, Mechanism and Machine Theory 142, 103583, 2019. https://doi.org/10.1016/j.mechmachtheory.2019.103583.
  • H. S. Park, V. V. Hoang, J. Y. Song, D. H. Kim and N. T. Le, ‘‘A Concept of SelfOptimizing Forming System’’, Journal of the Korean Society of Manufacturing Technology Engineers 22(2), 292-297, 2013.
  • K. Xue, J. Zhou, S. Yan and P. Li, ‘‘Flow diversion mechanisms and control methodology in asymmetric spinning of special-shaped multi-wedge belt pulley’’, The International Journal of Advanced Manufacturing Technology,1-14,2022. https://doi.org/10.1007/s00170-020-05496-3.
  • Q. Zhang, C. Zhang, M. J. Zhang, C. C. Zhu, S. Q Fan and S. D. Zhao, ‘‘Research of net-shape power spinning technology for poly-V grooved aluminum pulley,’’ The International Journal of Advanced Manufacturing Technology 81, 1601-1618, 2015.
  • Xue, K., Wu, C., Yang, W., Dai, G., Li, P., & Yan, S. ‘‘Study on Rotary Bending Forming Process of Torsional Damper Shell Pulley’’, Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 37(5), 1053-1059, 2019. https://doi.org/10.1051/jnwpu/20193751053.
  • Gądek, T., Majewski, M., & Sułek, B., ‘‘Reverse Engineering Of The Metal Spinning Process For Conical Angle 163° Using Fem With Simufact Formıng’’, International Journal of Modern Manufacturing Technologies (IJMMT), 16(2), 2024.
  • Pan, Y., Xueguang, L., Zhe, C., & Yang, Y., ‘‘Roller spinning forming regularity’’, Journal of Measurements in Engineering, 5(4), 229-234, 2017.
  • ASTM, E8–99, ‘‘Standard test methods for tension testing of metallic materials’’, Annual book of ASTM standards, ASTM (2001).
  • Lian, J., Shen, F., Jia, X., Ahn, D. C., Chae, D. C., Münstermann, S., & Bleck, W., ‘‘An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction’’, International Journal of Solids and Structures, 151, 20-44, 2018. https://doi.org/10.1016/j.ijsolstr.2017.04.007.
  • Armstrong P.J. ve Frederick C.O., ‘‘A mathematical representation of the multiaxial Bauschinger effect’’, Mater. High Temp., 24 (1), 1-26, 2007. https://doi.org/10.3184/096034007X207589.
  • Chaboche J.L., ‘‘Constitutive-equations for cyclic plasticity and cyclic viscoplasticity’’, Int. J. Plast., 5 (3), 247-302, 1989. https://doi.org/10.1016/0749-6419(89)90015-6.
  • Bouhamed A., Jrad H., Said L.B., Wali M., Dammak F., ‘‘A non-associated anisotropic plasticity model with mixed isotropic-kinematic hardening for finite element simulation of incremental sheet metal forming process’’, Int. J. Adv. Manuf. Technol., 100 (1), 929-940, 2019. https://doi.org/10.1007/s00170-018-2782-3.
  • Moslemi N., Gol Zardian M., Ayob A., Redzuan N., Rhee S., ‘‘Evaluation of sensitivity and calibration of the Chaboche kinematic hardening model parameters for numerical ratcheting simulation’’, J Appl Sci, 9, 2578, 2019. https://doi.org/10.3390/app9122578.
  • Mahmoudi A.H., Badnava H., Pezeshki-Najafabadi S.M., ‘‘An application of Chaboche model to predict uniaxial and multiaxial ratcheting’’, Procedia Eng., 10, 1924-1929, 2011. https://doi.org/10.1016/j.proeng.2011.04.319.
  • Badnava H., Pezeshki S.M., Fallah Nejad K., Farhoudi H.R., ‘‘Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method’’, J. Mech. Sci. Technol., 26 (10), 3067-3072, 2012. https://doi.org/10.1007/s12206-012-0837-1.
  • Chaboche, J. L., ‘‘Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel’’, In Transactions of the 5th International Conference of SMIRT, Berlin, 1979.
  • Araujo, M. C., ‘‘Non-linear kinematic hardening model for multiaxial cyclic plasticity’’, Louisiana State University and Agricultural & Mechanical College, http://doi.org/10.31390/gradschool_theses.1650.
  • Halama, R., Sedlák, J., & Šofer, M., ‘‘Phenomenological modelling of cyclic plasticity’’, Numerical modelling, 1, 329-354, 2012. http://doi.org/10.5772/35902.

Investigation and production of the grooved part used in the crank pulley using finite element method

Year 2025, Volume: 6 Issue: 2, 72 - 81, 30.07.2025
https://doi.org/10.55696/ejset.1714339

Abstract

In recent years, crank pulleys have been manufactured using sheet materials in the automotive industry in line with cost and weight reduction targets. In this production process, sheet materials are first pre-formed and shaped and then a spinning process is applied to obtain the final form with a multi-grooved structure. In this study, 6224 (DD13) 3.5 mm thick sheet material, which is one of the hot rolled steels with low carbon content suitable for cold forming processes, was used. Using Simufact Sheet Metal Forming software, the isotropic Hill-48 material model and the anisotropic kinematic hardening model Chaboche were used to perform detailed analysis on the grooved part in the crank pulleys. The coefficients of the isotropic hardening model were determined from tensile test data and the parameters of Chaboche's kinematic hardening rule were determined from cyclic stress-strain test data. These curves, known as hysteresis cycles, were obtained from low repetition ±3%, ±7% and ±12% fatigue tests. For the determination of the Chaboche model parameters, a strain controlled and symmetrical experiment with one stable cycle was designed and produced. The data obtained from this scope were used as input to the analysis program. Analysis results and prototype manufacturing results were compared.

References

  • Londhe, Abhijit, and Vivek H. Yadav, ‘‘Design and optimization of crankshaft torsional vibration damper for a 4-cylinder 4-stroke engine,’’ No. 2008-01-1213, SAE Technical Paper, 2008. https://doi.org/10.4271/2008 01 1213.
  • W. Homik, ‘‘Damping of torsional vibrations of ship engine crankshafts-general selection methods of viscous vibration damper’’, Polish Maritime Research 18(3), 43-47, 2011. https://doi.org/10.2478/v10012-011-0016-9.
  • G. Nerubenko, ‘‘Torsional Vibration Damper with Micro-channel Tuners’’, No. 2014-01-1691, SAE Technical Paper, 2014. https://doi.org/10.4271/2014-01-1691.
  • C. Silva, L Manin, R Rinaldi, E. Besnier and D. Remond, ‘‘Dynamics of Torsional Vibration Damper (TVD) pulley, implementation of a rubber elastomeric behavior, simulations and experiments’’, Mechanism and Machine Theory 142, 103583, 2019. https://doi.org/10.1016/j.mechmachtheory.2019.103583.
  • H. S. Park, V. V. Hoang, J. Y. Song, D. H. Kim and N. T. Le, ‘‘A Concept of SelfOptimizing Forming System’’, Journal of the Korean Society of Manufacturing Technology Engineers 22(2), 292-297, 2013.
  • K. Xue, J. Zhou, S. Yan and P. Li, ‘‘Flow diversion mechanisms and control methodology in asymmetric spinning of special-shaped multi-wedge belt pulley’’, The International Journal of Advanced Manufacturing Technology,1-14,2022. https://doi.org/10.1007/s00170-020-05496-3.
  • Q. Zhang, C. Zhang, M. J. Zhang, C. C. Zhu, S. Q Fan and S. D. Zhao, ‘‘Research of net-shape power spinning technology for poly-V grooved aluminum pulley,’’ The International Journal of Advanced Manufacturing Technology 81, 1601-1618, 2015.
  • Xue, K., Wu, C., Yang, W., Dai, G., Li, P., & Yan, S. ‘‘Study on Rotary Bending Forming Process of Torsional Damper Shell Pulley’’, Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 37(5), 1053-1059, 2019. https://doi.org/10.1051/jnwpu/20193751053.
  • Gądek, T., Majewski, M., & Sułek, B., ‘‘Reverse Engineering Of The Metal Spinning Process For Conical Angle 163° Using Fem With Simufact Formıng’’, International Journal of Modern Manufacturing Technologies (IJMMT), 16(2), 2024.
  • Pan, Y., Xueguang, L., Zhe, C., & Yang, Y., ‘‘Roller spinning forming regularity’’, Journal of Measurements in Engineering, 5(4), 229-234, 2017.
  • ASTM, E8–99, ‘‘Standard test methods for tension testing of metallic materials’’, Annual book of ASTM standards, ASTM (2001).
  • Lian, J., Shen, F., Jia, X., Ahn, D. C., Chae, D. C., Münstermann, S., & Bleck, W., ‘‘An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction’’, International Journal of Solids and Structures, 151, 20-44, 2018. https://doi.org/10.1016/j.ijsolstr.2017.04.007.
  • Armstrong P.J. ve Frederick C.O., ‘‘A mathematical representation of the multiaxial Bauschinger effect’’, Mater. High Temp., 24 (1), 1-26, 2007. https://doi.org/10.3184/096034007X207589.
  • Chaboche J.L., ‘‘Constitutive-equations for cyclic plasticity and cyclic viscoplasticity’’, Int. J. Plast., 5 (3), 247-302, 1989. https://doi.org/10.1016/0749-6419(89)90015-6.
  • Bouhamed A., Jrad H., Said L.B., Wali M., Dammak F., ‘‘A non-associated anisotropic plasticity model with mixed isotropic-kinematic hardening for finite element simulation of incremental sheet metal forming process’’, Int. J. Adv. Manuf. Technol., 100 (1), 929-940, 2019. https://doi.org/10.1007/s00170-018-2782-3.
  • Moslemi N., Gol Zardian M., Ayob A., Redzuan N., Rhee S., ‘‘Evaluation of sensitivity and calibration of the Chaboche kinematic hardening model parameters for numerical ratcheting simulation’’, J Appl Sci, 9, 2578, 2019. https://doi.org/10.3390/app9122578.
  • Mahmoudi A.H., Badnava H., Pezeshki-Najafabadi S.M., ‘‘An application of Chaboche model to predict uniaxial and multiaxial ratcheting’’, Procedia Eng., 10, 1924-1929, 2011. https://doi.org/10.1016/j.proeng.2011.04.319.
  • Badnava H., Pezeshki S.M., Fallah Nejad K., Farhoudi H.R., ‘‘Determination of combined hardening material parameters under strain controlled cyclic loading by using the genetic algorithm method’’, J. Mech. Sci. Technol., 26 (10), 3067-3072, 2012. https://doi.org/10.1007/s12206-012-0837-1.
  • Chaboche, J. L., ‘‘Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel’’, In Transactions of the 5th International Conference of SMIRT, Berlin, 1979.
  • Araujo, M. C., ‘‘Non-linear kinematic hardening model for multiaxial cyclic plasticity’’, Louisiana State University and Agricultural & Mechanical College, http://doi.org/10.31390/gradschool_theses.1650.
  • Halama, R., Sedlák, J., & Šofer, M., ‘‘Phenomenological modelling of cyclic plasticity’’, Numerical modelling, 1, 329-354, 2012. http://doi.org/10.5772/35902.
There are 21 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Cihangir Kaplan 0000-0002-6972-7959

Serkan Toros 0000-0003-0438-2862

Publication Date July 30, 2025
Submission Date June 4, 2025
Acceptance Date July 24, 2025
Published in Issue Year 2025 Volume: 6 Issue: 2

Cite

IEEE C. Kaplan and S. Toros, “Investigation and production of the grooved part used in the crank pulley using finite element method”, (EJSET), vol. 6, no. 2, pp. 72–81, 2025, doi: 10.55696/ejset.1714339.