Research Article
BibTex RIS Cite
Year 2025, , 79 - 86, 01.01.2025
https://doi.org/10.18393/ejss.1582987

Abstract

References

  • Alabi, O.A., Ologbonjaye, K.I., Awosolu, O., Alalade, O.E., 2019. Public and environmental health effects of plastic wastes disposal: A review. Journal of Toxicology and Risk Assessment 5(2): 1-13.
  • Auta, H.S., Emerinke. C.U., Jayanthi, B., Fauziah, S.H., 2018. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin 127: 15–21.
  • Chen, Q., Li. J., Liu, M., Sun, H., Bao, M., 2017. Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment. PLoS ONE 12(3): e0174445.
  • Dash, H.R., Mangwani, N., Chakraborty, J., Kumari, S., Das, S., 2013. Marine bacteria: Potential candidates for enhanced bioremediation. Applied Microbiology and Biotechnology 97(2): 561–571.
  • Ding, L.J., Su, J.Q., Li, H., Zhu, Y.G., Cao, Z.H., 2017. Bacterial succession along a long-term chronosequence of paddy soil in the Yangtze River Delta, China. Soil Biology and Biochemistry 104: 59–67.
  • Dussud, C., Hudec, C., George, M., Fabre, P., Higgs, P., Bruzaud, S., Delort, A.M., Eyheraguibel, B., Meistertzheim, A.L., Jacquin, J., Cheng, J., Callac, N., Odobel, C., 2018. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Frontiers in Microbiology 9: 1571.
  • Figueroa-Bossi, N., Balbontín, R., Bossi, L. 2022. Basic Bacteriological Routines. Cold Spring Harbor Protocols 2022(10): 462–468.
  • Harshvardhan. K., Jha. B. 2013. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin 77(1–2): 100–106.
  • Hartmann, N.B., Hüffer, T., Thompson, R.C., Hassellöv, M., Verschoor, A., Daugaard, A.E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M.P., Hess, M.C., Ivleva, N.P., Lusher, A.L., Wagner, M.,2019. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science and Technology 53(3): 1039–1047.
  • Horiike, T. 2016. an Introduction To Molecular Phylogenetic Analysis. Reviews in Agricultural Science 4: 36–45.
  • Hou, L., Xi, J., Liu, J., Wang, P., Xu, T., Liu, T., Qu, W., Lin, Y.B., 2022. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism. Chemosphere 286: 131758.
  • Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M.H., Riaz, M., Afzal, M., Kouser, A., Nadeem, H., 2018. Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology 132: 23–34.
  • Jeon, H.J., Kim, M.N., 2015. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration and Biodegradation 103: 141–146.
  • Khalid, N., Aqeel, M., Noman, A., Rizvi, Z.F., 2023. Impact of plastic mulching as a major source of microplastics in agroecosystems. Journal of Hazardous Materials 445: 130455.
  • Lee, S.A., Kim, J.M., Kim, Y., Joa, J.H., Kang, S.S., Ahn, J.H., Kim, M., Song, J., Weon, H.Y., 2020. Different types of agricultural land use drive distinct soil bacterial communities. Scientific Reports 10: 17418.
  • Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W.J.G.M., Yin, N., Yang, J., Tu, C., Zhang, Y., 2020. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability 3: 929–937.
  • Lian, J., Wu, J., Xiong, H., Zeb, A., Yang, T., Su, X., Su, L., Liu, W., 2020. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of Hazardous Materials 385: 121620.
  • Mohanan, N., Montazer, Z., Sharma, P.K., Levin, D.B., 2020. Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology 11: 580709.
  • Mukherjee, S., Chowdhuri, U.R., Kundu, P.P., 2016. Bio-degradation of polyethylene waste by simultaneous use of two bacteria: Bacillus licheniformis for production of bio-surfactant and Lysinibacillus fusiformis for bio-degradation. RSC Advances 6: 2982–2992.
  • Park, S., Kang, S.E., Kim, S.J., Kim, J., 2023. Graphene-encapsulated yeast cells in harsh conditions. Fungal Biology 127: 1389–1396.
  • Park, S.Y., Kim, C.G., 2019. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 222: 527–533.
  • Prasenja, Y., Putra, J.H., Hidayati, K. 2022. Prediksi daya dukung dan daya tampung Tempat Pembuangan Akhir Putri Cempo Surakarta. Majalah Geografi Indonesia 36(1): 62-67.
  • Rosariastuti, R., Sutami, Nugraha, S., Amanto, B.S., 2023. Bacterial diversity in the western slopes of Mount Lawu, Karanganyar, Indonesia. Biodiversitas 24(4): 2125–2133.
  • Ru, J., Huo, Y., Yang, Y., 2020. Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology 11: 1–20.
  • Vianti, R.O., Purwiyanto, A.I., 2020. Purifikasi Dan Uji Degradasi Bakteri Mikroplastik Dari Perairan Muara Sungai Musi, Sumatera Selatan. Maspari Journal : Marine Science Research 12(2): 29–36
  • Wang, L., Liu, Y., Kaur, M., 2021. Phytotoxic effects of polyethylene microplastics on the growth of food crops soybean (Glycine max) and mung bean (vigna radiata). International Journal of Environmental Research and Public Health 18(20): 10629.
  • Wijanarka, W., Kusdiyantini, E., Parman, S., 2016. Screening cellulolytic bacteria from the digestive tract snail (Achatina fulica) and test the ability of cellulase activity. Biosaintifika: Journal of Biology & Biology Education 8(3): 385-391.
  • Yang, J., Yang, Y., Wu, W.M., Zhao, J., Jiang, L., 2014. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science and Technology 48(23): 13776–13784.
  • Zhang, B., Yang, X., Chen, L., Chao, J., Teng, J., Wang, Q., 2020. Microplastics in soils: a review of possible sources, analytical methods and ecological impacts. Journal of Chemical Technology and Biotechnology 95(8): 2052–2068.

Identification and degradation potential of microplastics by indigenous bacteria isolated from Putri Cempo Landfill, Surakarta, Indonesia

Year 2025, , 79 - 86, 01.01.2025
https://doi.org/10.18393/ejss.1582987

Abstract

Plastic waste on agricultural land can break down into microplastics (< 5 mm), which plants can absorb through their roots, potentially inhibiting plant growth. Utilizing microplastic-degrading bacteria isolated from landfills offers a potential solution to microplastic contamination in agriculture. This study aimed to isolate and identify bacteria from the Putri Cempo Landfill and evaluate their ability to degrade different types of plastic contaminants found in agricultural environments. Microorganisms were isolated from soil samples using Soil Extract Media (SEM), and pure cultures were established. Bacterial isolates were tested for their microplastic-degrading potential using polyethylene terephthalate (PET) plastic fragments. Molecular analysis was conducted to determine the taxonomy of the bacteria. Further degradation tests were performed on different types of microplastic contaminants (mulch, polybags, and sacks) to identify the most degradable material. Six bacterial isolates were obtained, with isolates CP1 and CP2 demonstrating microplastic degradation rates of 2.43% and 1.15%, respectively, over a 20-day incubation period. Molecular analysis identified CP1 as Bacillus anthracis str. and CP2 as Bacillus cereus ATCC 14579. Subsequent degradation tests on various agricultural microplastic contaminants revealed that sack materials treated with Bacillus cereus showed the highest degradation rate, with an 8.8% weight reduction, while polybag materials showed the lowest degradation rate, with a weight loss of only 0.59%.

References

  • Alabi, O.A., Ologbonjaye, K.I., Awosolu, O., Alalade, O.E., 2019. Public and environmental health effects of plastic wastes disposal: A review. Journal of Toxicology and Risk Assessment 5(2): 1-13.
  • Auta, H.S., Emerinke. C.U., Jayanthi, B., Fauziah, S.H., 2018. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment. Marine Pollution Bulletin 127: 15–21.
  • Chen, Q., Li. J., Liu, M., Sun, H., Bao, M., 2017. Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment. PLoS ONE 12(3): e0174445.
  • Dash, H.R., Mangwani, N., Chakraborty, J., Kumari, S., Das, S., 2013. Marine bacteria: Potential candidates for enhanced bioremediation. Applied Microbiology and Biotechnology 97(2): 561–571.
  • Ding, L.J., Su, J.Q., Li, H., Zhu, Y.G., Cao, Z.H., 2017. Bacterial succession along a long-term chronosequence of paddy soil in the Yangtze River Delta, China. Soil Biology and Biochemistry 104: 59–67.
  • Dussud, C., Hudec, C., George, M., Fabre, P., Higgs, P., Bruzaud, S., Delort, A.M., Eyheraguibel, B., Meistertzheim, A.L., Jacquin, J., Cheng, J., Callac, N., Odobel, C., 2018. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Frontiers in Microbiology 9: 1571.
  • Figueroa-Bossi, N., Balbontín, R., Bossi, L. 2022. Basic Bacteriological Routines. Cold Spring Harbor Protocols 2022(10): 462–468.
  • Harshvardhan. K., Jha. B. 2013. Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin 77(1–2): 100–106.
  • Hartmann, N.B., Hüffer, T., Thompson, R.C., Hassellöv, M., Verschoor, A., Daugaard, A.E., Rist, S., Karlsson, T., Brennholt, N., Cole, M., Herrling, M.P., Hess, M.C., Ivleva, N.P., Lusher, A.L., Wagner, M.,2019. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environmental Science and Technology 53(3): 1039–1047.
  • Horiike, T. 2016. an Introduction To Molecular Phylogenetic Analysis. Reviews in Agricultural Science 4: 36–45.
  • Hou, L., Xi, J., Liu, J., Wang, P., Xu, T., Liu, T., Qu, W., Lin, Y.B., 2022. Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism. Chemosphere 286: 131758.
  • Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M.H., Riaz, M., Afzal, M., Kouser, A., Nadeem, H., 2018. Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology 132: 23–34.
  • Jeon, H.J., Kim, M.N., 2015. Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration and Biodegradation 103: 141–146.
  • Khalid, N., Aqeel, M., Noman, A., Rizvi, Z.F., 2023. Impact of plastic mulching as a major source of microplastics in agroecosystems. Journal of Hazardous Materials 445: 130455.
  • Lee, S.A., Kim, J.M., Kim, Y., Joa, J.H., Kang, S.S., Ahn, J.H., Kim, M., Song, J., Weon, H.Y., 2020. Different types of agricultural land use drive distinct soil bacterial communities. Scientific Reports 10: 17418.
  • Li, L., Luo, Y., Li, R., Zhou, Q., Peijnenburg, W.J.G.M., Yin, N., Yang, J., Tu, C., Zhang, Y., 2020. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability 3: 929–937.
  • Lian, J., Wu, J., Xiong, H., Zeb, A., Yang, T., Su, X., Su, L., Liu, W., 2020. Impact of polystyrene nanoplastics (PSNPs) on seed germination and seedling growth of wheat (Triticum aestivum L.). Journal of Hazardous Materials 385: 121620.
  • Mohanan, N., Montazer, Z., Sharma, P.K., Levin, D.B., 2020. Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology 11: 580709.
  • Mukherjee, S., Chowdhuri, U.R., Kundu, P.P., 2016. Bio-degradation of polyethylene waste by simultaneous use of two bacteria: Bacillus licheniformis for production of bio-surfactant and Lysinibacillus fusiformis for bio-degradation. RSC Advances 6: 2982–2992.
  • Park, S., Kang, S.E., Kim, S.J., Kim, J., 2023. Graphene-encapsulated yeast cells in harsh conditions. Fungal Biology 127: 1389–1396.
  • Park, S.Y., Kim, C.G., 2019. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 222: 527–533.
  • Prasenja, Y., Putra, J.H., Hidayati, K. 2022. Prediksi daya dukung dan daya tampung Tempat Pembuangan Akhir Putri Cempo Surakarta. Majalah Geografi Indonesia 36(1): 62-67.
  • Rosariastuti, R., Sutami, Nugraha, S., Amanto, B.S., 2023. Bacterial diversity in the western slopes of Mount Lawu, Karanganyar, Indonesia. Biodiversitas 24(4): 2125–2133.
  • Ru, J., Huo, Y., Yang, Y., 2020. Microbial degradation and valorization of plastic wastes. Frontiers in Microbiology 11: 1–20.
  • Vianti, R.O., Purwiyanto, A.I., 2020. Purifikasi Dan Uji Degradasi Bakteri Mikroplastik Dari Perairan Muara Sungai Musi, Sumatera Selatan. Maspari Journal : Marine Science Research 12(2): 29–36
  • Wang, L., Liu, Y., Kaur, M., 2021. Phytotoxic effects of polyethylene microplastics on the growth of food crops soybean (Glycine max) and mung bean (vigna radiata). International Journal of Environmental Research and Public Health 18(20): 10629.
  • Wijanarka, W., Kusdiyantini, E., Parman, S., 2016. Screening cellulolytic bacteria from the digestive tract snail (Achatina fulica) and test the ability of cellulase activity. Biosaintifika: Journal of Biology & Biology Education 8(3): 385-391.
  • Yang, J., Yang, Y., Wu, W.M., Zhao, J., Jiang, L., 2014. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science and Technology 48(23): 13776–13784.
  • Zhang, B., Yang, X., Chen, L., Chao, J., Teng, J., Wang, Q., 2020. Microplastics in soils: a review of possible sources, analytical methods and ecological impacts. Journal of Chemical Technology and Biotechnology 95(8): 2052–2068.
There are 29 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Articles
Authors

Retno Rosariastuti 0000-0001-8041-7444

Muhammad Hafizh Husna Prakosa This is me 0009-0005-5372-0292

Sutami Sutami This is me 0000-0003-3902-3421

Sumani Sumani 0000-0002-7488-2478

Purwanto Purwanto 0000-0003-1955-9448

Publication Date January 1, 2025
Submission Date May 20, 2024
Acceptance Date November 5, 2024
Published in Issue Year 2025

Cite

APA Rosariastuti, R., Prakosa, M. H. H., Sutami, S., Sumani, S., et al. (2025). Identification and degradation potential of microplastics by indigenous bacteria isolated from Putri Cempo Landfill, Surakarta, Indonesia. Eurasian Journal of Soil Science, 14(1), 79-86. https://doi.org/10.18393/ejss.1582987