Research Article
BibTex RIS Cite
Year 2024, Volume: 13 Issue: 4, 348 - 357, 30.09.2024
https://doi.org/10.18393/ejss.1522127

Abstract

References

  • Aiman, N., Gulnaz, S., Alena, M., 2018. The characteristics of pollution in the big industrial cities of Kazakhstan by the example of Almaty. Journal of Environmental Health Science and Engineering 16: 81–88.
  • Ali, B., Hayat, S., Hayat, Q., Ahmad, A., 2010. Cobalt stress affects nitrogen metabolism, photosynthesis and antioxidant system in chickpea (Cicer arietinum L.). Journal of Plant Interactions 5: 223–231.
  • Amato, F., Alastuey, A., de la Rosa, J., Gonzalez Castanedo, Y., Sánchez de la Campa, A.M., Pandolfi, M., Lozano, A., Contreras González, J., Querol, X., 2014. Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. Atmospheric Chemistry and Physics 14: 3533–3544.
  • Amoakwah, E., Ahsan, S., Rahman, M. A., Asamoah, E., Essumang, D.K., Ali, M., K.R. Islam., 2020. Assessment of heavy metal pollution of soil-water-vegetative ecosystems associated with artisanal gold mining. Soil and Sediment Contamination: An International Journal 29: 788-803.
  • Baubekova, A., Akindykova, A., Mamirova, A., Dumat, C., Jurjanz, S., 2021. Evaluation of environmental contamination by toxic trace elements in Kazakhstan based on reviews of available scientific data. Environmental Science and Pollution Research 28: 43315-43328.
  • Bielen, A., Remans, T., Vangronsveld, J., Cuypers, A., 2013. The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. International Journal of Molecular Sciences 14: 6382-6413.
  • Brown, S.L., Chaney, R.L., Angle, J.S., Baker, A.J.M., 1995. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grow in the nutrient solution. Soil Science Society of America Journal 59: 125-133.
  • Cho-Ruk, K., Kurukote, J., Supprung, P., Vetayasuporn, S., 2006. Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology 5: 1-4.
  • Diacono, E., Faye, B., Meldebekova, A., Konuspayeva, G., 2008. Plant, water and milk pollution in Kazakhstan. In: Impact of Pollution on Animal Products. Sinyavskiy, Y., Faye, B. (Eds.). Springer Netherlands, Dordrecht, pp. 107–116.
  • Doabi, S.A., Karami, M., Afyuni, M., Yeganeh, M., 2018. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and Environmental Safety 163: 153–164.
  • Gallego, S.M., Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Iannone, M.F., Rosales, E.P., Benavides, M.P., 2012. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany 83: 33-46.
  • Gebrekidan, A., Weldegebriel, Y., Hadera, A., Van der Bruggen, B., 2013. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicology and Environmental Safety 95: 171-178.
  • GOST 12536-2014. Soils - Methods of laboratory granulometric (grain-size) and microaggregate distribution. Available at Access date: 11.03.2024: https://www.russiangost.com/p-138335-gost-12536-2014.aspx
  • GOST 27821-88. Soils. Determination of base absorption sum by Kappen method. Available at Access date: 11.03.2024: https://www.russiangost.com/p-49750-gost-27821-88.aspx?
  • GOST 26423-85. Soils - Methods for determination of specific electric conductivity, pH and solid residue of water extract. Available at Access date: 11.03.2024: https://www.russiangost.com/p-16105-gost-26423-85.aspx
  • Haider, F.U., Liqun, C., Coulter, J.A., Cheema, S.A., Wu, J., Zhang, R., Wenjun, M., Farooq, M., 2021. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety 211: 111887.
  • Iztileu, A., Grebeneva, O., Otarbayeva, M., Zhanbasinova, N., Ivashina, E., Duisenbekov, B., 2016. Intensity of soil contamination in industrial centers of Kazakhstan. CBU International Conference Proceedings, ISE Research Institute 1: 374-380.
  • Jankauskas, B., Jankauskiene, G., Slepetiene, A., Fullen, M.A., Booth, C.A., 2006. International comparison of analytical methods of determining the soil organic matter content of Lithuanian Eutric Albeluvisols. Communications in Soil Science and Plant Analysis 37: 707-720.
  • Kakimov, A., Kakimova, Z., Yessimbekov, Z., Bepeyeva, A., Zharykbasova, K., Zharykbasov, Y., 2013. Heavy metals distribution in soil, water, vegetation and meat in the regions of East-Kazakhstan. Journal of Environmental Protection 4: 1292-1295.
  • Kaliaskarova, Z., Aliyeva, Z., Ikanova, A., Negim, E., 2019. Soil pollution with heavy metals on the land of the Karasai landfill of municipal solid waste in Almaty city. News of the Academy of Science of the Republic of Kazakhstan, series Geology and Technical Science 6: 256-267.
  • Khanam R, Kumar A, Nayak AK, Shahid M, Tripathi R, Vijayakumar S, Bhaduri, D., Kumar, U., Mohanty, S., Panneerselvam, P., Chatterjee, D., Satapathy, B.S., Pathak, H., 2020. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Science of the Total Environment 699: 134330.
  • Krämer, U., 2010. Metal hyperaccumulation in plants. Annual Review of Plant Biology 61: 517-534.
  • Li, X.D., Poon, C.S., Liu, P.S., 2001. Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry 16: 1361–1368.
  • Li, G., Sun, G.X., Ren, Y., Luo, X.S., Zhu, Y.G., 2018. Urban soil and human health: a review. European Journal of Soil Science 69: 196-215.
  • Mahey, S., Kumar, R., Sharma, M., Kumar, V., Bhardwaj, R., 2020. A critical review on toxicity of cobalt and its bioremediation strategies. SN Applied Sciences 2: 1279.
  • Marques, A.P.G.C, Rangel, A.O.S.S., Castro, P.M.L., 2009. Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology 39: 622-654.
  • Minkina, T., Mandzhieva, S., Motusova, G., Burachevskaya, M., Nazarenko, O., Sushkova, S., Kızılkaya, R., 2014. Heavy metal compounds in a soil of technogenic zone as indicate of its ecological state. Eurasian Journal of Soil Science 3(2): 144 – 151.
  • Muzychenko, I., Jamalova, G., Mussina, U., Kazulis, V., Blumberga, D., 2017. Case study of lead pollution in the roads of Almaty. Energy Procedia 113: 369–376.
  • Naimanova, A., Akhmetova, S., Issayeva, A., Vyrakhmanova, A., Alipbekova, A., 2024. Phytoaccumulation of heavy metals in South Kazakhstan soils (Almaty and Turkestan Regions): An evaluation of plant-based remediation potential. International Journal of Design & Nature and Ecodynamics 19: 451-464.
  • Navabpour, S., Yamchi, A., Bagherikia, S., Kafi, H., 2020. Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants 26: 793-802.
  • Rahman, M.M., Azirun, S.M., Boyce, A.N., 2013. Enhanced accumulation of copper and lead in Amaranth (Amaranthus paniculatus), Indian Mustard (Brassica juncea) and Sunflower (Helianthus annuus) PLOS ONE 8: e62941.
  • Ramazanova, E., Lee, S.W., Lee, W., 2021. Stochastic risk assessment of urban soils contaminated by heavy metals in Kazakhstan. Science of the Total Environment 750: 141535.
  • Reeves, R.D., Baker, A.J.M., 2000. Metal- accumulating plants. In: Phytoremediation of toxic metals: using plants to clean-up the environment. Raskin, I., Ensley, B.D. (Eds.). John Wiley and Sons. New York, USA. pp. 193-230.
  • Silva, H.F., Silva, N.F., Oliveira, C.M., Matos, M.J., 2021. Heavy metals contamination of urban soils—A decade study in the city of Lisbon, Portugal. Soil Systems 5: 27.
  • Tefera, M., Gebreyohannes, F., Saraswathi, M., 2018. Heavy metal analysis in the soils of in and around Robe town, Bale zone, South Eastern, Ethiopia. Eurasian Journal of Soil Science 7(3): 251 - 256.
  • Tewari, R.K., Kumar, P., Sharma, P.N., Bisht, S.S. 2002. Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Science 162: 381388.
  • Toishimanov, M., Abilda, Z., Daurov, D., Daurova, A., Zhapar, K., Sapakhova, Z., Kanat, R., Stamgaliyeva, Z., Zhambakin, K., Shamekova, M., 2023. Phytoremediation properties of sweet potato for soils contaminated by heavy metals in South Kazakhstan. Applied Sciences 13: 9589.
  • Valko, M., Morris, H., Cronin, M.T.D. 2005. Metals, toxicity and oxidative stress. Current Medicinal Chemistry 12: 1161-1208.
  • van der Ent, A., Baker, A.J.M., Reeves, R.D., Pollard, A.J., Schat, H., 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil 362: 319-334.
  • Vodyanitskii, Y.N., 2016. Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science 14: 257-263.
  • Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59: 1217–1232.
  • Wei, B., Yang, L., 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal 94: 99-107.
  • Werkenthin, M., Kluge, B., Wessolek, G., 2014. Metals in European roadside soils and soil solution-A review. Environmental Pollution 189: 98-110.
  • Yan, A., Wang, Y., Tan, S.N., Yusof, M.L.M., Ghosh, S., Chen, Z., 2020. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science 11: 359.
  • Yelikbayev, B.K., Pagano, M.C., Jamalova, G.A., 2020. Hyperaccumulator plants for phytoremediation of soil contaminated with heavy metals. Bulletin of National Academy of Sciences of the Republic of Kazakhstan 387: 34-40.
  • Zaborowska, M., Kucharski, J., Wyszkowska, J., 2016. Biological activity of soil contaminated with cobalt, tin, and molybdenum. Environmental Monitoring and Assessment 188: 398.
  • Zhyrgalova, A., Yelemessov, S., Ablaikhan, B., Aitkhozhayeva, G., Zhildikbayeva, A., 2024. Assessment of potential ecological risk of heavy metal contamination of agricultural soils in Kazakhstan. Brazilian Journal of Biology 84: e280583.
  • Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., Anjum, M.Z., 2019. Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management 250: 109557.

Phytoremediation of contaminated urban soils spiked with heavy metals

Year 2024, Volume: 13 Issue: 4, 348 - 357, 30.09.2024
https://doi.org/10.18393/ejss.1522127

Abstract

Urban environments worldwide face toxic heavy metal pollution originating from industrial discharge, municipal waste disposal, vehicular emissions, and atmospheric deposition. Kazakhstan, experiencing accelerated economic growth and extensive mining activities, contends with widespread heavy metal contamination in its soil-plant-air-water ecosystems. This study explores the potential of hyperaccumulating plants for phytoremediation in urban soils of Kazakhstan contaminated with Pb, Cd, and Co. Twelve plant species, including Korean Mint (Lamiaceae), Ornamental Cabbage (Brassica oleracea), Ageratum (Ageratum houstonianum), Coneflower (Echinacea purpurea), Amaranth (Amaranthus Perfect and Amaranthus Emerald), Fescue (Festuca glauca), Burning Bush (Kochia scoparia), Marigold (Tagetes patula nana), White Cabbage (Brassica-Cavolo cappuccino BIANKO), Tepary Bean (Phaseolus acutifolius), and Rapeseed (Brassica napus), were evaluated for growth and biomass production in urban soils spiked with two maximum permissible addition (MPA) treatments of Pb, Co, and Cd. The selected plants demonstrated varied responses to heavy metal stress, with Marigold (8.4 g shoot biomass/plant), Korean mint (10.5 g shoot biomass/plant), Rapeseed (19.9 g/shoot biomass), and Tepary bean (25.9 g shoot biomass/plant) exhibiting resilience or tolerance to Pb, Co, and Cd stresses. The results highlight the significant potential of these plants for efficient phytoremediation, showcasing their unique abilities to absorb and accumulate specific metals. Marigold, particularly, displayed noteworthy Pb accumulation (40.3 mg/kg biomass), resulting in reduced residual Pb concentrations in the soil (74.7 mg/kg). Conversely, White cabbage and Amaranth showed limited efficiency in Cd extraction, while Rapeseed and Tepary bean emerged as promising candidates for Cd phytoremediation. This study emphasizes the critical role of tailored plant species selection in designing effective phytoremediation strategies for specific metal-contaminated urban sites. A comprehensive understanding of the dynamics of metal accumulation and residual concentrations is crucial for the development of sustainable and efficient environmental remediation approaches. Further research is warranted to explore the long-term effects of different plant species on soil metal concentrations, refining and optimizing phytoremediation methods for urban soils grappling with toxic heavy metal contamination.

References

  • Aiman, N., Gulnaz, S., Alena, M., 2018. The characteristics of pollution in the big industrial cities of Kazakhstan by the example of Almaty. Journal of Environmental Health Science and Engineering 16: 81–88.
  • Ali, B., Hayat, S., Hayat, Q., Ahmad, A., 2010. Cobalt stress affects nitrogen metabolism, photosynthesis and antioxidant system in chickpea (Cicer arietinum L.). Journal of Plant Interactions 5: 223–231.
  • Amato, F., Alastuey, A., de la Rosa, J., Gonzalez Castanedo, Y., Sánchez de la Campa, A.M., Pandolfi, M., Lozano, A., Contreras González, J., Querol, X., 2014. Trends of road dust emissions contributions on ambient air particulate levels at rural, urban and industrial sites in southern Spain. Atmospheric Chemistry and Physics 14: 3533–3544.
  • Amoakwah, E., Ahsan, S., Rahman, M. A., Asamoah, E., Essumang, D.K., Ali, M., K.R. Islam., 2020. Assessment of heavy metal pollution of soil-water-vegetative ecosystems associated with artisanal gold mining. Soil and Sediment Contamination: An International Journal 29: 788-803.
  • Baubekova, A., Akindykova, A., Mamirova, A., Dumat, C., Jurjanz, S., 2021. Evaluation of environmental contamination by toxic trace elements in Kazakhstan based on reviews of available scientific data. Environmental Science and Pollution Research 28: 43315-43328.
  • Bielen, A., Remans, T., Vangronsveld, J., Cuypers, A., 2013. The influence of metal stress on the availability and redox state of ascorbate, and possible interference with its cellular functions. International Journal of Molecular Sciences 14: 6382-6413.
  • Brown, S.L., Chaney, R.L., Angle, J.S., Baker, A.J.M., 1995. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grow in the nutrient solution. Soil Science Society of America Journal 59: 125-133.
  • Cho-Ruk, K., Kurukote, J., Supprung, P., Vetayasuporn, S., 2006. Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology 5: 1-4.
  • Diacono, E., Faye, B., Meldebekova, A., Konuspayeva, G., 2008. Plant, water and milk pollution in Kazakhstan. In: Impact of Pollution on Animal Products. Sinyavskiy, Y., Faye, B. (Eds.). Springer Netherlands, Dordrecht, pp. 107–116.
  • Doabi, S.A., Karami, M., Afyuni, M., Yeganeh, M., 2018. Pollution and health risk assessment of heavy metals in agricultural soil, atmospheric dust and major food crops in Kermanshah province, Iran. Ecotoxicology and Environmental Safety 163: 153–164.
  • Gallego, S.M., Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Iannone, M.F., Rosales, E.P., Benavides, M.P., 2012. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany 83: 33-46.
  • Gebrekidan, A., Weldegebriel, Y., Hadera, A., Van der Bruggen, B., 2013. Toxicological assessment of heavy metals accumulated in vegetables and fruits grown in Ginfel river near Sheba Tannery, Tigray, Northern Ethiopia. Ecotoxicology and Environmental Safety 95: 171-178.
  • GOST 12536-2014. Soils - Methods of laboratory granulometric (grain-size) and microaggregate distribution. Available at Access date: 11.03.2024: https://www.russiangost.com/p-138335-gost-12536-2014.aspx
  • GOST 27821-88. Soils. Determination of base absorption sum by Kappen method. Available at Access date: 11.03.2024: https://www.russiangost.com/p-49750-gost-27821-88.aspx?
  • GOST 26423-85. Soils - Methods for determination of specific electric conductivity, pH and solid residue of water extract. Available at Access date: 11.03.2024: https://www.russiangost.com/p-16105-gost-26423-85.aspx
  • Haider, F.U., Liqun, C., Coulter, J.A., Cheema, S.A., Wu, J., Zhang, R., Wenjun, M., Farooq, M., 2021. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety 211: 111887.
  • Iztileu, A., Grebeneva, O., Otarbayeva, M., Zhanbasinova, N., Ivashina, E., Duisenbekov, B., 2016. Intensity of soil contamination in industrial centers of Kazakhstan. CBU International Conference Proceedings, ISE Research Institute 1: 374-380.
  • Jankauskas, B., Jankauskiene, G., Slepetiene, A., Fullen, M.A., Booth, C.A., 2006. International comparison of analytical methods of determining the soil organic matter content of Lithuanian Eutric Albeluvisols. Communications in Soil Science and Plant Analysis 37: 707-720.
  • Kakimov, A., Kakimova, Z., Yessimbekov, Z., Bepeyeva, A., Zharykbasova, K., Zharykbasov, Y., 2013. Heavy metals distribution in soil, water, vegetation and meat in the regions of East-Kazakhstan. Journal of Environmental Protection 4: 1292-1295.
  • Kaliaskarova, Z., Aliyeva, Z., Ikanova, A., Negim, E., 2019. Soil pollution with heavy metals on the land of the Karasai landfill of municipal solid waste in Almaty city. News of the Academy of Science of the Republic of Kazakhstan, series Geology and Technical Science 6: 256-267.
  • Khanam R, Kumar A, Nayak AK, Shahid M, Tripathi R, Vijayakumar S, Bhaduri, D., Kumar, U., Mohanty, S., Panneerselvam, P., Chatterjee, D., Satapathy, B.S., Pathak, H., 2020. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Science of the Total Environment 699: 134330.
  • Krämer, U., 2010. Metal hyperaccumulation in plants. Annual Review of Plant Biology 61: 517-534.
  • Li, X.D., Poon, C.S., Liu, P.S., 2001. Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry 16: 1361–1368.
  • Li, G., Sun, G.X., Ren, Y., Luo, X.S., Zhu, Y.G., 2018. Urban soil and human health: a review. European Journal of Soil Science 69: 196-215.
  • Mahey, S., Kumar, R., Sharma, M., Kumar, V., Bhardwaj, R., 2020. A critical review on toxicity of cobalt and its bioremediation strategies. SN Applied Sciences 2: 1279.
  • Marques, A.P.G.C, Rangel, A.O.S.S., Castro, P.M.L., 2009. Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology 39: 622-654.
  • Minkina, T., Mandzhieva, S., Motusova, G., Burachevskaya, M., Nazarenko, O., Sushkova, S., Kızılkaya, R., 2014. Heavy metal compounds in a soil of technogenic zone as indicate of its ecological state. Eurasian Journal of Soil Science 3(2): 144 – 151.
  • Muzychenko, I., Jamalova, G., Mussina, U., Kazulis, V., Blumberga, D., 2017. Case study of lead pollution in the roads of Almaty. Energy Procedia 113: 369–376.
  • Naimanova, A., Akhmetova, S., Issayeva, A., Vyrakhmanova, A., Alipbekova, A., 2024. Phytoaccumulation of heavy metals in South Kazakhstan soils (Almaty and Turkestan Regions): An evaluation of plant-based remediation potential. International Journal of Design & Nature and Ecodynamics 19: 451-464.
  • Navabpour, S., Yamchi, A., Bagherikia, S., Kafi, H., 2020. Lead-induced oxidative stress and role of antioxidant defense in wheat (Triticum aestivum L.). Physiology and Molecular Biology of Plants 26: 793-802.
  • Rahman, M.M., Azirun, S.M., Boyce, A.N., 2013. Enhanced accumulation of copper and lead in Amaranth (Amaranthus paniculatus), Indian Mustard (Brassica juncea) and Sunflower (Helianthus annuus) PLOS ONE 8: e62941.
  • Ramazanova, E., Lee, S.W., Lee, W., 2021. Stochastic risk assessment of urban soils contaminated by heavy metals in Kazakhstan. Science of the Total Environment 750: 141535.
  • Reeves, R.D., Baker, A.J.M., 2000. Metal- accumulating plants. In: Phytoremediation of toxic metals: using plants to clean-up the environment. Raskin, I., Ensley, B.D. (Eds.). John Wiley and Sons. New York, USA. pp. 193-230.
  • Silva, H.F., Silva, N.F., Oliveira, C.M., Matos, M.J., 2021. Heavy metals contamination of urban soils—A decade study in the city of Lisbon, Portugal. Soil Systems 5: 27.
  • Tefera, M., Gebreyohannes, F., Saraswathi, M., 2018. Heavy metal analysis in the soils of in and around Robe town, Bale zone, South Eastern, Ethiopia. Eurasian Journal of Soil Science 7(3): 251 - 256.
  • Tewari, R.K., Kumar, P., Sharma, P.N., Bisht, S.S. 2002. Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Science 162: 381388.
  • Toishimanov, M., Abilda, Z., Daurov, D., Daurova, A., Zhapar, K., Sapakhova, Z., Kanat, R., Stamgaliyeva, Z., Zhambakin, K., Shamekova, M., 2023. Phytoremediation properties of sweet potato for soils contaminated by heavy metals in South Kazakhstan. Applied Sciences 13: 9589.
  • Valko, M., Morris, H., Cronin, M.T.D. 2005. Metals, toxicity and oxidative stress. Current Medicinal Chemistry 12: 1161-1208.
  • van der Ent, A., Baker, A.J.M., Reeves, R.D., Pollard, A.J., Schat, H., 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil 362: 319-334.
  • Vodyanitskii, Y.N., 2016. Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science 14: 257-263.
  • Wedepohl, K.H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta 59: 1217–1232.
  • Wei, B., Yang, L., 2010. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal 94: 99-107.
  • Werkenthin, M., Kluge, B., Wessolek, G., 2014. Metals in European roadside soils and soil solution-A review. Environmental Pollution 189: 98-110.
  • Yan, A., Wang, Y., Tan, S.N., Yusof, M.L.M., Ghosh, S., Chen, Z., 2020. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Frontiers in Plant Science 11: 359.
  • Yelikbayev, B.K., Pagano, M.C., Jamalova, G.A., 2020. Hyperaccumulator plants for phytoremediation of soil contaminated with heavy metals. Bulletin of National Academy of Sciences of the Republic of Kazakhstan 387: 34-40.
  • Zaborowska, M., Kucharski, J., Wyszkowska, J., 2016. Biological activity of soil contaminated with cobalt, tin, and molybdenum. Environmental Monitoring and Assessment 188: 398.
  • Zhyrgalova, A., Yelemessov, S., Ablaikhan, B., Aitkhozhayeva, G., Zhildikbayeva, A., 2024. Assessment of potential ecological risk of heavy metal contamination of agricultural soils in Kazakhstan. Brazilian Journal of Biology 84: e280583.
  • Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., Anjum, M.Z., 2019. Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management 250: 109557.
There are 48 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Articles
Authors

Bakhytzhan K. Yelikbayev This is me 0000-0002-1262-6524

Fatima Imanbek This is me 0000-0002-6645-2996

Gulya A. Jamalova This is me 0000-0002-4285-7390

Nicolas E. Kalogerakis This is me 0000-0001-7033-0302

Rafiq Islam 0000-0001-9332-5493

Publication Date September 30, 2024
Submission Date March 11, 2024
Acceptance Date July 21, 2024
Published in Issue Year 2024 Volume: 13 Issue: 4

Cite

APA Yelikbayev, B. K., Imanbek, F., Jamalova, G. A., Kalogerakis, N. E., et al. (2024). Phytoremediation of contaminated urban soils spiked with heavy metals. Eurasian Journal of Soil Science, 13(4), 348-357. https://doi.org/10.18393/ejss.1522127