Research Article
BibTex RIS Cite
Year 2025, Volume: 14 Issue: 1, 46 - 57, 01.01.2025
https://doi.org/10.18393/ejss.1574580

Abstract

References

  • Adekanmbi, A.E., Adewole, M.B., 2019. Effects of arbuscular mycorrhiza fungi, organic fertilizer and different moisture regimes on soil properties and yield of Amaranthus cruentus. Journal of Agricultural Science 64(2): 147–163.
  • Adholeya, A., Gaur, A., 1994. Estimation of VAM fungal spores in soil. Mycorrhiza News 6(1): 10–11.
  • Alguacil, M.E., Diaz–Pereira del M., Caravaca, F., Frenandez, D.A., Roldán, A., 2009. Increased diversity of arbuscular mycorrhizal fungi in a long term field experiment via application of organic amendments to a semiarid degraded soil. Applied and Environmental Microbiology 75(13): 4254–4263.
  • Alrajhi, K., Bibi, S., Abu-Dieyeh, M., 2024. Diversity, Distribution, and applications of arbuscular mycorrhizal fungi in the Arabian Peninsula. Saudi Journal of Biological Sciences. 31(2): 103911.
  • Bi, Y., Ma, W., Xing, F., Gao, Y., Li, Z., Chen, C., Mu, X., Li, X., Zhu, X., 2020. Diversity and specificity of arbuscular mycorrhizal fungi in the rhizosphere of six plants in the Songnen grassland, China. Écoscience 27(1): 11–21.
  • Cassazza, G., Lumini, E., Ercole, E., Dovana, F., Guerrina, M., Arnulfo, A., Minuto, L., Fusconi, A., Mucciarelli, M., 2017. The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo–endemic Berardia subacaulis. PLoS ONE 12(2): e0171866.
  • Castillo, C.G., Borie, F., Oehl, F., Sieverding, E., 2016. Arbuscular mycorrhizal fungi biodiversity: prospecting in Southern–Central zone of Chile. A review. Journal of Soil Science and Plant Nutrition 16(2): 400–422.
  • Dessai, S.A., Rodrigues, B.F., 2012. Diversity studies on arbuscular mycorrhizal fungi in vegetable crop plants of Goa, India. Plant Pathology and Quarantine 2(1): 87–101.
  • Diagne, N., Ngom, M., Djighaly, P.I., Fall, D., Hocher, V., Svistoonoff, S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12: 370.
  • Dickie, I.A., Martínez–García, L.B., Koele, N., Grelet, G.A., Tylianakis, J.M. Peltzer, D.A., Richardson, S.A., 2013. Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant and Soil 367: 11–39.
  • Gerdemann, J.W., Nicolson, Y.H., 1963. Spores of mycorrhiza Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235–244.
  • Giovannetti, M., Mosse, B., 1980. An evaluation of techniques for measuring vesicular arbuscular infection in roots. New Phytology 84: 489–500.
  • Gupta, M.M., Gupta, A., Kumar, P., 2018. Urbanization and biodiversity of arbuscular mycorrhizal fungi: The case study of Delhi, India. Revista de Biología Tropical 66(4): 1547–1558.
  • Han, X., Xu, C., Wang, Y., Huang, D., Fan, Q., Xin, G., Müller, C., 2019. Dynamics of arbuscular mycorrhizal fungi in relation to root colonization, spore density, and soil properties among different spreading stages of the exotic plant three flower beggarweed (Desmodium triflorum) in a Zoysia tenuifolia lawn. Weed Science 67(6): 689–701.
  • Haug, I., Setaro, S., Suárez, J.P. 2019. Species composition of arbuscular mycorrhizal communities changes with elevation in the Andes of South Ecuador. PLoS ONE 14(8): e0221091.
  • Higo, M., Isobe, K., Yamaguchi, M., Drijber, R.A., Jeske, E.S., Ishii, R., 2013. Diversity and vertical distribution of indigenous arbuscular mycorrhizal fungi under two soybean rotational systems. Biology and Fertility of Soils 48(8): 911–922.
  • Husband, R., Herre, E.A., Turner, S.L., Gallery, R., Young, J.P.W., 2002. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology 11: 2669–2678.
  • Jiao, H., Chen, Y.L., Lin, X.G., Liu, R.J., 2011. Diversity of arbuscular mycorrhiza fungi in greenhouse soils continuously planted to watermelon in North China. Mycorrhiza 21: 681–688.
  • Johnson, J.M., Houngnandan, P., Kane, A. Sanon, K.B., Neyra, M., van Tuinen, D., 2015. Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin (West Africa): an exploratory study. Annals of Microbiology 66: 207–221.
  • Khastini, R.O., Sari, I.J., Wahyuni, I., Sumantri, A., 2020. The diversity of arbuscular mycorrhizal fungi associated with rambutan tangkue cultivar in Lebak, Banten Province. AIP Conference Proceedings 2231: 040047.
  • Koul, K.K., Agarwal, S., Lone, R., 2012. Diversity of arbuscular mycorrhizal fungi associated with the medicinal plants from Gwalior–Chambal region of Madhya Pradesh, India. American-Eurasian Journal of Agricultural and Environmental Science 12(8): 1004–1011.
  • Kumar, S.C.P., Garampalli, R.H., 2013. Diversity of arbuscular mycorrhizal fungi in irrigated and non–irrigated fields of southern Karnataka, India. Journal of Environmental Biology 34: 159–164.
  • Li, L.F., Li, T., Zhang, Y., Zhao, Z.W., 2010 Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host–plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiology Ecology 71(3): 418–427.
  • Ma, X., Xu, X., Geng, Q., Luo, Y., Ju, C., Li, Q., Zhou, Y., 2023. Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Global Ecology and Biogeography 32(8): 1423-1434.
  • Melo, C.D., Walker, C., Freitas, H., Machado, A.C., Borges, P.A.V., 2020. Distribution of arbuscular mycorrhizal fungi (AMF) in Terceira and São Miguel Islands (Azores). Biodiversity Data Journal 8: e49759.
  • Morton, J.B., Redecker, D., 2001. Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93: 181–195.
  • Mukerji, K.G., 1996. Taxonomy of endomycorrhizal fungi. In: Advances in Botany. Mukerji, K.G., Mathur, B., Chamola, B.P., Chitralekha P. (Eds.). A.P.H. Publishing Corporation, New Delhi, India. pp.211–221.
  • Oehl, F., Laczko, E., Oberholzer, H.R., Jansa, J., Egli, S., 2017. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biology and Fertility of Soils 53: 777–797.
  • Parihar, M., Rakshit, A., Singh, H.B., Rana, K., 2019. Diversity of arbuscular mycorrhizal fungi in alkaline soils of hot sub humid eco–region of Middle Gangetic Plains of India. Acta Agricultural Scandinavica Section B—Soil Plant Science 69(5): 386-397.
  • Pellegrino, E., Gamper, H.A., Ciccolini, V., Ercoli, L., 2020. Forage rotations conserve diversity of arbuscular mycorrhizal fungi and soil fertility. Frontiers in Microbiology 10: 2969.
  • Phillips, J.M., Hayman, D.S., 1970. Improved produces for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Transactions of the British Mycological Society 55: 158–161.
  • Poveda, J., Hermosa, R., Monte, E., Nicolás, C., 2019. Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non–host Brassicaceae roots and increases plant productivity. Scientific Reports 9: 11650.
  • Powell, J.R., Rillig, M.C., 2018. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytology 220: 1059–1075.
  • Ríos–Ruiz, W.F., Barrios–López, L., Rojas–García, J.C., Valdez–Nuñez, R.A., 2019. Mycotrophic capacity and diversity of native arbuscular mycorrhizal fungi isolated from degraded soils. Scientia Agropecuaria 10(1): 99–108.
  • Santos–González, J.C., Finlay, R.D., Tehler, A., 2006. Seasonal dynamics of arbuscular mycorrhizal root colonization in a seminatural grassland. Applied Environmental Microbiology 73: 5613–5623.
  • Sastry, M.S.R., Johri, B.N., 1999. Arbuscular mycorrhizal fungal diversity of stressed soils of Bailadila iron ore sites in Bastar region of Madhya Pradesh. Current Science 77(8): 1095–1100.
  • Schalamuk, S., Velazquez, S., Chidichimo, H., Cabello, M., 2006. Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98(1): 16–22.
  • Schenck, N.C., Pérez, Y., 1990. Manual for the Identification of VA Mycorrhizal Fungi. Synergistic Publications, 286p.
  • Shukla, A., Vyas, D., Jha, A., 2013. Soil depth: an overriding factor for distribution of arbuscular mycorrhizal fungi. Journal of Soil Science and Plant Nutrition 13(1): 23–33.
  • Sinegani, A.A.S., Sharifi, Z., 2007. The abundance of arbuscular mycorrhizal fungi spores in rhizospheres of different crops. Turkish Journal of Biology 31: 181–185.
  • Tanwar, A., Aggarwal, A., 2014. Multifaceted potential of bioinoculants on red bell pepper (F1 hybrid, Indam Mamatha) production. Journal of Plant Interactions 9(1): 82–91.
  • Tanwar, A., Singh, A., Aggarwal, A., Jangra, E., Pichardo, S.T. 2021. Evaluation of municipal sewage sludge for Arbuscular mycorrhizal fungi inoculum production. Eurasian Journal of Soil Science 10(4): 343–353.
  • Tran, B.T.T., Watts–Williams, S.J., Cavagnaro, T.R., 2019. Impact of an arbuscular mycorrhizal fungus on the growth and nutrition of fifteen crop and pasture plant species. Functional Plant Biology 46: 732–742.
  • Wahab, A., Muhammad, M., Munir, A., Abdi, G., Zaman, W., Ayaz, A., Khizar, C., Reddy, S.P.P., 2023. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants 12(17): 3102.
  • Wang, F., Zhang, L., Zhou, J., Rengel, Z., George, T.S., Feng, G., 2022. Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions. Plant and Soil 481: 1–22.
  • Wang, Z., Zhao, J., Xiao, D., Chen, M., He, X., 2024. Higher colonization but lower diversity of root-associated arbuscular mycorrhizal fungi in the topsoil than in deep soil. Applied Soil Ecology 194: 105195.
  • Wen, Z., Li, H., Shen, Q., Tang, X., Xiong, C., Li, H., Pang, J., Ryan, M.H., Lambers, H., and Shen, J., 2019. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus–acquisition strategies of 16 crop species. New Phytology 223: 882–895.
  • Yang, H., Zang, Y., Yuan, Y., Tang, J., Chen, X., 2012. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evolutionary Biology 12: 50.

Diversity and distribution of arbuscular mycorrhizal fungi associated with vegetable crops in Haryana, India

Year 2025, Volume: 14 Issue: 1, 46 - 57, 01.01.2025
https://doi.org/10.18393/ejss.1574580

Abstract

The optimal growth and development of many vegetable crops hinge significantly upon their reliance on Arbuscular Mycorrhizal Fungi (AMF). Understanding the AMF status of vegetable crops can assist researchers in selecting suitable strains for future experiments. Therefore, a field work was carried out to determine the species diversity and composition of AMF with fifty vegetable crops from seventeen different districts of Haryana. AMF spores were isolated and identified to evaluate AMF density, diversity, and host preference in terms of AMF species richness, abundance and frequency of occurrence. Soil conditions, land use type and its physico–chemical properties played a crucial role in regulating the uneven distribution and composition of AMF. Mycotrophic structures such as linear infection (Arum–type) to coils (Paris–type) arbuscules and vesicles were seen. Interestingly, no correlation was found between spore number and root colonization. Maximum AMF spore density, spore richness and abundance were witnessed in Zea mays and Trigonella foenum–graecum. Five plants exhibited 100% AMF colonized roots, 15 plants showed above 75% and 12 plants above 50% colonization. Soil pH 6.10 to 7.40 supported the maximal abundance and frequency of occurrence of Glomus and Acaulospora with 53 species and 18 species followed by Acaulospora (18), Sclerocystis (10), Gigaspora (5), Entrophospora (4) and Sclerocystis (4). G. mosseae was the most preferred species among vegetable crops. Members of non–mycorrhizal families lack root colonization except for Brassica campestris, B. oleracea var. botrytis and B. Rapa where 2–11% root colonization was detected. Noticing the abundant AMF diversity of vegetable crops , this investigation expands the scope of detection, selection and inoculation of vegetable crops with suitable AMF species for improving their quality and quantity.

References

  • Adekanmbi, A.E., Adewole, M.B., 2019. Effects of arbuscular mycorrhiza fungi, organic fertilizer and different moisture regimes on soil properties and yield of Amaranthus cruentus. Journal of Agricultural Science 64(2): 147–163.
  • Adholeya, A., Gaur, A., 1994. Estimation of VAM fungal spores in soil. Mycorrhiza News 6(1): 10–11.
  • Alguacil, M.E., Diaz–Pereira del M., Caravaca, F., Frenandez, D.A., Roldán, A., 2009. Increased diversity of arbuscular mycorrhizal fungi in a long term field experiment via application of organic amendments to a semiarid degraded soil. Applied and Environmental Microbiology 75(13): 4254–4263.
  • Alrajhi, K., Bibi, S., Abu-Dieyeh, M., 2024. Diversity, Distribution, and applications of arbuscular mycorrhizal fungi in the Arabian Peninsula. Saudi Journal of Biological Sciences. 31(2): 103911.
  • Bi, Y., Ma, W., Xing, F., Gao, Y., Li, Z., Chen, C., Mu, X., Li, X., Zhu, X., 2020. Diversity and specificity of arbuscular mycorrhizal fungi in the rhizosphere of six plants in the Songnen grassland, China. Écoscience 27(1): 11–21.
  • Cassazza, G., Lumini, E., Ercole, E., Dovana, F., Guerrina, M., Arnulfo, A., Minuto, L., Fusconi, A., Mucciarelli, M., 2017. The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo–endemic Berardia subacaulis. PLoS ONE 12(2): e0171866.
  • Castillo, C.G., Borie, F., Oehl, F., Sieverding, E., 2016. Arbuscular mycorrhizal fungi biodiversity: prospecting in Southern–Central zone of Chile. A review. Journal of Soil Science and Plant Nutrition 16(2): 400–422.
  • Dessai, S.A., Rodrigues, B.F., 2012. Diversity studies on arbuscular mycorrhizal fungi in vegetable crop plants of Goa, India. Plant Pathology and Quarantine 2(1): 87–101.
  • Diagne, N., Ngom, M., Djighaly, P.I., Fall, D., Hocher, V., Svistoonoff, S. 2020. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12: 370.
  • Dickie, I.A., Martínez–García, L.B., Koele, N., Grelet, G.A., Tylianakis, J.M. Peltzer, D.A., Richardson, S.A., 2013. Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant and Soil 367: 11–39.
  • Gerdemann, J.W., Nicolson, Y.H., 1963. Spores of mycorrhiza Endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society 46: 235–244.
  • Giovannetti, M., Mosse, B., 1980. An evaluation of techniques for measuring vesicular arbuscular infection in roots. New Phytology 84: 489–500.
  • Gupta, M.M., Gupta, A., Kumar, P., 2018. Urbanization and biodiversity of arbuscular mycorrhizal fungi: The case study of Delhi, India. Revista de Biología Tropical 66(4): 1547–1558.
  • Han, X., Xu, C., Wang, Y., Huang, D., Fan, Q., Xin, G., Müller, C., 2019. Dynamics of arbuscular mycorrhizal fungi in relation to root colonization, spore density, and soil properties among different spreading stages of the exotic plant three flower beggarweed (Desmodium triflorum) in a Zoysia tenuifolia lawn. Weed Science 67(6): 689–701.
  • Haug, I., Setaro, S., Suárez, J.P. 2019. Species composition of arbuscular mycorrhizal communities changes with elevation in the Andes of South Ecuador. PLoS ONE 14(8): e0221091.
  • Higo, M., Isobe, K., Yamaguchi, M., Drijber, R.A., Jeske, E.S., Ishii, R., 2013. Diversity and vertical distribution of indigenous arbuscular mycorrhizal fungi under two soybean rotational systems. Biology and Fertility of Soils 48(8): 911–922.
  • Husband, R., Herre, E.A., Turner, S.L., Gallery, R., Young, J.P.W., 2002. Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Molecular Ecology 11: 2669–2678.
  • Jiao, H., Chen, Y.L., Lin, X.G., Liu, R.J., 2011. Diversity of arbuscular mycorrhiza fungi in greenhouse soils continuously planted to watermelon in North China. Mycorrhiza 21: 681–688.
  • Johnson, J.M., Houngnandan, P., Kane, A. Sanon, K.B., Neyra, M., van Tuinen, D., 2015. Colonization and molecular diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of cowpea (Vigna unguiculata (L.) Walp.) in Benin (West Africa): an exploratory study. Annals of Microbiology 66: 207–221.
  • Khastini, R.O., Sari, I.J., Wahyuni, I., Sumantri, A., 2020. The diversity of arbuscular mycorrhizal fungi associated with rambutan tangkue cultivar in Lebak, Banten Province. AIP Conference Proceedings 2231: 040047.
  • Koul, K.K., Agarwal, S., Lone, R., 2012. Diversity of arbuscular mycorrhizal fungi associated with the medicinal plants from Gwalior–Chambal region of Madhya Pradesh, India. American-Eurasian Journal of Agricultural and Environmental Science 12(8): 1004–1011.
  • Kumar, S.C.P., Garampalli, R.H., 2013. Diversity of arbuscular mycorrhizal fungi in irrigated and non–irrigated fields of southern Karnataka, India. Journal of Environmental Biology 34: 159–164.
  • Li, L.F., Li, T., Zhang, Y., Zhao, Z.W., 2010 Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host–plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiology Ecology 71(3): 418–427.
  • Ma, X., Xu, X., Geng, Q., Luo, Y., Ju, C., Li, Q., Zhou, Y., 2023. Global arbuscular mycorrhizal fungal diversity and abundance decreases with soil available phosphorus. Global Ecology and Biogeography 32(8): 1423-1434.
  • Melo, C.D., Walker, C., Freitas, H., Machado, A.C., Borges, P.A.V., 2020. Distribution of arbuscular mycorrhizal fungi (AMF) in Terceira and São Miguel Islands (Azores). Biodiversity Data Journal 8: e49759.
  • Morton, J.B., Redecker, D., 2001. Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93: 181–195.
  • Mukerji, K.G., 1996. Taxonomy of endomycorrhizal fungi. In: Advances in Botany. Mukerji, K.G., Mathur, B., Chamola, B.P., Chitralekha P. (Eds.). A.P.H. Publishing Corporation, New Delhi, India. pp.211–221.
  • Oehl, F., Laczko, E., Oberholzer, H.R., Jansa, J., Egli, S., 2017. Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biology and Fertility of Soils 53: 777–797.
  • Parihar, M., Rakshit, A., Singh, H.B., Rana, K., 2019. Diversity of arbuscular mycorrhizal fungi in alkaline soils of hot sub humid eco–region of Middle Gangetic Plains of India. Acta Agricultural Scandinavica Section B—Soil Plant Science 69(5): 386-397.
  • Pellegrino, E., Gamper, H.A., Ciccolini, V., Ercoli, L., 2020. Forage rotations conserve diversity of arbuscular mycorrhizal fungi and soil fertility. Frontiers in Microbiology 10: 2969.
  • Phillips, J.M., Hayman, D.S., 1970. Improved produces for clearing roots and staining parasitic and VAM fungi for rapid assessment of infection. Transactions of the British Mycological Society 55: 158–161.
  • Poveda, J., Hermosa, R., Monte, E., Nicolás, C., 2019. Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non–host Brassicaceae roots and increases plant productivity. Scientific Reports 9: 11650.
  • Powell, J.R., Rillig, M.C., 2018. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytology 220: 1059–1075.
  • Ríos–Ruiz, W.F., Barrios–López, L., Rojas–García, J.C., Valdez–Nuñez, R.A., 2019. Mycotrophic capacity and diversity of native arbuscular mycorrhizal fungi isolated from degraded soils. Scientia Agropecuaria 10(1): 99–108.
  • Santos–González, J.C., Finlay, R.D., Tehler, A., 2006. Seasonal dynamics of arbuscular mycorrhizal root colonization in a seminatural grassland. Applied Environmental Microbiology 73: 5613–5623.
  • Sastry, M.S.R., Johri, B.N., 1999. Arbuscular mycorrhizal fungal diversity of stressed soils of Bailadila iron ore sites in Bastar region of Madhya Pradesh. Current Science 77(8): 1095–1100.
  • Schalamuk, S., Velazquez, S., Chidichimo, H., Cabello, M., 2006. Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98(1): 16–22.
  • Schenck, N.C., Pérez, Y., 1990. Manual for the Identification of VA Mycorrhizal Fungi. Synergistic Publications, 286p.
  • Shukla, A., Vyas, D., Jha, A., 2013. Soil depth: an overriding factor for distribution of arbuscular mycorrhizal fungi. Journal of Soil Science and Plant Nutrition 13(1): 23–33.
  • Sinegani, A.A.S., Sharifi, Z., 2007. The abundance of arbuscular mycorrhizal fungi spores in rhizospheres of different crops. Turkish Journal of Biology 31: 181–185.
  • Tanwar, A., Aggarwal, A., 2014. Multifaceted potential of bioinoculants on red bell pepper (F1 hybrid, Indam Mamatha) production. Journal of Plant Interactions 9(1): 82–91.
  • Tanwar, A., Singh, A., Aggarwal, A., Jangra, E., Pichardo, S.T. 2021. Evaluation of municipal sewage sludge for Arbuscular mycorrhizal fungi inoculum production. Eurasian Journal of Soil Science 10(4): 343–353.
  • Tran, B.T.T., Watts–Williams, S.J., Cavagnaro, T.R., 2019. Impact of an arbuscular mycorrhizal fungus on the growth and nutrition of fifteen crop and pasture plant species. Functional Plant Biology 46: 732–742.
  • Wahab, A., Muhammad, M., Munir, A., Abdi, G., Zaman, W., Ayaz, A., Khizar, C., Reddy, S.P.P., 2023. Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants 12(17): 3102.
  • Wang, F., Zhang, L., Zhou, J., Rengel, Z., George, T.S., Feng, G., 2022. Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions. Plant and Soil 481: 1–22.
  • Wang, Z., Zhao, J., Xiao, D., Chen, M., He, X., 2024. Higher colonization but lower diversity of root-associated arbuscular mycorrhizal fungi in the topsoil than in deep soil. Applied Soil Ecology 194: 105195.
  • Wen, Z., Li, H., Shen, Q., Tang, X., Xiong, C., Li, H., Pang, J., Ryan, M.H., Lambers, H., and Shen, J., 2019. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus–acquisition strategies of 16 crop species. New Phytology 223: 882–895.
  • Yang, H., Zang, Y., Yuan, Y., Tang, J., Chen, X., 2012. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evolutionary Biology 12: 50.
There are 48 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Articles
Authors

Anju Tanwar This is me 0000-0002-9642-585X

Ashok Aggarwal This is me 0000-0002-2774-3803

Ishan Saini This is me 0009-0000-7595-0324

Tarsem Kumar This is me 0009-0002-5853-9562

Mukesh Kumar This is me 0009-0004-3362-5119

Sergio T. Pichardo This is me 0000-0003-2687-7364

Publication Date January 1, 2025
Submission Date April 29, 2024
Acceptance Date October 24, 2024
Published in Issue Year 2025 Volume: 14 Issue: 1

Cite

APA Tanwar, A., Aggarwal, A., Saini, I., Kumar, T., et al. (2025). Diversity and distribution of arbuscular mycorrhizal fungi associated with vegetable crops in Haryana, India. Eurasian Journal of Soil Science, 14(1), 46-57. https://doi.org/10.18393/ejss.1574580