Research Article
BibTex RIS Cite

Mitigation of earthworm behavior against lithium pollution using biochar

Year 2025, Volume: 14 Issue: 2, 125 - 132, 26.03.2025
https://doi.org/10.18393/ejss.1618861

Abstract

Application of lithium has been increased in recent years due to its use in various modern gazettes and forced to find new reserves and extraction through mining. The mining process and improper disposal of lithium containing gazettes significantly added this element to the surrounding areas, especially to the terrestrial and soil ecosystems. The increasing concentration of lithium affected the soil biodiversity and altered behavior was expected for macro-organisms. Present study aimed to investigate the different concentrations of lithium salt (Li₂CO₃) on the behavior of the species of earthworm (Eisenia fetida), according to ISO 17512-1:2008 standards. In recent years, researches on biochars are drastically increased due to its unique role in soil health improvement. Thus, the biochar has been included in this work as a conditioning material to study the mitigation effects of lithium on earthworm (E. fetida) behaviour. The findings suggested that lithium promoted the earthworm avoidance on dose dependent manner while 1% (w/w) addition of biochar in soil mitigated the avoidance behaviour. These mitigating effects were corelated to certain soil physio-chemical properties change, better soil's buffering capacity against stress by lithium in presence of biochar. The findings of present study may force new investigation to restore the soil health and earthworm behaviour near the mining areas.

References

  • Albert, S., Bloem, E., 2023. Ecotoxicological methods to evaluate the toxicity of bio-based fertilizer application to agricultural soils – A review. Science of The Total Environment 879: 163076.
  • Aral, H., Vecchio-Sadus, A., 2011. Lithium: Environmental Pollution and Health Effects. In: Encyclopedia of Environmental Health. J.O. Nriagu (Ed.), Elsevier. pp. 499-508.
  • Bolan, N., Hoang, S.A., Tanveer, M., Wang, L., Bolan, S., Sooriyakumar, P., Robinson, B., Wijesekara, H., Wijesooriya, M., Keerthanan, S., Vithanage, M., Markert, B., Fränzle, S., Wünschmann, S., Sarkar, B., Vinu, A., Kirkham, M.B., Siddique, K.H.M., Rinklebe, J., 2021. From mine to mind and mobiles – Lithium contamination and its risk management. Environmental Pollution 290: 118067.
  • Brar, B., Saharan, B.S., Seth, C.S., Kamboj, A., Surekha, Bala, K., Rajput, V.D., Minkina, T., Wong, M.H., Kumar, D., Sadh, P.K., Duhan, J.S., 2024. Nanobiochar: Soil and plant interactions and their implications for sustainable agriculture. Biocatalysis and Agricultural Biotechnology 57: 103077.
  • Burachevskaya, M., Minkina, T., Bauer, T., Lobzenko, I., Fedorenko, A., Mazarji, M., Sushkova, S., Mandzhieva, S., Nazarenko, A., Butova, V., Wong, M.H., Rajput, V.D., 2023.. Fabrication of biochar derived from different types of feedstocks as an efficient adsorbent for soil heavy metal removal. Scientific Reports 13(1): 2020.
  • Burachevskaya, M., Minkina, T., Mandzhieva, S., Bauer, T., Nevidomskaya, D., Shuvaeva, V., Sushkova, S., Kizilkaya, R., Gülser, C., Rajput, V., 2021. Transformation of copper oxide and copper oxide nanoparticles in the soil and their accumulation by Hordeum sativum. Environmental Geochemistry and Health 43(4): 1655-1672.
  • de Resende, M.F., Brasil, T.F., Madari, B.E., Pereira Netto, A.D., Novotny, E.H., 2018. Polycyclic aromatic hydrocarbons in biochar amended soils: Long-term experiments in Brazilian tropical areas. Chemosphere 200: 641-648.
  • de Santo, F.B., Guerra, N., Vianna, M.S., Torres, J.P.M., Marchioro, C.A., Niemeyer, J.C., 2019. Laboratory and field tests for risk assessment of metsulfuron-methyl-based herbicides for soil fauna. Chemosphere 222: 645-655.
  • Gao, J.Q., Yu, Y., Wang, D.H., Wang, W., Wang, C.H., Dai, H.Z., Hao, X.F., Cen, K., 2021. Effects of lithium resource exploitation on surface water at Jiajika mine, China. Environmental Monitoring and Assessment 193(2): 81.
  • Garbuz, S., Camps-Arbestain, M., Mackay, A., DeVantier, B., Minor, M., 2020. The interactions between biochar and earthworms, and their influence on soil properties and clover growth: A 6-month mesocosm experiment. Applied Soil Ecology 147: 103402.
  • Gudeta, K., Kumar, V., Bhagat, A., Julka, J.M., Bhat, S.A., Ameen, F., Qadri, H., Singh, S., Amarowicz, R., 2023. Ecological adaptation of earthworms for coping with plant polyphenols, heavy metals, and microplastics in the soil: A review. Heliyon 9(3): e14572.
  • Hu, T., Wei, J., Du, L., Chen, J., Zhang, J., 2023. The effect of biochar on nitrogen availability and bacterial community in farmland. Annals of Microbiology 73(1): 4.
  • ISO 17512-1:2008. Soil quality. Avoidance test for determining the quality of soils and effects of chemicals on behaviour. Part I: Test with earthworms (Eisenia fetida and Eisenia andrei). International Organization for Standardization. 25p. Available at [Access date: 12.09.2024]: https://www.iso.org/standard/38402.html
  • Jagadeesh, N., Sundaram, B., 2023. Adsorption of pollutants from wastewater by biochar: A review. Journal of Hazardous Materials Advances 9: 100226.
  • Jha, S., Gaur, R., Shahabuddin, S., Tyagi, I., 2023. Biochar as sustainable alternative and green adsorbent for the remediation of noxious pollutants: A comprehensive review. Toxics 11(2): 117.
  • Kamran, U., Park, S.J., 2020. MnO2-decorated biochar composites of coconut shell and rice husk: An efficient lithium ions adsorption-desorption performance in aqueous media. Chemosphere 260: 127500.
  • Kavanagh, L., Keohane, J., Garcia Cabellos, G., Lloyd, A., Cleary, J., 2018. Global lithium sources—Industrial use and future in the electric vehicle industry: A review. Resources 7(3): 57.
  • Konstantinova, E., Minkina, T., Antonenko, E., Sherstnev, A., Mandzhieva, S., Sushkova, S., Rajput, V.D., Konstantinov, A., 2023. Assessing the combined pollution and risks of potentially toxic elements and PAHs in the urban soils of the oldest city in western Siberia: A case study of Tyumen, Russia. Water 15(11): 1996.
  • Kszos, L.A., Stewart, A.J., 2003. Review of lithium in the aquatic environment: Distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology 12(5): 439-447.
  • Li, S., Xie, Y., Jiang, S., Yang, M., Lei, H., Cui, W., Wang, F., 2023. Biochar decreases Cr toxicity and accumulation in sunflower grown in Cr(VI)-polluted soil. Toxics 11(9): 787.
  • Liberati, D., Ahmed, S.W., Samad, N., Mugnaioni, R., Shaukat, S., Muddasir, M., Marinari, S., De Angelis, P., 2023. Biochar amendment for reducing the environmental impacts of reclaimed polluted sediments. Journal of Environmental Management 344: 118623.
  • Loureiro, S., Soares, A.M.V.M., Nogueira, A.J.A., 2005. Terrestrial avoidance behaviour tests as screening tool to assess soil contamination. Environmental Pollution 138(1): 121-131.
  • Lowe, C.N., Butt, K.R., 2007. Earthworm culture, maintenance and species selection in chronic ecotoxicological studies: A critical review. European Journal of Soil Biology 43: S281-S288.
  • Macedo, F. G., dos Santos Vargas, E., Moreira, A.É.B., Montanha, G.S., de Carvalho, H.W.P., 2024. Understanding the effects of lithium exposure on castor bean (Ricinus communis) plants, a potential bioindicator of lithium-contaminated areas. Environmental Science and Pollution Research 31(39): 51991-52000.
  • Murtaza, G., Ahmed, Z., Dai, D.Q., Iqbal, R., Bawazeer, S., Usman, M., Rizwan, M., Iqbal, J., Akram, M.I., Althubiani, A.S., Tariq, A., Ali, I., 2022. A review of mechanism and adsorption capacities of biochar-based engineered composites for removing aquatic pollutants from contaminated water. Frontiers in Environmental Science 10:1035865.
  • Myers, T.P., Denevan, W.M., Winklerprins, A., Porro, A., 2003. Historical Perspectives on Amazonian Dark Earths. In: Amazonian Dark Earths: Origin Properties Management. Lehmann, J., Kern, D.C., Glaser, B., Wodos, W.I. (Eds.). Springer, Dordrecht. pp. 15-28.
  • Namoi, N., Pelster, D., Rosenstock, T.S., Mwangi, L., Kamau, S., Mutuo, P., Barrios, E., 2019. Earthworms regulate ability of biochar to mitigate CO2 and N2O emissions from a tropical soil. Applied Soil Ecology 140: 57-67.
  • OECD, 1984. Test No. 207: Earthworm, Acute Toxicity Tests, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris.
  • Paoletti, M.G., Sommaggio, D., Favretto, M.R., Petruzzelli, G., Pezzarossa, B., Barbafieri, M., 1998. Earthworms as useful bioindicators of agroecosystem sustainability in orchards and vineyards with different inputs. Applied Soil Ecology 10(1): 137-150.
  • Pathak, S.K., Singh, S., Rajput, V.D., Shan, S., Srivastava, S., 2024. Sulfur-modified tea-waste biochar improves rice growth in arsenic contaminated soil and reduces arsenic accumulation. iScience 27(12): 111445.
  • Qiu, B., Shao, Q., Shi, J., Yang, C., Chu, H., 2022. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Separation and Purification Technology 300: 121925.
  • Quina, M.J., Pinheiro, C.T., 2020. Inorganic waste generated in kraft pulp mills: The transition from landfill to industrial applications. Applied Sciences 10(7): 2317.
  • Raji, Z., Karim, A., Karam, A., Khalloufi, S., 2023. Adsorption of heavy metals: Mechanisms, kinetics, and applications of various adsorbents in wastewater remediation—A review. Waste 1(3): 775-805.
  • Rajput, P., Kumar, P., Priya, A.K., Kumari, S., Shiade, S. R. G., Rajput, V.D., Fathi, A., Pradhan, A., Sarfraz, R., Sushkova, S., Mandzhieva, S., Minkina, T., Soldatov, A., Wong, M. H., Rensing, C., 2024. Nanomaterials and biochar mediated remediation of emerging contaminants. Science of The Total Environment 916: 170064.
  • Rajput, V.D., Chernikova, N., Minkina, T., Gorovtsov, A., Fedorenko, A., Mandzhieva, S., Bauer, T., Tsitsuashvili, V., Beschetnikov, V., Wong, MH., 2023. Biochar and metal-tolerant bacteria in alleviating ZnO nanoparticles toxicity in barley. Environmental Research 220: 115243.
  • Rao, D., Rajput, P., Choudhary, R., Yadav, S., Yadav, S.K., Rajput, V.D., Minkina, T., Ercisli, S., Matić, S., 2024. Multifaceted Characteristics of Biochar and Its Implementation in Environmental Management in a Sustainable Way. Environmental Quality Management 34(1): e22305.
  • Shakoor, N., Adeel, M., Azeem, I., Ahmad, M. A., Zain, M., Abbas, A., Hussain, M., Jiang, Y., Zhou, P., Li, Y., Xu, M., Rui, Y., 2023. Interplay of higher plants with lithium pollution: Global trends, meta-analysis, and perspectives. Chemosphere 310: 136663.
  • Singh Yadav, S.P., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., Ghimire, N., Paudel, P., Paudel, P., Shrestha, J., Oli, B., 2023. Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research 11: 100498.
  • Sun, F., Chen, J., Chen, F., Wang, X., Liu, K., Yang, Y., Tang, M., 2022. Influence of biochar remediation on Eisenia fetida in Pb-contaminated soils. Chemosphere 295: 133954.
  • Telo da Gama, J., 2023. The role of soils in sustainability, climate change, and ecosystem services: Challenges and opportunities. Ecologies 4(3): 552-567.
  • Wang, J., Yang, Y., Wu, J., Zhao, K., Zhang, X., 2024. The interaction between biochar and earthworms: Revealing the potential ecological risks of biochar application and the feasibility of their co-application. Science of The Total Environment 950: 175240.
  • Wever, L.A., Lysyk, T.J., Clapperton, M.J., 2001. The influence of soil moisture and temperature on the survival, aestivation, growth and development of juvenile Aporrectodea tuberculata (Eisen) (Lumbricidae). Pedobiologia 45(2): 121-133.
  • Xu, Z., Yang, Z., Shu, W., Zhu, T., 2021. Combined toxicity of soil antimony and cadmium on earthworm Eisenia fetida: Accumulation, biomarker responses and joint effect. Journal of Hazardous Materials Letters 2: 100018.
  • Yaashikaa, P.R., Kumar, P.S., Varjani, S., Saravanan, A., 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports 28: e00570.
There are 44 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Articles
Authors

Paula Cristina Marinho Silva This is me 0009-0006-7146-7283

Francisco Saraiva This is me 0009-0008-7700-3775

Rupesh Kumar Singh This is me 0000-0002-2536-1967

Vishnu D. Rajput 0000-0002-6802-4805

Henrique Trindade This is me 0000-0001-8208-6204

João Ricardo Sousa This is me 0000-0003-4365-9086

Marina Burachevskaya This is me 0000-0002-0533-0418

Publication Date March 26, 2025
Submission Date September 12, 2024
Acceptance Date December 24, 2024
Published in Issue Year 2025 Volume: 14 Issue: 2

Cite

APA Silva, P. C. M., Saraiva, F., Singh, R. K., Rajput, V. D., et al. (2025). Mitigation of earthworm behavior against lithium pollution using biochar. Eurasian Journal of Soil Science, 14(2), 125-132. https://doi.org/10.18393/ejss.1618861