Research Article
BibTex RIS Cite

Analyzing soil erosion dynamics driven by long term land use changes: Integrating sustainable land use strategies

Year 2025, Volume: 14 Issue: 4, 298 - 312, 01.10.2025
https://doi.org/10.18393/ejss.1713215

Abstract

Erosion presents a significant challenge to the efficient use and sustainability of soil resources in the context of land use and management. The aim of the present study is to assess soil losses and determine erosion risk categories in sub-basins located within the borders of basins areas of Samsun province over a period of approximately 30 years (between 1989-2020) using the Revised Universal Soil Loss Equation (RUSLE) methodology. Based on the collected data, we plan to propose conservation measures to mitigate soil erosion in the sub-basins using the Sustainable Land Use Planning (SLUP) model. We first analysed the land use and land cover of the basin between 1989 and 2020, identifying temporal changes during this period. The study found that the use of pasture areas in the basin decreased from 12079 ha in 1989 to 10094 ha in 2020, marking a significant proportional decrease of 16%. In contrast, artificial areas doubled over a period of approximately 31 years, indicating the highest increase with 86%. The calculated average soil losses for 1989 and 2020 were 7.53 t/ha/year and 7.86 t/ha/year, respectively. After analysing the changes in land use and erosion levels between 1989 and 2020, it is clear that the increase in agricultural area is mainly due to changes in pasture areas. Therefore, it is essential to implement soil conservation measures and modify tillage techniques in areas classified as having erosion degrees of 4.0 and 5.0, while considering SLUP in the basin.

References

  • Aiello, A., Adamo, M., Canora, F., 2015. Remote sensing and GIS to assess soil erosion with RUSLE3D and USPED at river basin scale in southern Italy. Catena 131: 174-185.
  • Baskan, O., 2021. Analysis of spatial and temporal changes of RUSLE-K soil erodibility factor in semi-arid areas in two diferent periods by conditional simulation. Archives of Agronomy and Soil Science 68(12): 1698-1710.
  • Beskow, S., Mello, C. R., Norton, L. D., Curi, N., Viola, M. R., Avanzi, J.C., 2009. Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena 79(1): 49-59.
  • Bouyoucos, G.J., 1951. A recalibration of the hydrometermethod for making mechanical analysis of the soils. Agronomy Journal 43(9): 434-438.
  • Çakal, M.A., Özlü, A., Birhan, H., Bakır, H., Gültepe, N.Z., Ayday, C., 1997. Tortum gölü havzasının uzaktan algılama ve coğrafi bilgi sistemiyle erozyon risk haritasının hazırlanması. Türkiye’nin Erozyon Sorunu ve Adana’nın Yeri Kongresi, Çağrılı Bildiriler, Proje Tasarımları, Önlem ve Öneriler Kitabı, 5–6 Aralık 1997, Adana. [in Turkish]
  • Desmet, P.J.J., Govers, G., 1996. A GIS Procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation 51(5): 427-435.
  • Doğan, O., 2002. Türkiye yağışlarının erozyon oluşturma gücü ve universal toprak kaybı eşitliğinin yağış erozyon i̇ndeks değerleri. KHGM, Ankara Araştırma. Enstitüsü Müdürlüğü. Yayınları, Genel Yayın No:220, Rapor Yayın No: R-120, Ankara. 211s. [in Turkish]
  • Dominati, E., Patterson, M., Mackay, A., 2010. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological Economics 69(9): 1858-1868.
  • Durigon, V, Carvalho, D.F, Antunes, M.A.H, Oliveira, P.T.S., Fernandes, M.M., 2014. NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing 35(2): 441-453.
  • Dutta S., 2016. Soil erosion, sediment yield and sedimentation of reservoir: a review. Modeling Earth Systems and Environment 2: 123.
  • El Jazouli, A., Barakat, A., Ghafiri, A., El Moutaki, S., Ettaqy, A., Khellouk, R., 2017. Soil erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in Middle Atlas (Morocco). Geoscience Letters 4: 25.
  • Elaloui, A., Marrakchi, C., Fekri, A., Maimouni, S., Aradi, M., 2017. USLE-based assessment of soil erosion by water in the watershed upstream Tessaoute (Central High Atlas, Morocco). Modeling Earth Systems and Environment 3: 873-885.
  • Erpul, G., Deviren Saygın, Selen., Samray, Hilal., Pınar, M.Ö., Şengören, A., 2014. Arazi Kullanım Planlamasının Esasları, Ankara Üniversitesi Basım Evi, Ankara, 101s. [in Turkish]
  • FAO, 1976. A framework for land evaluation. FAO Soils Bulletin 32, Rome, Italy. Available at [Access date: 18.12.2024]: https://www.fao.org/4/x5310e/x5310e00.htm
  • FAO 1985. Guidelines: Land Evaluation for Irrigated Agriculture. FAO Soils Bulletin 55, Rome, Italy. Available at [Access date: 18.12.2024]: https://www.fao.org/4/x5648e/x5648e00.htm
  • FAO 2016. Global Soil Partnership endorses guidelines on sustainable soil management. Available at [Access date: 18.12.2024]: https://www.fao.org/global-soil-partnership/resources/highlights/detail/en/c/416516/
  • Gołąb, J., Urban, K., 2017. Potential erosion of the areas deforested for ski slopes – an example of Mount Jaworzyna Krynicka. Infrastructure and ecology of rural areas. Polish Academy of Sciences, Cravow Branch 4 (1): 1415–1426.
  • Gürtekin, E., Gökçe, O., 2021. Estimation of erosion risk of Harebakayiş sub-watershed, Elazig, Turkey, using GIS based RUSLE model. Environmental Challenges 5: 100315. Imamoglu, A., Dengiz, O., 2017. Determination of soil erosion risk using RUSLE model and soil organic carbon loss in Alaca catchment (Central Black Sea region, Turkey). Rendiconti Lincei 28(1): 11–23.
  • İrvem, A., Topaloğlu, F., Uygur, V., 2007. Estimating spatial distribution of soil loss over Seyhan river basin in Turkey. Journal of Hydrology 336: 30-37.
  • İç, S., Dengiz, O., Madenoğlu, S., Demirağ Turan, İ., Saygın, F., Erkoçak, A., 2021. Arazi bozulum eğilimlerinin arazi üretkenlik dinamiği üzerine etkilerinin belirlenmesi. Karadeniz Tarımsal Araştırma Enstitüsü Müdürlüğü. Project No: TAGEM/TSKAD/18/A9/P5/355. [in Turkish]
  • İnaç, B.O., Oğuz, İ., Koçyiğit, R., 2021. Determination of the spatial and temporal soil degradation changes in Çelikli Pond Basin. Bartın Orman Fakültesi Dergisi 23(2): 642 – 653.
  • Jackson, M.L., 1958. Soil Chemical Analysis. Prentice Hall, Inc., Englewood Cliffs, New Jersey, USA
  • Johnson, L.C., 1987. Soil loss tolerance: Fact or myth?. Journal of Soil and Water Conservation 42(3): 155-160.
  • Karas, E., 2020. Evaluation of a sustainable land use planning model in the Elmalı basin. Environmental Monitoring Assessment 192: 255.
  • Kirkby, M.J., Irvine, B.J., Jones, R.J., Govers, G., Pesera, T., 2008. The PESERA coarse scale erosion model for Europe. I.–Model rationale and implementation. European Journal of Soil Science 59(6): 1293-1306.
  • Koch, A., McBratney, A., Adams, M., Field, D., Hill, R., Crawford, J., Minasny, B., Lal, R., Abbott, L., O’Donnell, A., Angers, D., Baldock, J., Barbier, E., Binkley, D., Parton, W., Wall, D.H., Bird, M., Bouma, J., Chenu, C., Flora, C.B., Goulding, K., Grunwald, S., Hempel, J., Jastrow, J., Lehmann, J., Lorenz, K., Morgan, C.L., Rice, C.W., Whitehead, D., Young, I., Zimmermann, M., 2013. Soil security: solving the global soil crisis. Global Policy 4(4): 434–441.
  • Koirala, P., Thakuri, S., Joshi, S., Chauhan, R., 2019. Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences 9(4): 147.
  • Le Roux, J.J., Morgenthal, T.L., Malherbe, J., Pretorius, D.J., Sumner, P.D., 2008. Water erosion prediction at a national scale for South Africa. Water Sa 34(3): 305-314.
  • Lugato, E., Panagos, P., Bampa, F., Jones, A., Montanarella, L., 2014. A new baseline of organic carbon stock in European agricultural soils using a modelling approach. Global Change Biology 20(1): 313–326.
  • MGM, 2022. Meteoroloji Genel Müdürlüğü. Available at [Access date: 18.12.2024]: http://www.mgm.gov.tr
  • McBratney, A., Field, D.J., Koch, A., 2014. The dimensions of soil security. Geoderma 213: 203- 213.
  • McCormack, D.E., Young, K.K., Kimberlin, L.W., 1982. Current criteria for determining soil loss tolerance. In: Determinants of soil loss tolerance. Schmidt Chmn., B.L., Allmaras, R.R., Mannering, J.V., Papendick, R.I. (Eds.). ASA Special Publication Number 45, ASA-SSSA, Madison, Wisconsin, USA. pp. 95-111.
  • Mitasova, H., Hofieka, J., Zlocha, M., Iverson, L.R., 1996. Modeling topographic potential for erosion and deposition using GIS. International Journal of Geographic Information Systems 10: 629-641.
  • Montanarella, L., Pennock, D.J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Young Hong, S., Vijarnsorn, P., Zhang, G.L., Arrouays, D., Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henriquez, C.R., de Lourdes Mendonça-Santos, M., Taboada, M., Espinosa-Victoria, D., AlShankiti, A., AlaviPanah, S.K., Elsheikh, E.A.E.M., Hempel, J., Camps Arbestain, M., Nachtergaele, F., Vargas, R., 2016. World's soils are under threat. Soil 2: 79–82.
  • Özsoy, G., 2007. Uzaktan algılama (UA) ve coğrafi bilgi sistemi (CBS) teknikleri kullanılarak erozyon riskinin belirlenmesi. Doktora Tezi. Uludağ Üniversitesi, Fen Bilimleri Enstitüsü. Toprak Anabilim Dalı, Bursa. [in Turkish]
  • Palom, A.R., Pujol, D.S., Cantos, J.O., 2017. Sustainable land use planning in areas exposed to flooding: Some international experiences. In: Floods. Vinet, F. (Ed.). Elsevier Ltd. pp. 103-117.
  • Panagos, P., Imeson, A., Meusburger, K., Borrelli, P., Poesen, J., Alewell, C., 2016. Soil conservation in Europe: wish or reality? Land Degradation & Development 27(6): 1547-1551.
  • Pretorius, J.R., Cooks, J., 1989. Soil loss tolerance limits: An environmental management tool. GeoJournal 19: 67–75.
  • Renard, K.G., Foster, G.R., Weesies, G.A., Porter, J.P., 1991. RUSLE Revised universal soil loss equation. Journal of Soil and Water Conservation 46(1): 30-33.
  • Renard, K.G., Foster, G.R., Weesies, G.A., Mccool, D.K., Yoder, D.C., 1997. Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). United States Department of Agriculture (USDA), Agricultural Research Service, Agriculture Handbook Number 703. 404p. Available at [Access date: 18.12.2024]: https://www3.epa.gov/npdes/pubs/ruslech2.pdf
  • Smith, R.M., Stamey, W.L., 1965. Determining the range of tolerable erosion. Soil Science 100: 414-424.
  • USDA, 2017. Soil Survey Manual. U.S. Department of Agriculture Handbook No. 18, USA. Available at [Access date: 18.12.2024]: https://www.nrcs.usda.gov/sites/default/files/2022-09/The-Soil-Survey-Manual.pdf
  • van der Kniff, J.M., Jones, R.J.A., Montanarella, L., 2000a. Soil erosion risk assessment in Europe. European Commission Directorate General JRC Joint Research Centre Space Applications Institute, European Soil Bureau, 34p. Available at [Access date: 18.12.2024]: https://www.unisdr.org/files/1581_ereurnew2.pdf
  • van der Kniff, J.M., Jones, R.J.A., Montanarella, L., 2000b. Soil erosion risk assessment in Italy. European Commission Directorate General JRC Joint Research Centre Space Applications Institute, European Soil Bureau, 52p. Available at [Access date: 18.12.2024]: https://esdac.jrc.ec.europa.eu/ESDB_Archive/serae/GRIMM/italia/eritaly.pdf
  • Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37: 29–38.
  • Wischmeier, W.H., Smith, D.D., 1978. Predicting rainfall erosion loses a guide to conservation planning. United States Department of Agronomy, Agriculture Handbook No:557, Washington, USA. 163p.
There are 46 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Articles
Authors

Aykut Çağlar 0000-0002-0436-4237

Orhan Dengiz 0000-0002-0458-6016

Publication Date October 1, 2025
Submission Date December 18, 2024
Acceptance Date May 26, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA Çağlar, A., & Dengiz, O. (2025). Analyzing soil erosion dynamics driven by long term land use changes: Integrating sustainable land use strategies. Eurasian Journal of Soil Science, 14(4), 298-312. https://doi.org/10.18393/ejss.1713215