Research Article
BibTex RIS Cite

Production of Chlorella-based liquid fertilizer from dairy wastewater to reduce synthetic fertilizer use

Year 2025, Volume: 14 Issue: 4, 376 - 385, 01.10.2025

Abstract

The purpose of this investigation was to assess the efficiency of using dairy wastewater-grown Chlorella sp. (C) as a liquid organic fertilizer (LOF) when used in combination with inorganic or organic fertilizer on finger millet (Eleusine coracana L.). The nitrogen (N), phosphorus (P) and potassium (K) content of the CLOF was 1.00±0.04, 0.58±0.04 and 0.67±0.005 percentage respectively. A greenhouse pot experiment was arranged with nine treatments and four replicates in CRD design. The treatments included T1 – control, T2- 100% inorganic fertilizer (IF), T3 – 75% IF +25% CLOF, T4 – 50% IF + 50% CLOF, T5 – 25% IF + 75% CLOF, T6 – 100% Vermicompost (VC), T7 – 75% VC + 50% CLOF, T8 – 50% VC + 50% CLOF and T9 – 25% VC + 75% CLOF. T4 (50% IF + 50% CLOF) showed the highest values across most agronomic parameters, including: plant height (95.23±2.21 cm), number of leaves (18±1), leaf length (76.33±4.46 cm), leaf width (1.80±0.10 cm), flower number (13±1.00), ear number (13±1.00), tiller number (10.33±0.58), finger number (52±5), fresh grain weight (11.48±1.13 g/plant), and dry grain weight (6.89±1.04 g/plant) which was comparable to T2. Additionally, T8 and T3 showed comparable values in most growth parameters and yield as that of T2. Nutrient analysis of plant tissues confirmed that the use of CLOF improved the nutrient uptake. Although T2 had the highest N (4.62±0.40 g/plant), it was not significantly different from that of T4 (3.92-±0.30 g/plant). T4 recorded the highest P (0.36±0.01 g/plant) and K (5.24±0.19 g/plant), also with no significant differences from T2, indicating balanced nutrient contribution from CLOF. This study highlights that CLOF, produced from recycled dairy wastewater, is a promising nutrient source that not only enhances crop performance but also reduces reliance on inorganic or bulk organic fertilizers.

References

  • Álvarez-González, A., Uggetti, E., Serrano, L., Gorchs, G., Ferrer, I., Díez-Montero, R., 2022. Can microalgae grown in wastewater reduce the use of inorganic fertilizers?. Journal of Environmental Management 323: 116224.
  • Arashiro, L.T., Josa, I., Ferrer, I., Van Hulle, S.W., Rousseau, D.P., Garfí, M., 2022. Life cycle assessment of microalgae systems for wastewater treatment and bioproducts recovery: Natural pigments, biofertilizer and biogas. Science of The Total Environment 847: 157615.
  • Arora, N., Lo, E., Legall, N., Philippidis, G.P., 2023. A critical review of growth media recycling to enhance the economics and sustainability of algae cultivation. Energies 16(14): 5378.
  • Asadu, C.O., Aneke, N.G., Egbuna, S.O., Agulanna, A.C., 2018. Comparative studies on the impact of bio-fertilizer produced from agro-wastes using thermo-tolerant actinomycetes on the growth performance of Maize (Zea-mays) and Okro (Abelmoschus esculentus). Environmental Technology & Innovation 12: 55-71.
  • Barone, V., Puglisi, I., Fragalà, F., Stevanato, P., Baglieri, A., 2019. Effect of living cells of microalgae or their extracts on soil enzyme activities. Archives of Agronomy and Soil Science 65(5): 712-726.
  • Battacharyya, D., Babgohari, M.Z., Rathor, P., Prithiviraj, B., 2015. Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae 196: 39-48.
  • Bayona-Morcillo, P.J., Plaza, B.M., Gómez-Serrano, C., Rojas, E., Jiménez-Becker, S., 2020. Effect of the foliar application of cyanobacterial hydrolysate (Arthrospira platensis) on the growth of Petunia x hybrida under salinity conditions. Journal of Applied Phycology 32(6): 4003-4011.
  • Biswas, T., Bhushan, S., Prajapati, S.K., Chaudhuri, S.R., 2021. An eco-friendly strategy for dairy wastewater remediation with high lipid microalgae-bacterial biomass production. Journal of Environmental Management 286: 112196.
  • Chookalaii, H., Riahi, H., Shariatmadari, Z., Mazarei, Z., Seyed Hashtroudi, M., 2020. Enhancement of total flavonoid and phenolic contents in Plantago major L. with plant growth promoting cyanobacteria. Journal of Agricultural Science and Technology 22(2): 505-518.
  • Dahan, O., Babad, A., Lazarovitch, N., Russak, E.E., Kurtzman, D., 2014. Nitrate leaching from intensive organic farms to groundwater. Hydrology and Earth System Sciences 18(1): 333-341.
  • Dias, G.A., Rocha, R.H.C., Araújo, J.L., Lima, J.F., Guedes, W.A., 2016. Growth, yield, and postharvest quality in eggplant produced under different foliar fertilizer (Spirulina platensis) treatments. Semina: Ciências Agrárias 37(6): 3893-3902.
  • Dineshkumar, R., Duraimurugan, M., Sharmiladevi, N., Lakshmi, L.P., Rasheeq, A.A., Arumugam, A., Sampathkumar, P., 2020. Microalgal liquid biofertilizer and biostimulant effect on green gram (Vigna radiata L) an experimental cultivation. Biomass Conversion and Biorefinery 12: 3007-3027.
  • Dineshkumar, R., Subramanian, J., Sampathkumar, P., 2020. Prospective of chlorella vulgaris to augment growth and yield parameters along with superior seed qualities in black gram, Vigna mungo (L.). Waste and Biomass Valorization 11: 1279-1287.
  • El-Naggar, N.E.A., Hussein, M.H., Shaaban-Dessuuki, S.A., Dalal, S.R., 2020. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Scientific Reports 10(1): 3011.
  • EPA, 1994. Method 200.8: Determination of trace elements in waters and wastes by inductively coupled plasma-mass spectrometry, Revision 5.4. EMMC Version. Available at [Access date: 10.12.2024]: https://www.epa.gov/sites/default/files/2015-06/documents/epa-200.8.pdf
  • EPA, 2007. Method 3051A: Microwave assisted acid digestion of sediments, sludges, and oils, Revision 1. Available at [Access date: 10.12.2024]: https://www.epa.gov/sites/default/files/2015-12/documents/3051a.pdf
  • FAO, 2021. FAOSTAT, Online data base, food and agriculture data – Fertilizers indicators. Available at [Access date: 10.12.2024]: https://www.fao.org/faostat/en/#data/EF
  • Fernández, V., Sotiropoulos, T., Brown, P.H., 2013. Foliar fertilization: Scientific principles and field practices. International Fertilizer Industry Association (IFA), 1st edition, Paris, France. 141p.
  • Garcia-Gonzalez, J., Sommerfeld, M., 2016. Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology 28: 1051-1061.
  • Gitau, M. M., Farkas, A., Balla, B., Ördög, V., Futó, Z., Maróti, G., 2021. Strain-specific biostimulant effects of Chlorella and Chlamydomonas green microalgae on Medicago truncatula. Plants 10(6): 1060.
  • Halajnia, A., Haghnia, G.H., Fotovat, A.M.I.R., Khorasani, R., 2007. Effect of organic matter on phosphorus availability in calcareous soils. JWSS - Journal of Water and Soil Science 10(4): 121–133.
  • Haluschak, P. 2006. Laboratory methods of soil analysis. Canada-Manitoba soil survey. Available at [Access date: 10.12.2024]: https://www.gov.mb.ca/agriculture/soil/soil-survey/pubs/laboratory_methods_of_soil_analysis.pdf
  • Jain, R., Mishra, S., Mohanty, K., 2022. Cattle wastewater as a low-cost supplement augmenting microalgal biomass under batch and fed-batch conditions. Journal of Environmental Management 304: 114213.
  • Jindal, T., Sinha, S., Srivastava, A., Mehrotra, T., Singh, R., 2019. A review on the dairy industry waste water characteristics, its impact on environment and treatment possibilities. In: Emerging Issues in Ecology and Environmental Science: Case Studies from India. Jindal, T. (Ed.). SpringerBriefs in Environmental Science. Springer, Cham. pp 73–84.
  • Kalra, Y.P., 1971. Methods used for soil, plant, and water analysis at the soils laboratory of the Manitoba-Saskatchwan region, 1967-1970. Canadian Forestry Service, Northern Forest Research Centre, Edmonton, Alberta, Canada. Information Report NOR-X-11. Available at [Access date: 10.12.2024]: https://ostrnrcan-dostrncan.canada.ca/handle/1845/235088
  • Kariyawasam Hetti Gamage, L.R., Gnanavelrajah, N., Ketheesan, B., Kajeevan, K., 2023. Chlorella sp. cultivation using parboiled rice effluent and utilization of the microalgae as co-organic fertilizer for Brinjal (Solanum melongina). Waste and Biomass Valorization 14(12): 4243-4256.
  • Kholssi, R., Marks, E. A., Miñón, J., Montero, O., Debdoubi, A., Rad, C., 2019. Biofertilizing effect of Chlorella sorokiniana suspensions on wheat growth. Journal of Plant Growth Regulation 38: 644-649.
  • Kim, M.J., Shim, C.K., Kim, Y.K., Ko, B.G., Park, J.H., Hwang, S.G., Kim, B.H., 2018. Effect of biostimulator Chlorella fusca on improving growth and qualities of chinese chives and spinach in organic farm. The Plant Pathology Journal 34(6): 567-574.
  • Kolambage, S.H., Gajanayake, P., Kumarasingha, U., Manathunga, D., Dassanayake, R.S., Jayasinghe, R., Jayasiri, N., Wijethunga, A., 2024. Nitrogen-enriched liquid organic fertilizers (LOFs) production for sustainable agriculture: A review. International Journal of Recycling of Organic Waste in Agriculture 13(4): 132440.
  • La Bella, E., Baglieri, A., Rovetto, E. I., Stevanato, P., Puglisi, I., 2021. Foliar spray application of Chlorella vulgaris extract: Effect on the growth of lettuce seedlings. Agronomy 11(2): 308.
  • Liu, R., Li, S., Tu, Y., Hao, X., 2021. Capabilities and mechanisms of microalgae on removing micropollutants from wastewater: A review. Journal of Environmental Management 285: 112149.
  • Loganathan, G.B., Orsat, V., Lefsrud, M., 2020. Utilizing the microalgal biomass of Chlorella variabilis and Scenedesmus obliquus produced from the treatment of synthetic dairy wastewater as a biofertilizer. Journal of Plant Nutrition 44(10): 1486-1497.
  • Martini, F., Beghini, G., Zanin, L., Varanini, Z., Zamboni, A., Ballottari, M., 2021. The potential use of Chlamydomonas reinhardtii and Chlorella sorokiniana as biostimulants on maize plants. Algal Research 60: 102515.
  • Minaoui, F., Hakkoum, Z., Chabili, A., Douma, M., Mouhri, K., Loudiki, M., 2024. Biostimulant effect of green soil microalgae Chlorella vulgaris suspensions on germination and growth of wheat (Triticum aestivum var. Achtar) and soil fertility. Algal Research 82: 103655.
  • Motavalli, P.P., Goyne, K.W., Udawatta, R.P., 2008. Environmental impacts of enhanced‐efficiency nitrogen fertilizers. Crop Management 7(1): 1-15.
  • Mousavi, H., Solberg, S.Ø., Cottis, T., 2021. Nitrogen Enriched Organic fertilizer (NEO) elevates nitrification rates shortly after application but has no lasting effect on nitrification in agricultural soils. Agricultural and Food Science 32(4): 179–194.
  • Nagy, P.T., Pintér, T., 2015. Effects of foliar biofertilizer sprays on nutrient uptake, yield, and quality parameters of Blaufrankish (Vitis vinifera L.) Grapes. Communications in Soil Science and Plant Analysis 46: 219-227.
  • Niu, J., Liu, C., Huang, M., Liu, K., Yan, D., 2021. Effects of foliar fertilization: a review of current status and future perspectives. Journal of Soil Science and Plant Nutrition 21: 104-118.
  • Plaza, B.M., Gómez-Serrano, C., Acién-Fernández, F.G., Jimenez-Becker, S., 2018. Effect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. Journal of Applied Phycology 30: 2359-2365.
  • Refaay, D.A., El-Marzoki, E.M., Abdel-Hamid, M.I., Haroun, S.A., 2021. Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean. Journal of Applied Phycology 33: 3807-3815.
  • Renuka, N., Prasanna, R., Sood, A., Ahluwalia, A.S., Bansal, R., Babu, S., Singh, R., Shivay, Y.S., Nain, L., 2016. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental Science and Pollution Research 23: 6608-6620.
  • Saadat, E., Ghorbanzadeh, N., Farhangi, M.B., Fazeli Sangani, M., 2023. Potential application of Chlorella sp. biomass cultivated in landfill leachate as agricultural fertilizer. Archives of Agronomy and Soil Science 69(8): 1193-1208.
  • Samoraj, M., Çalış, D., Trzaska, K., Mironiuk, M., Chojnacka, K., 2024. Advancements in algal biorefineries for sustainable agriculture: Biofuels, high-value products, and environmental solutions. Biocatalysis and Agricultural Biotechnology 58: 103224.
  • Sarvi, M., Hagner, M., Velmala, S., Soinne, H., Uusitalo, R., Keskinen, R., Ylivainio, K., Kaseva, J., Rasa, K., 2021. Bioavailability of phosphorus in granulated and pyrolyzed broiler manure. Environmental Technology & Innovation 23: 101584.
  • Sharma, G.K., Khan, S.A., Shrivastava, M., Bhattacharyya, R., Sharma, A., Gupta, D.K., Kishore, P., Gupta, N., 2021. Circular economy fertilization: Phycoremediated algal biomass as biofertilizers for sustainable crop production. Journal of Environmental Management 287: 112295.
  • Solihin, E., Yuniarti, A., Damayani, M., Rosniawaty, D.S., 2019. Application of liquid organic fertilizer and N, P, K to the properties of soil chemicals and growth of rice plant. IOP Conference Series: Earth and Environmental Science 393: 012026.
  • Suchithra, M.R., Muniswami, D.M., Sri, M.S., Usha, R., Rasheeq, A.A., Preethi, B.A., Dineshkumar, R., 2022. Effectiveness of green microalgae as biostimulants and biofertilizer through foliar spray and soil drench method for tomato cultivation. South African Journal of Botany 146: 740-750.
  • Taghizadeh-Hesary, F., Rasoulinezhad, E., Yoshino, N., Chang, Y., Taghizadeh-Hesary, F., Morgan, P.J., 2021. The energy–pollution–health nexus: A panel data analysis of low-and middle-income Asian countries. The Singapore Economic Review 66(2): 435-455.
  • Tayefeh, M., Sadeghi, S.M., Noorhosseini, S.A., Bacenetti, J., Damalas, C.A., 2018. Environmental impact of rice production based on nitrogen fertilizer use. Environmental Science and Pollution Research 25: 15885-15895.
  • Tiamiyu, R.A., Ahmed, H.G., Muhammad, A.S., 2012. Effect of sources of organic manure on growth and yields of okra (Abelmoschus esculentus L.) in Sokoto, Nigeria. Nigerian Journal of Basic and Applied Sciences 20(3): 213-216.
  • Uysal, Ö., Eki̇nci̇, K., 2021. Treatment of rose oil processing effluent with Chlorella sp. using photobioreactor and raceway. Journal of Environmental Management 295: 113089.
  • Vasundhara, D., Chhabra, V., 2021. Foliar nutrition in cereals: A review. The Pharma Innovation Journal 10(8): 1247-1254.
There are 52 citations in total.

Details

Primary Language English
Subjects Soil Sciences and Plant Nutrition (Other)
Journal Section Articles
Authors

Aruma Handi Anjalee Tharindi Eranga De Silva This is me 0009-0000-5021-0987

Nalina Gnanavelrajah This is me 0000-0002-0229-5952

Balachandran Ketheesan This is me 0000-0001-9801-7091

Kasthuri Kajeevan This is me 0000-0001-9853-9810

Mahajini Rivenderan This is me 0009-0006-5964-366X

Publication Date October 1, 2025
Submission Date December 10, 2024
Acceptance Date July 21, 2025
Published in Issue Year 2025 Volume: 14 Issue: 4

Cite

APA De Silva, A. H. A. T. E., Gnanavelrajah, N., Ketheesan, B., … Kajeevan, K. (2025). Production of Chlorella-based liquid fertilizer from dairy wastewater to reduce synthetic fertilizer use. Eurasian Journal of Soil Science, 14(4), 376-385. https://doi.org/10.18393/ejss.1754913