Research Article
BibTex RIS Cite

Orta manganlı bir çeliğin mikroyapısı ve mekanik özellikleri üzerinde Cr ilavesinin ve kritik tavlama koşullarının etkisi

Year 2026, Volume: 15 Issue: 2, 205 - 212, 29.01.2026

Abstract

İleri yüksek mukavemetli çelikler, yüksek mukavemetleri ve iyi şekillendirilebilirlik özellikleri sayesinde hem hafiflik hem de güvenlik sunan malzemeler olarak otomotiv endüstrisinin ilgisini çekmektedir. Bu çelik grubu içinde, orta manganlı çelikler, dönüşüm kaynaklı plastisite etkisi sayesinde mükemmel bir mukavemet-süneklik dengesi sunarak yeni nesil mühendislik uygulamalarında öne çıkmaktadır.
Bu çalışmada, Cr ilavesi ve kritik ara tavlama koşullarının orta manganlı çeliklerin mikro yapı ve mekanik özellikleri üzerindeki etkileri incelenmiştir. %0, %0,4, %0,8 ve %1,2 ağırlık oranlarında Cr ilavesi içeren 45 mm kalınlığındaki orta Mn çelik levhalar (0,16C-5,5Mn) döküm yöntemiyle üretilmiş ve ardından sıcak presleme ve sıcak dövme yöntemleriyle 5 mm kalınlığa indirilmiştir. Numuneler kritik ara bölgede (650 °C) tavlanmış ve ardından havada veya suda soğutma ile soğutulmuştur. Mikroyapısal karakterizasyon optik ve taramalı elektron mikroskobu kullanılarak gerçekleştirilmiştir. Kalan ostenitin faz bileşimi ve hacim oranı, X-ışını kırınımı ve enerji dağılımlı spektroskopisi ile belirlenmiştir. Sonuçlar, kalan ostenit fazının hacim oranının hızlı soğuma ve Cr içeriğiyle arttığını göstermiştir. Çekme testlerinde, çelik bileşimindeki Cr'un çekme dayanımı-toplam uzama kombinasyonunu iyileştirdiği gözlemlenmiştir. En iyi kombinasyon, kritikler arası tavlama sonrası suda söndürme ile %1,2 Cr ilave edilen numunede elde edilmiştir.

Project Number

MF.19.49

References

  • [1] O. Bouaziz, H. Zurob, and M. Huang, “Driving force and logic of development of advanced high strength steels for automotive applications”, Steel Res. Int., vol. 84, no. 10, pp. 937–947, 2013, https://doi.org/10.1002/srin.201200288.
  • [2] R. Kuziak, R. Kawalla, and S. Waengler, “Advanced high strength steels for automotive industry: A review”, Arch. Civ. Mech. Eng., vol. 8, no. 2, pp. 103–117, 2008, https://doi.org/10.1016/s1644-9665(12)60197-6.
  • [3] R. L. Miller, “Ultrafine-grained microstructures and mechanical properties of alloy steels”, Metall. and Mater. Trans. B, vol. 3, pp. 905–912, 1972, https://doi.org/10.1007/bf02647665.
  • [4] M. Shome and M. Tumuluru, “Introduction to welding and joining of advanced high-strength steels”, in Welding and joining of advanced high strength steels (AHSS), Cambridge, Woodhead Pubg., 2015, pp. 1–8.
  • [5] Q. Li et al., “Microstructure Evolution and Mechanical Properties of Light Medium Manganese Steel: Different Rolling Directions during Warm Stamping”, J. of Mater. Eng. and Perform., vol. 33, no. 24, pp. 14119–14133, 2024, https://doi.org/10.1007/s11665-023-08998-9.
  • [6] D.K. Matlock and J.G. Speer, “Design considerations for the next generation of advanced high strength sheet steels”, in Proc. of the 3rd Int. Conf. on Structural Steels, H.C. Lee, Eds. Seoul, 2006, pp. 774–781.
  • [7] N. Fonstein, “Candidates for the Third Generation: Medium Mn Steels”, in Advanced High Strength Sheet Steels, New York, Springer Int. Pubg., 2015, pp. 297–325.
  • [8] A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges, “Evolution of microstructure and mechanical properties of medium Mn steels during double annealing”, Mater. Sci. Eng. A, vol. 542, pp. 31–39, 2012, https://doi.org/10.1016/j.msea.2012.02.024.
  • [9] M. Soleimani, A. Kalhor, and H. Mirzadeh, “Transformation-induced plasticity (TRIP) in advanced steels: A review”, Mater. Sci. Eng. A, vol. 795, pp. 140023, 2020, https://doi.org/10.1016/j.msea.2020.140023.
  • [10] L. Luo, W. Li, S. Liu, L. Wang, and X. Jin, “Effect of intermediate temperature annealing on the stability of retained austenite and mechanical properties of medium Mn-TRIP steel”, Mater. Sci. Eng. A, vol. 742, pp. 69–77, 2019, https://doi.org/10.1016/j.msea.2018.10.102.
  • [11] R. Schneider, K. Steineder, D. Krizan, and C. Sommitsch, “Effect of the heat treatment on the microstructure and mechanical properties of medium-Mn-steels”, Mater. Sci. Technol., vol. 35, no. 17, pp. 2045–2053, 2019, https://doi.org/10.1080/02670836.2018.1548957.
  • [12] P.J. Du et al., “Austenite stabilisation by two step partitioning of manganese and carbon in a Mn-TRIP steel”, Mater. Sci. Technol., vol. 35, no. 17, pp. 2084–2091, 2019, https://doi.org/10.1080/02670836.2019.1572316.
  • [13] X. Qi, L. Du, J. Hu, and R.D.K. Misra, “Effect of austenite stability on toughness, ductility, and work-hardening of medium-Mn steel”, Mater. Sci. Technol., vol. 35, no. 17, pp. 2134–2142, 2019, https://doi.org/10.1080/02670836.2018.1522088.
  • [14] H.F. Xu et al., “Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn)”, Mater. Sci. Eng. A, vol. 532, pp. 435–442, 2012, https://doi.org/10.1016/j.msea.2011.11.009.
  • [15] H. Luo, H. Dong, and M. Huang, “Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels”, Mater. Des., vol. 83, pp. 42–48, 2015, https://doi.org/10.1016/j.matdes.2015.05.085.
  • [16] Y.B. Xu, Y. Zou, Z.P. Hu, D.T. Han, S.Q. Chen and R.D.K. Misra, “Correlation between deformation behavior and austenite characteristics in a Mn-Al type TRIP steel”, Mater. Sci. Eng. A, vol. 698, no. 11, pp. 126–135, 2017, https://doi.org/10.1016/j.msea.2017.05.058.
  • [17] E.J. Seo, L. Cho, and B.C. De Cooman, “Application of quenching and partitioning (Q&P) processing to press hardening steel”, Metall. Mater. Trans. A, vol. 45, no. 9, pp. 4022–4037, 2014, https://doi.org/10.1007/s11661-014-2316-z.
  • [18] X. Wei et al., “Cr-alloyed novel press-hardening steel with superior combination of strength and ductility”, Mater. Sci. Eng. A, vol. 819, pp. 1–9, 2021, https://doi.org/10.1016/j.msea.2021.141461.
  • [19] R. Hossain, F. Pahlevani, and V. Sahajwalla, “Effect of small addition of Cr on stability of retained austenite in high carbon steel”, Mater. Charact., vol. 125, pp. 114–122, 2017, https://doi.org/10.1016/j.matchar.2017.02.001.
  • [20] D.T. Pierce et al., “Microstructural evolution during quenching and partitioning of 0.2C-1.5Mn-1.3Si steels with Cr or Ni additions”, Acta Mater., vol. 151, pp. 454–469, 2018, https://doi.org/10.1016/j.actamat.2018.03.007.
  • [21] J. Han, S. Kang, S. Lee, and Y. Lee, “Fabrication of bimodal-grained Al-free medium Mn steel by double intercritical annealing and its tensile properties”, J. Alloys Compd., vol. 681, pp. 580–588, 2016, https://doi.org/10.1016/j.jallcom.2016.04.014.
  • [22] J. Han, S.J. Lee, J.G. Jung, and Y.K. Lee, “The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05 C steel”, Acta Mater., vol. 78, pp. 369–377, 2014, https://doi.org/10.1016/j.actamat.2014.07.005.
  • [23] R. Zhang, W.Q. Cao, Z.J. Peng, J. Shi, H. Dong, and C.X. Huang, “Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel”, Mater. Sci. Eng. A, vol. 583, pp. 84–88, 2013, https://doi.org/10.1016/j.msea.2013.06.067.
  • [24] Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying, “Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content”, Acta Mater., vol. 84, pp. 229–236, 2015, https://doi.org/10.1016/j.actamat.2014.10.052.
  • [25] H.F. Xu et al., “Tempering effects on the stability of retained austenite and mechanical properties in a medium manganese steel”, ISIJ Int., vol. 52, no. 5, pp. 868–873, 2012, https://doi.org/10.2355/isijinternational.52.868.
  • [26] M. De Meyer, D. Vanderschueren, K. De Blauwe, and B.C. De Cooman, “The characterization of retained austenite in TRIP steels by X-ray diffraction”, in Proc. 41st MWSP Conf. Baltimore, 1999, pp. 483–491.
  • [27] X. Tan, Y. Xu, X. Yang, Z. Liu, and D. Wu, “Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel”, Mater. Sci. Eng. A, vol. 594, pp. 149–160, 2014, https://doi.org/10.1016/j.msea.2013.11.064.
  • [28] A.A. Zhukov and M.A. Krishtal, “Thermodynamic activity of alloy components, Met. Sci. Heat Treat., vol. 17, no. 7, pp. 626–633, 1975, https://doi.org/10.1007/BF00680420.
  • [29] A. Grajcar, R. Kuziak, and W. Zalecki, “Third generation of AHSS with increased fraction of retained austenite for the automotive industry”, Arch. Civ. Mech. Eng., vol. 12, no. 3, pp. 334–341, 2012, https://doi.org/10.1016/j.acme.2012.06.011.
  • [30] J. M. Beswick, “The effect of chromium in high carbon bearing steels”, Metall. Trans. A, vol. 18, no. 11, pp. 1897–1906, 1987, https://doi.org/10.1007/bf02647019.
  • [31] L. Kong et al., “The influence of chromium on the pearlite-austenite transformation kinetics of the Fe-Cr-C ternary steels”, J. Alloys Compd., vol. 648, pp. 494–499, 2015, https://doi.org/10.1016/j.jallcom.2015.06.259.
  • [32] H. Zhang, K.G. Pradeep, S. Mandal, D. Ponge, and D. Raabe, “New insights into the austenitization process of low-alloyed hypereutectoid steels: Nucleation analysis of strain-induced austenite formation”, Acta Mater., vol. 80, pp. 296–308, 2014, https://doi.org/10.1016/j.actamat.2014.07.073.
  • [33] F. Han, B. Hwang, D.W. Suh, Z. Wang, D.L. Lee, and S.J. Kim, “Effect of molybdenum and chromium on hardenability of low-carbon boron-added steels”, Met. Mater. Int., vol. 14, no. 6, pp. 667–672, 2008, https://doi.org/10.3365/met.mat.2008.12.667.
  • [34] F. Yang, H. Luo, C. Hu, E. Pu, and H. Dong, “Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel”, Mater. Sci. Eng. A, vol. 685, pp. 115–122, 2017, https://doi.org/10.1016/j.msea.2016.12.119.
  • [35] D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, and S.J. Kim, “Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel”, Metall. Mater. Trans. A, vol. 41, no. 2, pp. 397–408, 2010, https://doi.org/10.1007/s11661-009-0124-7.
  • [36] S.J. Lee, D.K. Matlock, and C.J. Van Tyne, “Carbon diffusivity in multi-component austenite”, Scr. Mater., vol. 64, no. 9, pp. 805–808, 2011, https://doi.org/10.1016/j.scriptamat.2011.01.001.
  • [37] S.J. Lee, D.K. Matlock, and C.J. Van Tyne, “An empirical model for carbon diffusion in austenite incorporating alloying element effects”, ISIJ Int., vol. 51, no. 11, pp. 1903–1911, 2011, https://doi.org/10.2355/isijinternational.51.1903.
  • [38] E. De Moor, C. Föjer, A.J. Clarke, J. Penning, and J.G. Speer, “Quench & partitioning response of a Mo-alloyed CMnSi steel”, in Proc. Conf. New Dev. Metall. Appl. High Strength Steels, T. Perez, Eds. Buenos Aires, 2008, pp. 721–729.
  • [39] M.J. Santofimia, L. Zhao, and J. Sietsma, “Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization”, Metall. Mater. Trans. A, vol. 40, pp. 46–57, 2009, https://doi.org/10.1007/s11661-008-9701-4.
  • [40] M. Gomez, C.I. Garcia, and A.J. Deardo, “The role of new ferrite on retained austenite stabilization in Al-TRIP steels”, ISIJ Int., vol. 50, pp. 139–146, 2010, https://doi.org/10.2355/isijinternational.50.139.
  • [41] K. Steineder, R. Schneider, D. Krizan, C. Béal, and C. Sommitsch, “Comparative investigation of phase transformation behavior as a function of annealing temperature and cooling rate of two medium-mn steels”, Steel Res. Int., vol. 86, no. 10, pp. 1179–1186, 2015, https://doi.org/10.1002/srin.201400551.
  • [42] H. Luo and H. Dong, “New ultrahigh-strength Mn-alloyed TRIP steels with improved formability manufactured by intercritical annealing”, Mater. Sci. Eng. A, vol. 626, pp. 207–212, 2015, https://doi.org/10.1016/j.msea.2014.12.049.
  • [43] R. Kalsar et al., “In-situ study of tensile deformation behaviour of medium Mn TWIP/TRIP steel using synchrotron radiation”, Mater. Sci. Eng. A, vol. 857, pp. 144013, 2022, https://doi.org/10.1016/j.msea.2022.144013.
  • [44] Z.D. Li, G. Miyamoto, Z.G. Yang, and T. Furuhara, “Kinetics of reverse transformation from pearlite to austenite in an Fe-0.6 mass pct C alloy and the effects of alloying elements”, Metall. Mater. Trans. A, vol. 42, no. 6, pp. 1586–1596, 2011, https://doi.org/10.1007/s11661-010-0560-4.
  • [45] G. Miyamoto, H. Usuki, Z.D. Li, and T. Furuhara, “Effects of Mn, Si and Cr addition on reverse transformation at 1073 K from spheroidized cementite structure in Fe-0.6 mass% C alloy”, Acta Mater., vol. 58, no. 13, pp. 4492–4502, 2010, https://doi.org/10.1016/j.actamat.2010.04.045.
  • [46] O.K. Rowan and R.D. Sisson, “Effect of Alloy Composition on Carburizing Performance of Steel”, J. Phase Equilibria Diffus., vol. 30, no. 3, pp. 235–241, 2009, https://doi.org/10.1007/s11669-009-9500-7.
  • [47] T. Suzuki, Y. Ono, G. Miyamoto, and T. Furuhara, “Effects of Si and Cr on bainite microstructure of medium carbon steels”, ISIJ int., vol. 50, no. 10, pp. 1476-1482, 2010, https://doi.org/10.2355/isijinternational.50.1476.
  • [48] G. Kirchner, T. Nishizawa, and B. Uhrenius, “The distribution of chromium between ferrite and austenite and the thermodynamics of the α/γ equilibrium in the Fe-Cr and Fe-Mn Systems”, Metall. Trans., vol. 4, pp. 167–174, 1973, https://doi.org/10.1007/BF02649616.
  • [49] C. Zhao, W.Q. Cao, C. Zhang, Z.G. Yang, H. Dong, and Y.Q. Weng, “Effect of annealing temperature and time on microstructure evolution of 0*2C-5Mn steel during intercritical annealing process”, Mater. Sci. Technol., vol. 30, no. 7, pp. 791–799, 2014, https://doi.org/10.1179/1743284713Y.0000000416.
  • [50] K. Steineder, D. Krizan, R. Schneider, C. Béal, and C. Sommitsch, “On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels”, Acta Mater., vol. 139, pp. 39–50, 2017, https://doi.org/10.1016/j.actamat.2017.07.056.
  • [51] H. Choi, S. Lee, J. Lee, F. Barlat, and B.C. De Cooman, “Characterization of fracture in medium Mn steel”, Mater. Sci. Eng. A, vol. 687, pp. 200–210, 2017, https://doi.org/10.1016/j.msea.2017.01.055.
  • [52] S. Lee, S. Shin, M. Kwon, K. Lee, and B. C. De Cooman, “Tensile Properties of Medium Mn Steel with a Bimodal UFG α+γ and Coarse δ-Ferrite Microstructure”, Metall. Mater. Trans. A, vol. 48, no. 4, pp. 1678–1700, 2017, https://doi.org/10.1007/s11661-017-3979-z.
  • [53] T. W. J. Kwok, P. Gong, R. Rose, and D. Dye, “The relative contributions of TWIP and TRIP to strength in fine grained medium-Mn steels,” Mater. Sci. Eng. A, vol. 855, pp. 143864, 2022, https://doi.org/10.1016/j.msea.2022.143864.
  • [54] F. Ozturk, A. Polat, S. Toros, and R.C. Picu, “Strain Hardening and Strain Rate Sensitivity Behaviors of Advanced High Strength Steels”, J. Iron Steel Res. Int., vol. 20, no. 6, pp. 68–74, 2013, https://doi.org/10.1016/S1006-706X(13)60114-4.
  • [55] Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, “Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments”, Mater. Sci. Eng. A, vol. 682, pp. 211–219, 2017, https://doi.org/10.1016/j.msea.2016.11.048.
  • [56] Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, and H. Ding, “Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect”, Mater. Sci. Eng. A, vol. 673, pp. 63–72, 2016, https://doi.org/10.1016/j.msea.2016.07.023.
  • [57] D. P. Yang, P. J. Du, D. Wu, and H. L. Yi, “The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process,” J. Mater. Sci. Technol., vol. 75, pp. 205–215, 2021, https://doi.org/10.1016/j.jmst.2020.10.032.
  • [58] C. Yu et al., “High strength-high ductility combination in a low-density medium Mn steel prepared by a highly efficient route,” J. Mater. Res. Technol., vol. 28, pp. 533–545, 2024, https://doi.org/10.1016/j.jmrt.2023.12.020.

Effect of Cr Addition and Intercritical Annealing Conditions on Microstructure and Mechanical Properties of A Medium Manganese Steel

Year 2026, Volume: 15 Issue: 2, 205 - 212, 29.01.2026

Abstract

Advanced high-strength steels are attracting the attention of the automotive industry as materials that offer both lightness and safety due to their high strength and good formability properties. Within this group of steels, medium-manganese steels stand out in new-generation engineering applications by offering an excellent balance of strength-ductility thanks to the transformation-induced plasticity effect. In this study, the effects of Cr addition and intercritical annealing conditions on microstructure and mechanical properties of medium manganese steels were investigated. 45 mm thick medium Mn steel plates (0.16C-5.5Mn) with 0, 0.4, 0.8, 1.2 wt.% Cr additions were manufactured by casting and then reduced to 5 mm thickness by hot pressing and hot forging. The samples were annealed in the intercritical region (650 °C) and then cooled either in air or by water quenching. Microstructural characterization was performed using optical and scanning electron microscopy. The phase composition and volume fraction of retained austenite were determined through X-ray diffraction and energy-dispersive spectroscopy. The results showed that the volume fraction of the retained austenite phase increased with rapid cooling and Cr content. In the tensile tests, it was observed that the Cr in the steel composition improved the tensile strength-total elongation combination. The best combination (32 GPa.%) was obtained in the 1.2% Cr added sample by water quenching after intercritical annealing.

Supporting Institution

Firat University

Project Number

MF.19.49

Thanks

This research was supported financially by the Scientific Research Projects Unit of Firat University (project number: MF.19.49).

References

  • [1] O. Bouaziz, H. Zurob, and M. Huang, “Driving force and logic of development of advanced high strength steels for automotive applications”, Steel Res. Int., vol. 84, no. 10, pp. 937–947, 2013, https://doi.org/10.1002/srin.201200288.
  • [2] R. Kuziak, R. Kawalla, and S. Waengler, “Advanced high strength steels for automotive industry: A review”, Arch. Civ. Mech. Eng., vol. 8, no. 2, pp. 103–117, 2008, https://doi.org/10.1016/s1644-9665(12)60197-6.
  • [3] R. L. Miller, “Ultrafine-grained microstructures and mechanical properties of alloy steels”, Metall. and Mater. Trans. B, vol. 3, pp. 905–912, 1972, https://doi.org/10.1007/bf02647665.
  • [4] M. Shome and M. Tumuluru, “Introduction to welding and joining of advanced high-strength steels”, in Welding and joining of advanced high strength steels (AHSS), Cambridge, Woodhead Pubg., 2015, pp. 1–8.
  • [5] Q. Li et al., “Microstructure Evolution and Mechanical Properties of Light Medium Manganese Steel: Different Rolling Directions during Warm Stamping”, J. of Mater. Eng. and Perform., vol. 33, no. 24, pp. 14119–14133, 2024, https://doi.org/10.1007/s11665-023-08998-9.
  • [6] D.K. Matlock and J.G. Speer, “Design considerations for the next generation of advanced high strength sheet steels”, in Proc. of the 3rd Int. Conf. on Structural Steels, H.C. Lee, Eds. Seoul, 2006, pp. 774–781.
  • [7] N. Fonstein, “Candidates for the Third Generation: Medium Mn Steels”, in Advanced High Strength Sheet Steels, New York, Springer Int. Pubg., 2015, pp. 297–325.
  • [8] A. Arlazarov, M. Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges, “Evolution of microstructure and mechanical properties of medium Mn steels during double annealing”, Mater. Sci. Eng. A, vol. 542, pp. 31–39, 2012, https://doi.org/10.1016/j.msea.2012.02.024.
  • [9] M. Soleimani, A. Kalhor, and H. Mirzadeh, “Transformation-induced plasticity (TRIP) in advanced steels: A review”, Mater. Sci. Eng. A, vol. 795, pp. 140023, 2020, https://doi.org/10.1016/j.msea.2020.140023.
  • [10] L. Luo, W. Li, S. Liu, L. Wang, and X. Jin, “Effect of intermediate temperature annealing on the stability of retained austenite and mechanical properties of medium Mn-TRIP steel”, Mater. Sci. Eng. A, vol. 742, pp. 69–77, 2019, https://doi.org/10.1016/j.msea.2018.10.102.
  • [11] R. Schneider, K. Steineder, D. Krizan, and C. Sommitsch, “Effect of the heat treatment on the microstructure and mechanical properties of medium-Mn-steels”, Mater. Sci. Technol., vol. 35, no. 17, pp. 2045–2053, 2019, https://doi.org/10.1080/02670836.2018.1548957.
  • [12] P.J. Du et al., “Austenite stabilisation by two step partitioning of manganese and carbon in a Mn-TRIP steel”, Mater. Sci. Technol., vol. 35, no. 17, pp. 2084–2091, 2019, https://doi.org/10.1080/02670836.2019.1572316.
  • [13] X. Qi, L. Du, J. Hu, and R.D.K. Misra, “Effect of austenite stability on toughness, ductility, and work-hardening of medium-Mn steel”, Mater. Sci. Technol., vol. 35, no. 17, pp. 2134–2142, 2019, https://doi.org/10.1080/02670836.2018.1522088.
  • [14] H.F. Xu et al., “Heat treatment effects on the microstructure and mechanical properties of a medium manganese steel (0.2C-5Mn)”, Mater. Sci. Eng. A, vol. 532, pp. 435–442, 2012, https://doi.org/10.1016/j.msea.2011.11.009.
  • [15] H. Luo, H. Dong, and M. Huang, “Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels”, Mater. Des., vol. 83, pp. 42–48, 2015, https://doi.org/10.1016/j.matdes.2015.05.085.
  • [16] Y.B. Xu, Y. Zou, Z.P. Hu, D.T. Han, S.Q. Chen and R.D.K. Misra, “Correlation between deformation behavior and austenite characteristics in a Mn-Al type TRIP steel”, Mater. Sci. Eng. A, vol. 698, no. 11, pp. 126–135, 2017, https://doi.org/10.1016/j.msea.2017.05.058.
  • [17] E.J. Seo, L. Cho, and B.C. De Cooman, “Application of quenching and partitioning (Q&P) processing to press hardening steel”, Metall. Mater. Trans. A, vol. 45, no. 9, pp. 4022–4037, 2014, https://doi.org/10.1007/s11661-014-2316-z.
  • [18] X. Wei et al., “Cr-alloyed novel press-hardening steel with superior combination of strength and ductility”, Mater. Sci. Eng. A, vol. 819, pp. 1–9, 2021, https://doi.org/10.1016/j.msea.2021.141461.
  • [19] R. Hossain, F. Pahlevani, and V. Sahajwalla, “Effect of small addition of Cr on stability of retained austenite in high carbon steel”, Mater. Charact., vol. 125, pp. 114–122, 2017, https://doi.org/10.1016/j.matchar.2017.02.001.
  • [20] D.T. Pierce et al., “Microstructural evolution during quenching and partitioning of 0.2C-1.5Mn-1.3Si steels with Cr or Ni additions”, Acta Mater., vol. 151, pp. 454–469, 2018, https://doi.org/10.1016/j.actamat.2018.03.007.
  • [21] J. Han, S. Kang, S. Lee, and Y. Lee, “Fabrication of bimodal-grained Al-free medium Mn steel by double intercritical annealing and its tensile properties”, J. Alloys Compd., vol. 681, pp. 580–588, 2016, https://doi.org/10.1016/j.jallcom.2016.04.014.
  • [22] J. Han, S.J. Lee, J.G. Jung, and Y.K. Lee, “The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05 C steel”, Acta Mater., vol. 78, pp. 369–377, 2014, https://doi.org/10.1016/j.actamat.2014.07.005.
  • [23] R. Zhang, W.Q. Cao, Z.J. Peng, J. Shi, H. Dong, and C.X. Huang, “Intercritical rolling induced ultrafine microstructure and excellent mechanical properties of the medium-Mn steel”, Mater. Sci. Eng. A, vol. 583, pp. 84–88, 2013, https://doi.org/10.1016/j.msea.2013.06.067.
  • [24] Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying, “Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content”, Acta Mater., vol. 84, pp. 229–236, 2015, https://doi.org/10.1016/j.actamat.2014.10.052.
  • [25] H.F. Xu et al., “Tempering effects on the stability of retained austenite and mechanical properties in a medium manganese steel”, ISIJ Int., vol. 52, no. 5, pp. 868–873, 2012, https://doi.org/10.2355/isijinternational.52.868.
  • [26] M. De Meyer, D. Vanderschueren, K. De Blauwe, and B.C. De Cooman, “The characterization of retained austenite in TRIP steels by X-ray diffraction”, in Proc. 41st MWSP Conf. Baltimore, 1999, pp. 483–491.
  • [27] X. Tan, Y. Xu, X. Yang, Z. Liu, and D. Wu, “Effect of partitioning procedure on microstructure and mechanical properties of a hot-rolled directly quenched and partitioned steel”, Mater. Sci. Eng. A, vol. 594, pp. 149–160, 2014, https://doi.org/10.1016/j.msea.2013.11.064.
  • [28] A.A. Zhukov and M.A. Krishtal, “Thermodynamic activity of alloy components, Met. Sci. Heat Treat., vol. 17, no. 7, pp. 626–633, 1975, https://doi.org/10.1007/BF00680420.
  • [29] A. Grajcar, R. Kuziak, and W. Zalecki, “Third generation of AHSS with increased fraction of retained austenite for the automotive industry”, Arch. Civ. Mech. Eng., vol. 12, no. 3, pp. 334–341, 2012, https://doi.org/10.1016/j.acme.2012.06.011.
  • [30] J. M. Beswick, “The effect of chromium in high carbon bearing steels”, Metall. Trans. A, vol. 18, no. 11, pp. 1897–1906, 1987, https://doi.org/10.1007/bf02647019.
  • [31] L. Kong et al., “The influence of chromium on the pearlite-austenite transformation kinetics of the Fe-Cr-C ternary steels”, J. Alloys Compd., vol. 648, pp. 494–499, 2015, https://doi.org/10.1016/j.jallcom.2015.06.259.
  • [32] H. Zhang, K.G. Pradeep, S. Mandal, D. Ponge, and D. Raabe, “New insights into the austenitization process of low-alloyed hypereutectoid steels: Nucleation analysis of strain-induced austenite formation”, Acta Mater., vol. 80, pp. 296–308, 2014, https://doi.org/10.1016/j.actamat.2014.07.073.
  • [33] F. Han, B. Hwang, D.W. Suh, Z. Wang, D.L. Lee, and S.J. Kim, “Effect of molybdenum and chromium on hardenability of low-carbon boron-added steels”, Met. Mater. Int., vol. 14, no. 6, pp. 667–672, 2008, https://doi.org/10.3365/met.mat.2008.12.667.
  • [34] F. Yang, H. Luo, C. Hu, E. Pu, and H. Dong, “Effects of intercritical annealing process on microstructures and tensile properties of cold-rolled 7Mn steel”, Mater. Sci. Eng. A, vol. 685, pp. 115–122, 2017, https://doi.org/10.1016/j.msea.2016.12.119.
  • [35] D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, and S.J. Kim, “Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel”, Metall. Mater. Trans. A, vol. 41, no. 2, pp. 397–408, 2010, https://doi.org/10.1007/s11661-009-0124-7.
  • [36] S.J. Lee, D.K. Matlock, and C.J. Van Tyne, “Carbon diffusivity in multi-component austenite”, Scr. Mater., vol. 64, no. 9, pp. 805–808, 2011, https://doi.org/10.1016/j.scriptamat.2011.01.001.
  • [37] S.J. Lee, D.K. Matlock, and C.J. Van Tyne, “An empirical model for carbon diffusion in austenite incorporating alloying element effects”, ISIJ Int., vol. 51, no. 11, pp. 1903–1911, 2011, https://doi.org/10.2355/isijinternational.51.1903.
  • [38] E. De Moor, C. Föjer, A.J. Clarke, J. Penning, and J.G. Speer, “Quench & partitioning response of a Mo-alloyed CMnSi steel”, in Proc. Conf. New Dev. Metall. Appl. High Strength Steels, T. Perez, Eds. Buenos Aires, 2008, pp. 721–729.
  • [39] M.J. Santofimia, L. Zhao, and J. Sietsma, “Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization”, Metall. Mater. Trans. A, vol. 40, pp. 46–57, 2009, https://doi.org/10.1007/s11661-008-9701-4.
  • [40] M. Gomez, C.I. Garcia, and A.J. Deardo, “The role of new ferrite on retained austenite stabilization in Al-TRIP steels”, ISIJ Int., vol. 50, pp. 139–146, 2010, https://doi.org/10.2355/isijinternational.50.139.
  • [41] K. Steineder, R. Schneider, D. Krizan, C. Béal, and C. Sommitsch, “Comparative investigation of phase transformation behavior as a function of annealing temperature and cooling rate of two medium-mn steels”, Steel Res. Int., vol. 86, no. 10, pp. 1179–1186, 2015, https://doi.org/10.1002/srin.201400551.
  • [42] H. Luo and H. Dong, “New ultrahigh-strength Mn-alloyed TRIP steels with improved formability manufactured by intercritical annealing”, Mater. Sci. Eng. A, vol. 626, pp. 207–212, 2015, https://doi.org/10.1016/j.msea.2014.12.049.
  • [43] R. Kalsar et al., “In-situ study of tensile deformation behaviour of medium Mn TWIP/TRIP steel using synchrotron radiation”, Mater. Sci. Eng. A, vol. 857, pp. 144013, 2022, https://doi.org/10.1016/j.msea.2022.144013.
  • [44] Z.D. Li, G. Miyamoto, Z.G. Yang, and T. Furuhara, “Kinetics of reverse transformation from pearlite to austenite in an Fe-0.6 mass pct C alloy and the effects of alloying elements”, Metall. Mater. Trans. A, vol. 42, no. 6, pp. 1586–1596, 2011, https://doi.org/10.1007/s11661-010-0560-4.
  • [45] G. Miyamoto, H. Usuki, Z.D. Li, and T. Furuhara, “Effects of Mn, Si and Cr addition on reverse transformation at 1073 K from spheroidized cementite structure in Fe-0.6 mass% C alloy”, Acta Mater., vol. 58, no. 13, pp. 4492–4502, 2010, https://doi.org/10.1016/j.actamat.2010.04.045.
  • [46] O.K. Rowan and R.D. Sisson, “Effect of Alloy Composition on Carburizing Performance of Steel”, J. Phase Equilibria Diffus., vol. 30, no. 3, pp. 235–241, 2009, https://doi.org/10.1007/s11669-009-9500-7.
  • [47] T. Suzuki, Y. Ono, G. Miyamoto, and T. Furuhara, “Effects of Si and Cr on bainite microstructure of medium carbon steels”, ISIJ int., vol. 50, no. 10, pp. 1476-1482, 2010, https://doi.org/10.2355/isijinternational.50.1476.
  • [48] G. Kirchner, T. Nishizawa, and B. Uhrenius, “The distribution of chromium between ferrite and austenite and the thermodynamics of the α/γ equilibrium in the Fe-Cr and Fe-Mn Systems”, Metall. Trans., vol. 4, pp. 167–174, 1973, https://doi.org/10.1007/BF02649616.
  • [49] C. Zhao, W.Q. Cao, C. Zhang, Z.G. Yang, H. Dong, and Y.Q. Weng, “Effect of annealing temperature and time on microstructure evolution of 0*2C-5Mn steel during intercritical annealing process”, Mater. Sci. Technol., vol. 30, no. 7, pp. 791–799, 2014, https://doi.org/10.1179/1743284713Y.0000000416.
  • [50] K. Steineder, D. Krizan, R. Schneider, C. Béal, and C. Sommitsch, “On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels”, Acta Mater., vol. 139, pp. 39–50, 2017, https://doi.org/10.1016/j.actamat.2017.07.056.
  • [51] H. Choi, S. Lee, J. Lee, F. Barlat, and B.C. De Cooman, “Characterization of fracture in medium Mn steel”, Mater. Sci. Eng. A, vol. 687, pp. 200–210, 2017, https://doi.org/10.1016/j.msea.2017.01.055.
  • [52] S. Lee, S. Shin, M. Kwon, K. Lee, and B. C. De Cooman, “Tensile Properties of Medium Mn Steel with a Bimodal UFG α+γ and Coarse δ-Ferrite Microstructure”, Metall. Mater. Trans. A, vol. 48, no. 4, pp. 1678–1700, 2017, https://doi.org/10.1007/s11661-017-3979-z.
  • [53] T. W. J. Kwok, P. Gong, R. Rose, and D. Dye, “The relative contributions of TWIP and TRIP to strength in fine grained medium-Mn steels,” Mater. Sci. Eng. A, vol. 855, pp. 143864, 2022, https://doi.org/10.1016/j.msea.2022.143864.
  • [54] F. Ozturk, A. Polat, S. Toros, and R.C. Picu, “Strain Hardening and Strain Rate Sensitivity Behaviors of Advanced High Strength Steels”, J. Iron Steel Res. Int., vol. 20, no. 6, pp. 68–74, 2013, https://doi.org/10.1016/S1006-706X(13)60114-4.
  • [55] Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, “Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments”, Mater. Sci. Eng. A, vol. 682, pp. 211–219, 2017, https://doi.org/10.1016/j.msea.2016.11.048.
  • [56] Z.C. Li, R.D.K. Misra, Z.H. Cai, H.X. Li, and H. Ding, “Mechanical properties and deformation behavior in hot-rolled 0.2C-1.5/3Al-8.5Mn-Fe TRIP steel: The discontinuous TRIP effect”, Mater. Sci. Eng. A, vol. 673, pp. 63–72, 2016, https://doi.org/10.1016/j.msea.2016.07.023.
  • [57] D. P. Yang, P. J. Du, D. Wu, and H. L. Yi, “The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process,” J. Mater. Sci. Technol., vol. 75, pp. 205–215, 2021, https://doi.org/10.1016/j.jmst.2020.10.032.
  • [58] C. Yu et al., “High strength-high ductility combination in a low-density medium Mn steel prepared by a highly efficient route,” J. Mater. Res. Technol., vol. 28, pp. 533–545, 2024, https://doi.org/10.1016/j.jmrt.2023.12.020.
There are 58 citations in total.

Details

Primary Language English
Subjects Material Production Technologies, Materials Engineering (Other)
Journal Section Research Article
Authors

Fatih Demir 0000-0003-3239-4641

Mehmet Eroğlu 0000-0002-5097-1943

Project Number MF.19.49
Submission Date August 9, 2025
Acceptance Date September 14, 2025
Publication Date January 29, 2026
Published in Issue Year 2026 Volume: 15 Issue: 2

Cite

APA Demir, F., & Eroğlu, M. (2026). Effect of Cr Addition and Intercritical Annealing Conditions on Microstructure and Mechanical Properties of A Medium Manganese Steel. European Journal of Technique (EJT), 15(2), 205-212. https://doi.org/10.36222/ejt.1761396

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı