Research Article
BibTex RIS Cite

The influences of tool geometry on machinability of hot tool work steel during application of various turning parameters

Year 2026, Volume: 15 Issue: 2, 283 - 289, 29.01.2026

Abstract

Hot-work steels are high-strength steels used in molds and tools operating at temperatures of 250°C and above. These materials are expected to maintain their mechanical properties at high temperatures, exhibit high wear resistance, and provide thermal conductivity. Hot-work tool steels are subjected to machining to achieve a better surface finish. Machinability is a general term, but it's used to provide a positive or negative indication of a material's processing performance. Measuring machinability involves determining multiple processing parameters or, where appropriate, a single response parameter. In this study, chip formation was not investigated experimentally; instead, the effects of cutting parameters and tool geometry on Toolox 44 steel were considered. In this work, Toolox 44 steel as the dominantly used hot work steel is machined under various cutting conditions and with tool geometries. Machinability was analyzed based on parameters such as energy consumption, cutting temperatures and cutting forces. Tool geometry was found as the dominant parameter on cutting temperatures however feed rate and cutting speed were the significant parameters on cutting forces and energy consumption. Experimental results indicate that tools with CCMT geometry exhibited lower forces and energy consumption. Furthermore, higher feed rates negatively impacted surface finish, while increasing cutting speed significantly increased cutting temperature. These findings demonstrate that the machinability of Toolox 44 steel can be significantly optimized through cutting parameters.

References

  • [1] K. Jatakar, V. Shah, R. Binali, E. Salur, H. Sağlam, T. Mikolajczyk, A.D. Patange, Monitoring built-up edge, chipping, thermal cracking, and plastic deformation of milling cutter inserts through spindle vibration signals, Machines, 11 (2023) 790.
  • [2] S. Karabulut, R. Binali, M.E. Korkmaz, T. Çetin, Machining of AISI 52100 Steel: Statistical Insights into Dry Environment with Variable Tool Nose Radius, Doğu Fen Bilimleri Dergisi, 8 (2025) 39-52.
  • [3] M. Danish, M.K. Gupta, S. Rubaiee, A. Ahmed, M.E. Korkmaz, Influence of hybrid Cryo-MQL lubri-cooling strategy on the machining and tribological characteristics of Inconel 718, Tribology International, 163 (2021) 107178.
  • [4] K. Kaya, T. Çetin, R. Binali, H. Gündoğmuş, Finish turning of toolox 33 to improve machining parameters with different nose radius tools, European Mechanical Science, 9 (2025) 234-245.
  • [5] N.S. Ross, C. Gopinath, V. Sivaraman, M.B.J. Ananth, M.K. Gupta, M.E. Korkmaz, M. Jamil, M. Ganesh, A new approach of measurement and analysis of PVD-TiAlN coated carbide tools in machining of Monel 400 alloy under hybrid cooling conditions, Measurement, 221 (2023) 113428.
  • [6] H. Demir, H. Ulas, R. Binali, Investigation of the effects on surface roughness and tool wear in the toolox44 material, Technol Appl Sci, 13 (2018) 19-28.
  • [7] M. Kuntoğlu, R. Binali, M. Makhesana, Characterizing Machining Indicators with Machine Learning Models Under Cellulose Nanocrystal and Graphene-Based Nanofluid Conditions, Arabian Journal for Science and Engineering, (2025) 1-17.
  • [8] M. Sarıkaya, M.K. Gupta, I. Tomaz, D.Y. Pimenov, M. Kuntoğlu, N. Khanna, Ç.V. Yıldırım, G.M. Krolczyk, A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys, CIRP Journal of Manufacturing Science and Technology, 35 (2021) 624-658.
  • [9] M.A. Makhesana, K.M. Patel, G.M. Krolczyk, M. Danish, A.K. Singla, N. Khanna, Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature and microhardness in machining of Inconel 625, CIRP Journal of Manufacturing Science and Technology, 41 (2023) 225-238.
  • [10] M.A. Makhesana, K.M. Patel, P.J. Bagga, Evaluation of surface roughness, tool wear and chip morphology during machining of nickel-based alloy under sustainable hybrid nanofluid-MQL strategy, Lubricants, 10 (2022) 315.
  • [11] R.W. Maruda, G.M. Krolczyk, P. Nieslony, S. Wojciechowski, M. Michalski, S. Legutko, The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism, Journal of Manufacturing processes, 24 (2016) 107-115.
  • [12] G. Uslu, M.E. Korkmaz, R.H.R. Elkilani, M.K. Gupta, G. Vashishtha, Investigation of tribological properties of inconel 601 under environmentally friendly MQL and Nano-Fluid MQL with pack boronizing, Lubricants, 12 (2024) 353.
  • [13] Ç.V. Yıldırım, T. Kıvak, M. Sarıkaya, Ş. Şirin, Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL, Journal of Materials Research and Technology, 9 (2020) 2079-2092.
  • [14] D.Y. Pimenov, A. Bustillo, S. Wojciechowski, V.S. Sharma, M.K. Gupta, M. Kuntoğlu, Artificial intelligence systems for tool condition monitoring in machining: Analysis and critical review, Journal of Intelligent Manufacturing, 34 (2023) 2079-2121.
  • [15] A.Ç. Şencan, Enhancing Hard Parting off Performance on AISI 304: A Comparative Study of Conventional Flood Cooling and Eco-Friendly Vegetable Oil-Based Sustainable MQL, Precision Engineering, (2025).
  • [16] A.Ç. Şencan, A. Duran, U. Şeker, M.R. Koçak, C. Şencan, The Effect of Internal and External MQL Methods Used for Environmentally Friendly Manufacturing on Machining Performance in Drilling AA2024 Alloys: A Comparison for ANN And Taguchi Analyzes, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 27 86-98.
  • [17] E. Salur, Understandings the tribological mechanism of Inconel 718 alloy machined under different cooling/lubrication conditions, Tribology International, 174 (2022) 107677.
  • [18] P. Nieslony, S. Wojciechowski, M. Gupta, R. Chudy, J. Krolczyk, R. Maruda, G. Krolczyk, Relationship between energy consumption and surface integrity aspects in electrical discharge machining of hot work die steel, Sustainable Materials and Technologies, 36 (2023) e00623.
  • [19] E. Nas, N. Altan Özbek, Optimization of the machining parameters in turning of hardened hot work tool steel using cryogenically treated tools, Surface Review and Letters, 27 (2020) 1950177.
  • [20] S. Chinchanikar, S. Choudhury, Machining of hardened steel—experimental investigations, performance modeling and cooling techniques: a review, International Journal of Machine Tools and Manufacture, 89 (2015) 95-109.
  • [21] A. Medvedeva, J. Bergström, S. Gunnarsson, P. Krakhmalev, L.G. Nordh, Influence of nickel content on machinability of a hot-work tool steel in prehardened condition, Materials & design, 32 (2011) 706-715.
  • [22] R. Binali, H. Demir, İ. Çiftçi, An investigation into the machinability of hot work tool steel (Toolox 44), 3rd Iron and Steel Symposium (UDCS’17), Karabuk-Turkey, 2017, pp. 441-444.
  • [23] K. Kaya, T. Çetin, R. Binali, H. Gündoğmuş, An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning, Manufacturing Technologies and Applications, 6 164-183.
  • [24] R. Binali, S. Yaldız, S. Neşeli, Finite element analysis and statistical investigation of S960ql structure steel machinability with milling method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46 (2024) 260.
  • [25] S. Neşeli, S. Yaldız, E. Türkeş, Optimization of tool geometry parameters for turning operations based on the response surface methodology, Measurement, 44 (2011) 580-587.
  • [26] M.E. Korkmaz, M. Günay, Experimental and statistical analysis on machinability of Nimonic80A superalloy with PVD coated carbide, Sigma Journal of Engineering and Natural Sciences, 36 (2018) 1141-1152.
  • [27] M. Kuntoğlu, A. Aslan, D.Y. Pimenov, K. Giasin, T. Mikolajczyk, S. Sharma, Modeling of cutting parameters and tool geometry for multi-criteria optimization of surface roughness and vibration via response surface methodology in turning of AISI 5140 steel, Materials, 13 (2020) 4242.
  • [28] B. Özlü, Experimental and statistical investigation of the effects of cutting parameters on kerf quality and surface roughness in laser cutting of Al 5083 alloy, Surface Review and Letters, 28 (2021) 2150093.
  • [29] E. Nas, B. Özlü, Experimental and statistical investigation of the effect of input parameters on output parameters in laser cutting of stainless steel material, Ironmaking & Steelmaking, (2025) 03019233251349871.
  • [30] P. Kumar, S.R. Chauhan, C.I. Pruncu, M.K. Gupta, D.Y. Pimenov, M. Mia, H.S. Gill, Influence of different grades of CBN inserts on cutting force and surface roughness of AISI H13 die tool steel during hard turning operation, Materials, 12 (2019) 177.
  • [31] A.S. Yamaner, B.S. Kul, Evaluation of tool radius and machining parameters on cutting forces and surface roughness for AA 6082 aluminum alloy, European Mechanical Science, 9 (2025) 125-138.
  • [32] M.K. Gupta, P. Niesłony, M.E. Korkmaz, M. Kuntoğlu, G. Królczyk, M. Günay, M. Sarikaya, Comparison of tool wear, surface morphology, specific cutting energy and cutting temperature in machining of titanium alloys under hybrid and green cooling strategies, International Journal of Precision Engineering and Manufacturing-Green Technology, 10 (2023) 1393-1406.
  • [33] M. Jamil, N. He, W. Zhao, M.K. Gupta, A.M. Khan, Novel approach of cutting temperature measurement in sustainable milling of Ti-6Al-4V alloy, Measurement, 214 (2023) 112837.
  • [34] R. Binali, Parametric optimization of cutting force and temperature in finite element milling of AISI P20 steel, Journal of Materials and Mechatronics: A, 4 (2023) 244-256.
  • [35] M. Kuntoğlu, H. Demirpolat, R. Binali, M.E. Korkmaz, M. Makhesana, K. Kaya, Sustainable Lubrication Strategies in Eco-friendly Machining of AISI 4140 Steel: Performance and Environmental Impact Analysis Using Machine Learning, Journal of Materials Engineering and Performance, (2025) 1-17.

Çeşitli tornalama parametrelerinin uygulanması sırasında sıcak iş takım çeliğinin işlenebilirliği üzerinde takım geometrisinin etkileri

Year 2026, Volume: 15 Issue: 2, 283 - 289, 29.01.2026

Abstract

Sıcak iş çelikleri, 250°C ve üzeri sıcaklıklarda çalışan kalıp ve takımlarda kullanılan yüksek dayanımlı çeliklerdir. Bu malzemelerin yüksek sıcaklıklarda mekanik özelliklerini koruması, yüksek aşınma direnci göstermesi ve ısıl iletkenlik sağlaması beklenir. Sıcak iş takım çelikleri, daha iyi bir yüzey kalitesi elde etmek için işleme tabi tutulur. İşlenebilirlik genel bir terimdir, ancak bir malzemenin işleme performansının olumlu veya olumsuz bir göstergesi sağlamak için kullanılır. İşlenebilirliğin ölçülmesi, birden fazla işleme parametresinin veya uygun olan yerlerde tek bir tepki parametresinin belirlenmesini içerir. Bu çalışmada, baskın olarak kullanılan sıcak iş çeliği olan Toolox 44 çeliği, çeşitli kesme koşulları altında ve takım geometrileriyle işlenmiştir. Takım geometrisi, kesme sıcaklıkları üzerinde baskın parametre olarak bulunurken, ilerleme oranı ve kesme hızı, kesme kuvvetleri ve enerji tüketimi üzerinde önemli parametrelerdir.

References

  • [1] K. Jatakar, V. Shah, R. Binali, E. Salur, H. Sağlam, T. Mikolajczyk, A.D. Patange, Monitoring built-up edge, chipping, thermal cracking, and plastic deformation of milling cutter inserts through spindle vibration signals, Machines, 11 (2023) 790.
  • [2] S. Karabulut, R. Binali, M.E. Korkmaz, T. Çetin, Machining of AISI 52100 Steel: Statistical Insights into Dry Environment with Variable Tool Nose Radius, Doğu Fen Bilimleri Dergisi, 8 (2025) 39-52.
  • [3] M. Danish, M.K. Gupta, S. Rubaiee, A. Ahmed, M.E. Korkmaz, Influence of hybrid Cryo-MQL lubri-cooling strategy on the machining and tribological characteristics of Inconel 718, Tribology International, 163 (2021) 107178.
  • [4] K. Kaya, T. Çetin, R. Binali, H. Gündoğmuş, Finish turning of toolox 33 to improve machining parameters with different nose radius tools, European Mechanical Science, 9 (2025) 234-245.
  • [5] N.S. Ross, C. Gopinath, V. Sivaraman, M.B.J. Ananth, M.K. Gupta, M.E. Korkmaz, M. Jamil, M. Ganesh, A new approach of measurement and analysis of PVD-TiAlN coated carbide tools in machining of Monel 400 alloy under hybrid cooling conditions, Measurement, 221 (2023) 113428.
  • [6] H. Demir, H. Ulas, R. Binali, Investigation of the effects on surface roughness and tool wear in the toolox44 material, Technol Appl Sci, 13 (2018) 19-28.
  • [7] M. Kuntoğlu, R. Binali, M. Makhesana, Characterizing Machining Indicators with Machine Learning Models Under Cellulose Nanocrystal and Graphene-Based Nanofluid Conditions, Arabian Journal for Science and Engineering, (2025) 1-17.
  • [8] M. Sarıkaya, M.K. Gupta, I. Tomaz, D.Y. Pimenov, M. Kuntoğlu, N. Khanna, Ç.V. Yıldırım, G.M. Krolczyk, A state-of-the-art review on tool wear and surface integrity characteristics in machining of superalloys, CIRP Journal of Manufacturing Science and Technology, 35 (2021) 624-658.
  • [9] M.A. Makhesana, K.M. Patel, G.M. Krolczyk, M. Danish, A.K. Singla, N. Khanna, Influence of MoS2 and graphite-reinforced nanofluid-MQL on surface roughness, tool wear, cutting temperature and microhardness in machining of Inconel 625, CIRP Journal of Manufacturing Science and Technology, 41 (2023) 225-238.
  • [10] M.A. Makhesana, K.M. Patel, P.J. Bagga, Evaluation of surface roughness, tool wear and chip morphology during machining of nickel-based alloy under sustainable hybrid nanofluid-MQL strategy, Lubricants, 10 (2022) 315.
  • [11] R.W. Maruda, G.M. Krolczyk, P. Nieslony, S. Wojciechowski, M. Michalski, S. Legutko, The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism, Journal of Manufacturing processes, 24 (2016) 107-115.
  • [12] G. Uslu, M.E. Korkmaz, R.H.R. Elkilani, M.K. Gupta, G. Vashishtha, Investigation of tribological properties of inconel 601 under environmentally friendly MQL and Nano-Fluid MQL with pack boronizing, Lubricants, 12 (2024) 353.
  • [13] Ç.V. Yıldırım, T. Kıvak, M. Sarıkaya, Ş. Şirin, Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL, Journal of Materials Research and Technology, 9 (2020) 2079-2092.
  • [14] D.Y. Pimenov, A. Bustillo, S. Wojciechowski, V.S. Sharma, M.K. Gupta, M. Kuntoğlu, Artificial intelligence systems for tool condition monitoring in machining: Analysis and critical review, Journal of Intelligent Manufacturing, 34 (2023) 2079-2121.
  • [15] A.Ç. Şencan, Enhancing Hard Parting off Performance on AISI 304: A Comparative Study of Conventional Flood Cooling and Eco-Friendly Vegetable Oil-Based Sustainable MQL, Precision Engineering, (2025).
  • [16] A.Ç. Şencan, A. Duran, U. Şeker, M.R. Koçak, C. Şencan, The Effect of Internal and External MQL Methods Used for Environmentally Friendly Manufacturing on Machining Performance in Drilling AA2024 Alloys: A Comparison for ANN And Taguchi Analyzes, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 27 86-98.
  • [17] E. Salur, Understandings the tribological mechanism of Inconel 718 alloy machined under different cooling/lubrication conditions, Tribology International, 174 (2022) 107677.
  • [18] P. Nieslony, S. Wojciechowski, M. Gupta, R. Chudy, J. Krolczyk, R. Maruda, G. Krolczyk, Relationship between energy consumption and surface integrity aspects in electrical discharge machining of hot work die steel, Sustainable Materials and Technologies, 36 (2023) e00623.
  • [19] E. Nas, N. Altan Özbek, Optimization of the machining parameters in turning of hardened hot work tool steel using cryogenically treated tools, Surface Review and Letters, 27 (2020) 1950177.
  • [20] S. Chinchanikar, S. Choudhury, Machining of hardened steel—experimental investigations, performance modeling and cooling techniques: a review, International Journal of Machine Tools and Manufacture, 89 (2015) 95-109.
  • [21] A. Medvedeva, J. Bergström, S. Gunnarsson, P. Krakhmalev, L.G. Nordh, Influence of nickel content on machinability of a hot-work tool steel in prehardened condition, Materials & design, 32 (2011) 706-715.
  • [22] R. Binali, H. Demir, İ. Çiftçi, An investigation into the machinability of hot work tool steel (Toolox 44), 3rd Iron and Steel Symposium (UDCS’17), Karabuk-Turkey, 2017, pp. 441-444.
  • [23] K. Kaya, T. Çetin, R. Binali, H. Gündoğmuş, An Investigation of Machinability of Hot Work Tool Steel Toolox 44 with Cutting Tools with Different Nose Radius Using Machine Learning, Manufacturing Technologies and Applications, 6 164-183.
  • [24] R. Binali, S. Yaldız, S. Neşeli, Finite element analysis and statistical investigation of S960ql structure steel machinability with milling method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 46 (2024) 260.
  • [25] S. Neşeli, S. Yaldız, E. Türkeş, Optimization of tool geometry parameters for turning operations based on the response surface methodology, Measurement, 44 (2011) 580-587.
  • [26] M.E. Korkmaz, M. Günay, Experimental and statistical analysis on machinability of Nimonic80A superalloy with PVD coated carbide, Sigma Journal of Engineering and Natural Sciences, 36 (2018) 1141-1152.
  • [27] M. Kuntoğlu, A. Aslan, D.Y. Pimenov, K. Giasin, T. Mikolajczyk, S. Sharma, Modeling of cutting parameters and tool geometry for multi-criteria optimization of surface roughness and vibration via response surface methodology in turning of AISI 5140 steel, Materials, 13 (2020) 4242.
  • [28] B. Özlü, Experimental and statistical investigation of the effects of cutting parameters on kerf quality and surface roughness in laser cutting of Al 5083 alloy, Surface Review and Letters, 28 (2021) 2150093.
  • [29] E. Nas, B. Özlü, Experimental and statistical investigation of the effect of input parameters on output parameters in laser cutting of stainless steel material, Ironmaking & Steelmaking, (2025) 03019233251349871.
  • [30] P. Kumar, S.R. Chauhan, C.I. Pruncu, M.K. Gupta, D.Y. Pimenov, M. Mia, H.S. Gill, Influence of different grades of CBN inserts on cutting force and surface roughness of AISI H13 die tool steel during hard turning operation, Materials, 12 (2019) 177.
  • [31] A.S. Yamaner, B.S. Kul, Evaluation of tool radius and machining parameters on cutting forces and surface roughness for AA 6082 aluminum alloy, European Mechanical Science, 9 (2025) 125-138.
  • [32] M.K. Gupta, P. Niesłony, M.E. Korkmaz, M. Kuntoğlu, G. Królczyk, M. Günay, M. Sarikaya, Comparison of tool wear, surface morphology, specific cutting energy and cutting temperature in machining of titanium alloys under hybrid and green cooling strategies, International Journal of Precision Engineering and Manufacturing-Green Technology, 10 (2023) 1393-1406.
  • [33] M. Jamil, N. He, W. Zhao, M.K. Gupta, A.M. Khan, Novel approach of cutting temperature measurement in sustainable milling of Ti-6Al-4V alloy, Measurement, 214 (2023) 112837.
  • [34] R. Binali, Parametric optimization of cutting force and temperature in finite element milling of AISI P20 steel, Journal of Materials and Mechatronics: A, 4 (2023) 244-256.
  • [35] M. Kuntoğlu, H. Demirpolat, R. Binali, M.E. Korkmaz, M. Makhesana, K. Kaya, Sustainable Lubrication Strategies in Eco-friendly Machining of AISI 4140 Steel: Performance and Environmental Impact Analysis Using Machine Learning, Journal of Materials Engineering and Performance, (2025) 1-17.
There are 35 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other), Material Production Technologies
Journal Section Research Article
Authors

Seyhan Alan 0009-0007-6711-7560

Hakan Gündoğmuş 0000-0003-4118-0207

Submission Date October 2, 2025
Acceptance Date December 2, 2025
Publication Date January 29, 2026
Published in Issue Year 2026 Volume: 15 Issue: 2

Cite

APA Alan, S., & Gündoğmuş, H. (2026). The influences of tool geometry on machinability of hot tool work steel during application of various turning parameters. European Journal of Technique (EJT), 15(2), 283-289. https://doi.org/10.36222/ejt.1795649

All articles published by EJT are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı